Problem 11782

(American Mathematical Monthly, Vol.121, June-July 2014)

Proposed by M. Merca (Romania).

Prove that

$$
\sum_{k=1}^{\infty}(-1)^{k-1} k p_{k}(n-k(k+1) / 2)=\sum_{k=-\infty}^{\infty}(-1)^{k} \tau(n-k(3 k-1) / 2)
$$

Here, $p_{k}(n)$ denotes the number of partitions of n in which the greatest part is less than or equal to k, and n is the number of divisors of n.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy.

By the q-binomial theorem

Let $|z|<1$, then by taking the limit as n goes to infinity, we obtain

$$
\sum_{k=0}^{\infty} \frac{z^{k} q^{\binom{k+1}{2}}}{\prod_{j=1}^{k}\left(1-q^{j}\right)}=\prod_{k=1}^{\infty}\left(1+z q^{k}\right)
$$

Now we take the derivative of both sides with respect to z,

$$
\sum_{k=1}^{\infty} \frac{k z^{k-1} q^{\binom{k+1}{2}}}{\prod_{j=1}^{k}\left(1-q^{j}\right)}=\prod_{k=1}^{\infty}\left(1+z q^{k}\right) \sum_{k=1}^{\infty} \frac{q^{k}}{1+z q^{k}}
$$

and, as z goes to -1 , we have

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k-1} k q^{\binom{k+1}{2}}}{\prod_{j=1}^{k}\left(1-q^{j}\right)}=\prod_{k=1}^{\infty}\left(1-q^{k}\right) \sum_{k=1}^{\infty} \frac{q^{k}}{1-q^{k}}
$$

By using the pentagonal number theorem, we can write the above identity in the following way

$$
\left.\sum_{k=1}^{\infty}(-1)^{k-1} k q^{(k+1} 2\right) \sum_{j=0}^{\infty} p_{k}(j) q^{j}=\left(\sum_{k=-\infty}^{\infty}(-1)^{k} x^{\frac{k(3 k-1)}{2}}\right) \cdot\left(\sum_{k=1}^{\infty} \tau(k) q^{k}\right)
$$

Finally, by extracting the coefficient of x^{n} of both sides, we get

$$
\sum_{k=1}^{\infty}(-1)^{k-1} k p_{k}(n-k(k+1) / 2)=\sum_{k=-\infty}^{\infty}(-1)^{k} \tau(n-k(3 k-1) / 2)
$$

