Problem 11782
(American Mathematical Monthly, Vol.121, June-July 2014)

Proposed by M. Merca (Romania).

Prove that

o0

i Y kpr(n — k(k+1)/2) = > (1) r(n — k(3k — 1)/2).
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Here, p(n) denotes the number of partitions of n in which the greatest part is less than or equal to
k, and n is the number of divisors of n.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universita di Roma “Tor
Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

By the g-binomial theorem
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Let |z| < 1, then by taking the limit as n goes to infinity, we obtain
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Now we take the derivative of both sides with respect to z,
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and, as z goes to —1, we have
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By using the pentagonal number theorem, we can write the above identity in the following way
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Finally, by extracting the coeflicient of 2™ of both sides, we get
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