Problem 11781

(American Mathematical Monthly, Vol.121, May 2014)

Proposed by R. Tauraso (Italia).

For $n \geq 2$, call a positive integer n-smooth if none of its prime factors is larger than n. Let S_{n} be the set of all n-smooth positive integers. Let C be a finite, nonempty set of the nonnegative integers, and let a and d be positive integers. Let M be the set of all positive integers of the form $m=\sum_{k=1}^{d} c_{k} s_{k}$ where $c_{k} \in C$ and $s_{k} \in S_{n}$ for $k=1, \ldots, d$. Prove that there are infinitely many primes p such that $p^{a} \notin M$.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy.

If M is finite then the property trivially holds. Let us assume that M is infinite and let $m_{1}<m_{2}<$ $m_{3}<\cdots$ be the sequence of positive integers of its elements. It suffices to show that for $\alpha>0$,

$$
\sum_{k=1}^{\infty} \frac{1}{m_{k}^{\alpha}}<+\infty
$$

In fact, if $p_{k}^{a} \in M$ for any $k \geq k_{0}$, where p_{k} is the k th prime, then, for $\alpha=1 / a$, we get a contradiction

$$
+\infty=\sum_{k=k_{0}}^{\infty} \frac{1}{p_{k}}=\sum_{k=k_{0}}^{\infty} \frac{1}{\left(p_{k}^{a}\right)^{\alpha}} \leq \sum_{k=1}^{\infty} \frac{1}{m_{k}^{\alpha}}<+\infty
$$

Let $f(x)=|M \cap[1, x]|$ then $f(x)$ is a non-decreasing function such that

$$
f(x) \leq(|C|+1)^{d}\left|S_{n} \cap[1, x]\right|^{d} \leq(|C|+1)^{d} \prod_{i=1}^{\pi(n)}\left(1+\frac{\ln (x)}{\ln \left(p_{i}\right)}\right)^{d}
$$

Hence

$$
\lim _{j \rightarrow+\infty} \frac{f(j) / j^{1+\alpha}}{1 / j^{1+\alpha / 2}}=\lim _{j \rightarrow+\infty} \frac{f(j)}{j^{\alpha / 2}}=0
$$

and therefore

$$
\begin{aligned}
+\infty>\sum_{j=1}^{\infty} \frac{f(j)}{j^{1+\alpha}} & =\sum_{k=1}^{\infty} \sum_{j=m_{k}}^{m_{k+1}-1} \frac{f(j)}{j^{1+\alpha}}=\sum_{k=1}^{\infty} k \sum_{j=m_{k}}^{m_{k+1}-1} \frac{1}{j^{1+\alpha}} \\
& \geq \sum_{k=1}^{\infty} k \int_{m_{k}}^{m_{k+1}} \frac{d x}{x^{1+\alpha}}=\frac{1}{\alpha} \sum_{k=1}^{\infty} k\left(\frac{1}{m_{k}^{\alpha}}-\frac{1}{m_{k+1}^{\alpha}}\right) \\
& =\frac{1}{\alpha}\left(\sum_{k=1}^{\infty} \frac{1}{m_{k}^{\alpha}}-\lim _{k \rightarrow+\infty} \frac{k}{m_{k+1}^{\alpha}}\right)=\frac{1}{\alpha} \sum_{k=1}^{\infty} \frac{1}{m_{k}^{\alpha}}
\end{aligned}
$$

because

$$
\lim _{k \rightarrow+\infty} \frac{k}{m_{k+1}^{\alpha}}=\lim _{k \rightarrow+\infty} \frac{k}{k+1} \cdot \frac{f\left(m_{k+1}\right)}{m_{k+1}^{\alpha}}=\lim _{x \rightarrow+\infty} \frac{f(x)}{x^{\alpha}}=0
$$

