Problem 11798

(American Mathematical Monthly, Vol.121, October 2014)
Proposed by F. Holland (Ireland).
For positive integers n, let f_{n} be the polynomial given by

$$
f_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{\lfloor k / 2\rfloor}
$$

(a) Prove that if $n+1$ is prime, then f_{n} is irriducible over \mathbb{Q}.
(b) Prove for all n,

$$
f_{n}(1+x)=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n-k}{k} 2^{n-2 k} x^{k}
$$

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy.
(a) We have that

$$
f_{n}(x)=\sum_{k=0}^{\lfloor n / 2\rfloor}\left(\binom{n}{2 k}+\binom{n}{2 k+1}\right) x^{k}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n+1}{2 k+1} x^{k} .
$$

If $p=2$ then $f_{p-1}(x)=2$ which is irriducible. If $p>2$ is a prime then

$$
f_{p-1}(x)=\sum_{k=0}^{(p-1) / 2}\binom{p}{2 k+1} x^{k}=x^{(p-1) / 2}+\sum_{k=1}^{(p-1) / 2}\binom{p}{2 k+1} x^{k}+p
$$

Since the leading coefficient is $1, p$ divides the coefficients $\binom{p}{2 k+1}$ for $k=1, \ldots,(p-1) / 2$ and $f_{p-1}(0)=p$, it follows by Eisenstein's criterion that f_{p-1} is irriducible over \mathbb{Q}.
(b) The polynomial

$$
P_{n}(x):=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n-k}{k} 2^{n-2 k} x^{k}
$$

satisfies the linear recurrence

$$
P_{0}(x)=1, P_{1}(x)=2, P_{n}(x)=2 P_{n-1}(x)+x P_{n-2}(x) \text { for } n \geq 2 .
$$

Hence, for $x>-1$

$$
P_{n}(x)=\frac{u^{n+1}-v^{n+1}}{u-v}
$$

where $u=1+\sqrt{1+x}, v=1-\sqrt{1+x}$ are the solutions of the equation $z^{2}=2 z+x$. Moreover,

$$
\begin{aligned}
\frac{u^{n+1}-v^{n+1}}{u-v} & =\frac{1}{2 \sqrt{1+x}}\left(\sum_{k=0}^{n+1}\binom{n+1}{k}(1+x)^{k / 2}-\sum_{k=0}^{n+1}(-1)^{k}\binom{n+1}{k}(1+x)^{k / 2}\right) \\
& =\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n+1}{2 k+1}(1+x)^{k}=f_{n}(1+x)
\end{aligned}
$$

Hence the required identity holds for $x>-1$. Since we are comparing two polynomials, it follows that the identity holds for all $x \in \mathbb{C}$.

