Problem 11790

(American Mathematical Monthly, Vol.121, August-September 2014)
Proposed by Arkady Alt (USA) and Konstantin Knop (Russia).
Given a triangle with semiperimeter s, inradius r, and medians of length m_{a}, m_{b}, and m_{c}, prove that

$$
m_{a}+m_{b}+m_{c} \leq 2 s-3(2 \sqrt{3}-3) r
$$

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy.

Let us consider the triangle $A B C$ and let A^{\prime} and B^{\prime} be the symmetric points of A and B with respect to the midpoints of $B C$ and $C A$ respectively. Then, by Ptolemy's inequality applied to the quadrilateral $A B A^{\prime} B^{\prime}$, we have that

$$
4 m_{a} m_{b}=\left(2 m_{a}\right)\left(2 m_{b}\right) \leq a b+(2 c) c=a b+2 c^{2}
$$

In a similar way, $4 m_{b} m_{c} \leq b c+2 a^{2}, 4 m_{c} m_{a} \leq c a+2 b^{2}$ and by adding all together we find that

$$
2\left(m_{a} m_{b}+m_{b} m_{c}+m_{c} m_{a}\right) \leq a^{2}+b^{2}+c^{2}+\frac{1}{2}(a b+b c+c a)
$$

Moreover, $4 m_{a}^{2}=2 b^{2}+2 c^{2}-a^{2}$ and similar formulas imply

$$
m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right) .
$$

Hence

$$
\left(m_{a}+m_{b}+m_{c}\right)^{2} \leq \frac{7}{4}\left(a^{2}+b^{2}+c^{2}\right)+\frac{1}{2}(a b+b c+a c)
$$

Since

$$
R=\frac{a b c}{4 \sqrt{s(s-a)(s-b)(s-c)}} \quad \text { and } \quad r=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}},
$$

it is easy to verify that

$$
a^{2}+b^{2}+c^{2}=2 s^{2}-8 R r-2 r^{2} \quad \text { and } \quad a b+b c+a c=s^{2}+4 R r+r^{2}
$$

Therefore

$$
\left(m_{a}+m_{b}+m_{c}\right)^{2} \leq 4 s^{2}-12 R r-3 r^{2}
$$

and it suffices to prove that

$$
4 s^{2}-12 R r-3 r^{2} \leq(2 s-3(2 \sqrt{3}-3) r)^{2}
$$

that is

$$
s \leq \frac{R+(16-9 \sqrt{3}) r}{2 \sqrt{3}-3}
$$

Finally, by Blundon's inequality, $s \leq 2 R+(3 \sqrt{3}-4) r$. So we still have to show that

$$
2 R+(3 \sqrt{3}-4) r \leq \frac{R+(16-9 \sqrt{3}) r}{2 \sqrt{3}-3}
$$

which is equivalent to Euler's inequality $R \geq 2 r$.
Remark. For Blundon's inequality see Inequalities associated with the triangle, Canad. Math. Bull., 8 (1965), 615-626 and Problem E1935, The Amer. Math. Monthly, 73 (1966), 1122.

