Problem 11776

(American Mathematical Monthly, Vol.121, May 2014)
Proposed by D. Beckwith (USA).
Given urns U_{1}, \ldots, U_{n} in a line, and plenty of identical blue and identical red balls, let a_{n} be the number of ways to put balls into the urns subject to the conditions that
(i) each urn contains at most one ball,
(ii) any urn containing a red ball is next to exactly one urn containing a blue ball, and
(iii) no two urns containing a blue ball are adjacent.
(a) Show that

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=\frac{1+x+2 x^{2}}{1-x-x^{2}-3 x^{3}}
$$

(b) Show that

$$
a_{n}=\sum_{j \geq 0} \sum_{m \geq 0} 4^{j}\left[\binom{n-2 m}{j}\binom{m}{j}+\binom{n-2 m-1}{j}\binom{m}{j}+2\binom{n-2 m}{j}\binom{m-1}{j}\right]
$$

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy.

Two non-empty urns belong to the same connected component if also the urns between them are non-empty. Let c_{k} be the number of ways to put the balls in a connected component of k urns. It is easy to see that when $k \equiv 1(\bmod 3)$ then $c_{k}=1$:

$$
B, B R R B, B R R B R R B, B R R B R R B R R B, B R R B R R B R R B R R B, \ldots
$$

Moreover, if $k \equiv 2(\bmod 3)$ then a disposition can be obtained from one of size $k-1$ by adding a ball R to the left or to the right, so $c_{k}=2$. On the other hand, if $k \equiv 0(\bmod 3)$ then a disposition can be obtained from one of size $k-2$ by adding a two balls R to the left and to the right, so $c_{k}=1$. It follows that

$$
C(x)=\sum_{k \geq 1} c_{k} x^{k}=\frac{x}{1-x}+\frac{x^{2}}{1-x^{3}}=\frac{x(1+x)^{2}}{1-x^{3}}
$$

Let us assume that a disposition has j connected components of total size k. Let t_{i} be the number of empty urns between the $(i-1)$ th and the i th components for $i=1, \ldots, j+1$. Then $t_{i} \geq 1$ for $i=2, \ldots, j$ and the number of dispositions of this kind is

$$
\binom{n-k+1}{j} \sum_{k_{1}+k_{2}+\cdots+k_{j}=k} \prod_{i=1}^{j} c_{k_{i}}=\left[x^{k}\right]\binom{n-k+1}{j} C^{j}(x)
$$

Hence

$$
\begin{aligned}
a_{n} & =\sum_{k \geq 0}\left[x^{k}\right] \sum_{j \geq 0}\binom{n-k+1}{j} C^{j}(x)=\sum_{k=0}^{n}\left[x^{k}\right](1+C(x))^{n-k+1} \\
& =\left[x^{n}\right] \sum_{k=0}^{n}(1+C(x))^{n-k+1} x^{n-k}=\left[x^{n}\right] \sum_{k \geq 0}(1+C(x))^{k+1} x^{k} \\
& =\left[x^{n}\right] \frac{1+C(x)}{1-x(1+C(x))}=\left[x^{n}\right] \frac{1+x+2 x^{2}}{1-x-x^{2}-3 x^{3}}
\end{aligned}
$$

and (a) is proved.

As regards (b), we observe that for $r \geq 0$,

$$
\sum_{n \geq 0}\binom{n-r}{j} x^{n}=\frac{x^{r+j}}{(1-x)^{j+1}}
$$

Therefore, for $a, b \geq 0$,

$$
\begin{aligned}
\sum_{n \geq 0} \sum_{j \geq 0} \sum_{m \geq 0} 4^{j}\binom{n-2 m-a}{j}\binom{m-b}{j} x^{n} & =\sum_{m \geq 0} \sum_{j \geq 0}\binom{m-b}{j} 4^{j} \sum_{n \geq 0}\binom{n-2 m-a}{j} x^{n} \\
& =\frac{x^{a}}{1-x} \sum_{m \geq 0} x^{2 m} \sum_{j \geq 0}\binom{m-b}{j}\left(\frac{4 x}{1-x}\right)^{j} \\
& =\frac{x^{a}}{1-x} \sum_{m \geq b} x^{2 m}\left(1+\frac{4 x}{1-x}\right)^{m-b} \\
& =\frac{x^{a+2 b}}{1-x} \sum_{m \geq b}\left(\frac{x^{2}(1+3 x)}{1-x}\right)^{m-b} \\
& =\frac{x^{a+2 b}}{1-x} \cdot \frac{1}{1-\frac{x^{2}(1+3 x)}{1-x}}=\frac{x^{a+2 b}}{1-x-x^{2}-3 x^{3}}
\end{aligned}
$$

Thus (b) follows from (a):

$$
\left[x^{n}\right] \sum_{n \geq 0} \sum_{j \geq 0} \sum_{m \geq 0}[\ldots]=\left[x_{n}\right] \frac{1+x+2 x^{2}}{1-x-x^{2}-3 x^{3}}=a_{n}
$$

