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Proposed by Zhang Yun (China).

Given a tetrahedron, let r denote the radius of its inscribed sphere. For 1 ≤ k ≤ 4, let hk denote
the distance from the kth vertex to the plane of the opposite face. Prove that

4∑
k=1

hk − r

hk + r
≥ 12

5
.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma “Tor
Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

The volume of the tetrahedron is given by

hkAk

3
=

rS
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where Ak is the area of the face of opposite to the kth vertex and S =
∑4

k=1 Ak is the surface area
of the tetrahedron. Hence hk = r/tk with tk = Ak/S ∈ (0, 1) and
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=

4∑
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f(tk) ≥ 4f
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where f(t) = (1− t)/(1 + t) is a convex function in [0,+∞). �


