Problem 11791. [AMM, August-September 2014]. Proposed by M. Stofka, Bratislava, Slovakia. Show that for $n \geq 1$,

$$
\sum_{k=1}^{n}\binom{6 n+1}{6 k-2} B_{6 k-2}=-\frac{6 n+1}{6}
$$

where B_{n} denotes the n-th Bernoulli number.
Solution by Borislav Karaivanov, Lexington, SC. Essentially, this is a known result. In Wikipedia (http://en.wikipedia.org/wiki/Bernoulli_number) it is listed under Ramanujan's congruences as

$$
\binom{m+3}{m} B_{m}=-\frac{m+3}{6}-\sum_{j=1}^{(m-4) / 6}\binom{m+3}{m-6 j} B_{m-6 j}, \quad \text { if } m \equiv 4 \quad(\bmod 6)
$$

(set $m=6 n-2$ and $j=n-k$). It also follows from [1],(4.5), (after correcting a typo):

$$
\binom{6 k+m+3}{3} B_{6 k+m}=-\sum_{j=0}^{k-1}\binom{6 k+m+3}{6 j+m} B_{6 j+m}+\frac{1}{6}(6 k+m+3) w_{m-1}
$$

where $w_{m}=1+(-1)^{m}\left(\theta^{m}+\theta^{6-m}\right)$ with $\theta=e^{-\frac{2 \pi i}{3}}$ (set $m=4, k=n-1$, and $j=k-1$). As indicated in [1], in some form, it is also in [2], pp. 3-4, and [3], pp. 136-137.

References

[1] F. T. Howard. "Applications of a Recurrence for the Bernoulli Numbers." J. Number Theory 52 (1995):157-172.
[2] S. Ramanujan. "Some Properties of Bernoulli's Numbers." Journal of the Indian Mathematical Society 3 (1911):219-234.
[3] J. Riordan. Combinatorial Identities. New York: Wiley, 1968.

