Problem 11776

(American Mathematical Monthly, Vol.121, May 2014)

Proposed by D. Beckwith (USA).

Given urns U_1, \ldots, U_n in a line, and plenty of identical blue and identical red balls, let a_n be the number of ways to put balls into the urns subject to the conditions that (i) each urn contains at most one ball,

(ii) any urn containing a red ball is next to exactly one urn containing a blue ball, and(iii) no two urns containing a blue ball are adjacent.

(a) Show that

$$\sum_{n=0}^{\infty} a_n x^n = \frac{1+x+2x^2}{1-x-x^2-3x^3}$$

(b) Show that

$$a_n = \sum_{j \ge 0} \sum_{m \ge 0} 4^j \left[\binom{n-2m}{j} \binom{m}{j} + \binom{n-2m-1}{j} \binom{m}{j} + 2\binom{n-2m}{j} \binom{m-1}{j} \right].$$

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy.

Two non-empty urns belong to the same connected component if also the urns between them are non-empty. Let c_k be the number of ways to put the balls in a connected component of k urns. It is easy to see that when $k \equiv 1 \pmod{3}$ then $c_k = 1$:

B, BRRB, BRRBRRB, BRRBRRBRRB, BRRBRRBRRBRRB, ...

Moreover, if $k \equiv 2 \pmod{3}$ then a disposition can be obtained from one of size k - 1 by adding a ball R to the left or to the right, so $c_k = 2$. On the other hand, if $k \equiv 0 \pmod{3}$ then a disposition can be obtained from one of size k - 2 by adding a two balls R to the left and to the right, so $c_k = 1$. It follows that

$$C(x) = \sum_{k>1} c_k x^k = \frac{x}{1-x} + \frac{x^2}{1-x^3} = \frac{x(1+x)^2}{1-x^3}.$$

Let us assume that a disposition has j connected components of total size k. Let t_i be the number of empty urns between the (i-1)th and the *i*th components for $i = 1, \ldots, j+1$. Then $t_i \ge 1$ for $i = 2, \ldots, j$ and the number of dispositions of this kind is

$$\binom{n-k+1}{j} \sum_{k_1+k_2+\dots+k_j=k} \prod_{i=1}^{j} c_{k_i} = [x^k] \binom{n-k+1}{j} C^j(x)$$

Hence

$$a_n = \sum_{k \ge 0} [x^k] \sum_{j \ge 0} \binom{n-k+1}{j} C^j(x) = \sum_{k=0}^n [x^k] (1+C(x))^{n-k+1}$$
$$= [x^n] \sum_{k=0}^n (1+C(x))^{n-k+1} x^{n-k} = [x^n] \sum_{k \ge 0} (1+C(x))^{k+1} x^k$$
$$= [x^n] \frac{1+C(x)}{1-x(1+C(x))} = [x^n] \frac{1+x+2x^2}{1-x-x^2-3x^3}$$

and (a) is proved.

As regards (b), we observe that for $r \ge 0$,

$$\sum_{n \ge 0} \binom{n-r}{j} x^n = \frac{x^{r+j}}{(1-x)^{j+1}}.$$

Therefore, for $a, b \ge 0$,

$$\begin{split} \sum_{n\geq 0} \sum_{j\geq 0} \sum_{m\geq 0} 4^{j} \binom{n-2m-a}{j} \binom{m-b}{j} x^{n} &= \sum_{m\geq 0} \sum_{j\geq 0} \binom{m-b}{j} 4^{j} \sum_{n\geq 0} \binom{n-2m-a}{j} x^{n} \\ &= \frac{x^{a}}{1-x} \sum_{m\geq 0} x^{2m} \sum_{j\geq 0} \binom{m-b}{j} \left(\frac{4x}{1-x}\right)^{j} \\ &= \frac{x^{a}}{1-x} \sum_{m\geq b} x^{2m} \left(1 + \frac{4x}{1-x}\right)^{m-b} \\ &= \frac{x^{a+2b}}{1-x} \sum_{m\geq b} \left(\frac{x^{2}(1+3x)}{1-x}\right)^{m-b} \\ &= \frac{x^{a+2b}}{1-x} \cdot \frac{1}{1-\frac{x^{2}(1+3x)}{1-x}} = \frac{x^{a+2b}}{1-x-x^{2}-3x^{3}}. \end{split}$$

Thus (b) follows from (a):

$$[x^n] \sum_{n \ge 0} \sum_{j \ge 0} \sum_{m \ge 0} \left[\dots \right] = [x_n] \frac{1 + x + 2x^2}{1 - x - x^2 - 3x^3} = a_n.$$