
Problem 11782. [AMM, June-July 2014]. Proposed by I. Gessel, Waltham, MA. A
signed binary representation of an integer m is a finite list a0, a1, . . . of elements of
{−1, 0, 1} such that

∑
ai2

i = m. A signed binary representation is sparse if no two
consecutive entries in the list are nonzero.
(a) Prove that every integer has a unique sparse representation.
(b) Prove that for all m ∈ Z, every non-sparse signed binary representation of m has at
least as many nonzero terms as the sparse representation.

Solution by Borislav Karaivanov, Lexington, SC. (a) Existence. For any m ≥ 0, its
binary representation is also a signed binary representation; for m < 0, negating each
term in the binary representation of |m| yields a signed binary representation of m. For
the rest of the proof, we have representation stand for ”signed binary representation” and
pair for a ”pair of consecutive nonzero terms”. Next we show that every representation
can be converted into a sparse one. For any representation we define d1 to be the squared
number of pairs and d2 to be the sum

∑
(l−i) over all pairs (ai, ai−1), where l is the index

of the left-most nonzero term. We define the ”defect” d as d1 + d2 and use it to argue
existence by induction. To this end we consider four kinds of sum-preserving transforms,
each changing three consecutive terms in a representation, as indicated, while keeping
the rest unchanged:

(0, 1,−1)→ (0, 0, 1) (1)

(0,−1, 1)→ (0, 0,−1) (2)

(0, 1, 1)→ (1, 0,−1) (3)

(0,−1,−1)→ (−1, 0, 1). (4)

If d = 0 the representation is sparse already. Suppose every representation with
”defect” smaller than d can be made sparse with finite number of transform of the type
(1)-(4). If the left-most pair matches (1) or (2), we get a representation with both d1
and d2 reduced because a pair disappears. Otherwise, either (3) or (4) applies to the
left-most pair and we distinguish the following three situations:

(i) no nonzero terms exist to the left of the pair. In this case the left-most nonzero
term moves to the left by 1 which increases each remaining summand in d2 by 1, i.e., if p
is the number of pairs, then d2 is increased to d2 + p− 1. In the same time, a pair is lost
and d1 is reduced from p2 to (p− 1)2. Therefore, d changes from p2 + d2 to p2 + d2 − p,
a reduction since p is at least 1.

(ii) there is a nonzero term to the left of the pair but the two terms immediately to
the left are zeros. The pair is destroyed without creating a new one; both d1 and d2 get
reduced.

(iii) immediately to the left of the pair we have (1, 0) or (−1, 0). The pair is destroyed
but a new pair ”closer” to the left-most nonzero term is created; d1 remains the same
but d2 gets reduced.

Thus, in any case the ”defect” gets reduced and the inductive hypothesis applies
yielding the desired sparse representation.

Uniqueness. Suppose
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where the sums in the lower bound include only every other term because the represen-
tations are sparse. This contradiction proves the uniqueness.

(b) This is immediate from the existence proof in part (a) since none of the four
types of transforms (1)-(4) increases the number of nonzero terms. �


