
Problem 11775
(American Mathematical Monthly, Vol.121, May 2014)

Proposed by I. Sofair (USA).

Let A1, . . . , An be finite sets. For k = 1, . . . , n, let Sk =
∑
|J|=k

∣∣∣⋃j∈J Aj

∣∣∣ with J ⊆ {1, . . . , n}.

(a) Express in terms of S1, . . . , Sn the number of elements that belong to exactly m of the sets
A1, . . . , An.

(b) Same question as in (a), except that we now require the number of elements belonging to at
least m of the sets A1, . . . , An.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma “Tor
Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

(a) The number of elements that belong to exactly 1 ≤ m ≤ n of the sets A1, . . . , An is
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In fact, an element that is in exactly r of the sets A1, . . . , An is counted
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times in Sj where
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is the number of ways to choose i of the r sets and
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is the number of
ways complete a set of j elements. Therefore, in the above formula, such an element is counted
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times because for 0 ≤ t ≤ n,
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(−1)n−m if t = m,
0 otherwise,

(b) The number of elements belonging to at least 1 ≤ m ≤ n of the sets A1, . . . , An is
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Note that in a similar way one can prove that
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where Tk =
∑
|J|=k
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∣∣∣. Moreover for k = 1, . . . , n,
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