Problem 11797. [AMM, October 2014, p.738]. Proposed by Zhang Yun, Xi'an, Shaanxi Province, China. Let A_{1}, A_{2}, A_{3}, and A_{4} be the vertices of a tetrahedron. Let h_{k} be the length of the altitude from A_{k} to the plane of the opposite face, and let r be the radius of the inscribed sphere. Prove that

$$
\sum_{k=1}^{4} \frac{h_{k}-r}{h_{k}+r} \geq \frac{12}{5}
$$

Solution by Borislav Karaivanov, Lexington, SC, and Tzvetalin S. Vassilev, Nipissing University, North Bay, Ontario, Canada.

Let O be the centre of the inscribed sphere, and V_{k} denote the volume of the tetrahedron formed by O and the vertices of the original tetrahedron except A_{k}. Let V be the volume of the tetrahedron $A_{1} A_{2} A_{3} A_{4}$. We have

$$
\frac{h_{k}-r}{h_{k}+r}=\frac{1-\frac{r}{h_{k}}}{1+\frac{r}{h_{k}}}=\frac{1-\frac{V_{k}}{V}}{1+\frac{V_{k}}{V}}
$$

Having in mind that

$$
V_{1}+V_{2}+V_{3}+V_{4}=V \Leftrightarrow \frac{V_{1}}{V}+\frac{V_{2}}{V}+\frac{V_{3}}{V}+\frac{V_{4}}{V}=1
$$

The problem reduces to showing that for positive numbers $\alpha, \beta, \gamma, \delta$ such that $\alpha+\beta+$ $\gamma+\delta=1$, we have

$$
\frac{1-\alpha}{1+\alpha}+\frac{1-\beta}{1+\beta}+\frac{1-\gamma}{1+\gamma}+\frac{1-\delta}{1+\delta} \geq \frac{12}{5}
$$

This follows from the convexity of the function $f(x)=\frac{1-x}{1+x}$ on the interval $(0,1)$:

$$
\begin{gathered}
\frac{f(\alpha)+f(\beta)+f(\gamma)+f(\delta)}{4} \geq f\left(\frac{\alpha+\beta+\gamma+\delta}{4}\right) \Leftrightarrow \\
\frac{1-\alpha}{1+\alpha}+\frac{1-\beta}{1+\beta}+\frac{1-\gamma}{1+\gamma}+\frac{1-\delta}{1+\delta} \geq 4 \cdot f\left(\frac{1}{4}\right)=4 \cdot \frac{3}{5}=\frac{12}{5}
\end{gathered}
$$

Equality is attained if and only if $\alpha=\beta=\gamma=\delta=\frac{1}{4}$ which is equivalent to $V_{1}=V_{2}=V_{3}=V_{4}=V / 4$, or in our terms, when the faces of the tetrahedron have equal area.

Please note that this problem is identical to problem number 11783, published in JuneJuly 2014 edition of the Monthly on page 549.

