Problem 11788. [AMM, June-July 2014]. Proposed by S. Andriopoulos, Eleia, Greece. Let n be a positive integer, and suppose that $0<y_{i} \leq x_{i}<1$ for $1 \leq i \leq n$. Prove that

$$
\frac{\log x_{1}+\cdots+\log x_{n}}{\log y_{1}+\cdots+\log y_{n}} \leq \sqrt{\frac{1-x_{1}}{1-y_{1}}+\cdots+\frac{1-x_{n}}{1-y_{n}}}
$$

Solution by Borislav Karaivanov, Lexington, $S C$. For $n=1$ the inequality is equivalent to $\frac{\log x_{1}}{\sqrt{1-x_{1}}} \geq \frac{\log y_{1}}{\sqrt{1-y_{1}}}$. We consider $f(x)=\frac{\log x}{\sqrt{1-x}}$ on $(0,1)$. Its derivative $f^{\prime}(x)=\frac{x \log x+2-2 x}{2 x \sqrt{1-x}^{3}}$ has positive denominator. The numerator $g(x)=x \log x+2-2 x$ is positive too. Indeed, $g^{\prime}(x)=\log x-1<0$ which means that g strictly decreasing and, hence, $g(x)>g(1)=0$ on $(0,1)$. Thus f is strictly increasing on $(0,1)$ which yields the desired inequality with equality attained if and only if $x_{1}=y_{1}$.

For $n \geq 2$ we rewrite and apply the case $n=1$ to get

$$
\frac{\log x_{1}+\cdots+\log x_{n}}{\log y_{1}+\cdots+\log y_{n}}=\frac{\log x_{1} \ldots x_{n}}{\log y_{1} \ldots y_{n}} \leq \sqrt{\frac{1-x_{1} \ldots x_{n}}{1-y_{1} \ldots y_{n}}}<\sqrt{\frac{1-x_{1}}{1-y_{1}}+\cdots+\frac{1-x_{n}}{1-y_{n}}}
$$

where the last inequality is easily obtained by induction from the simple inequality derived as follows

$$
\frac{1-x_{1} x_{2}}{1-y_{1} y_{2}}<\frac{\left(1-x_{1}\right)+\left(1-x_{2}\right)}{1-y_{1} y_{2}}=\frac{1-x_{1}}{1-y_{1} y_{2}}+\frac{1-x_{2}}{1-y_{1} y_{2}}<\frac{1-x_{1}}{1-y_{1}}+\frac{1-x_{2}}{1-y_{2}}
$$

for $x_{1}, x_{2}, y_{1}, y_{2} \in(0,1)$. Clearly, for $n \geq 2$ equality is never attained.

