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Let n be a positive integer, and suppose that 0 < yi ≤ xi < 1 for 1 ≤ i ≤ n. Prove that
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Solution by Borislav Karaivanov, Lexington, SC. For n = 1 the inequality is equivalent
to log x1√

1−x1
≥ log y1√

1−y1 . We consider f(x) = log x√
1−x on (0, 1). Its derivative f ′(x) = x log x+2−2x
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has positive denominator. The numerator g(x) = x log x+2−2x is positive too. Indeed,
g′(x) = log x−1 < 0 which means that g strictly decreasing and, hence, g(x) > g(1) = 0
on (0, 1). Thus f is strictly increasing on (0, 1) which yields the desired inequality with
equality attained if and only if x1 = y1.

For n ≥ 2 we rewrite and apply the case n = 1 to get
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where the last inequality is easily obtained by induction from the simple inequality
derived as follows
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for x1, x2, y1, y2 ∈ (0, 1). Clearly, for n ≥ 2 equality is never attained. �


