
Problem 11775. [AMM, May 2014]. Proposed by I. Sofair, Fredericksburg, VA. Let
A1, . . . , Ak be finite sets. For J ⊆ {1, . . . , k}, let NJ = | ∪j∈J Aj|, and let Sm =∑

J :|J |=mNJ .

(a) Express in terms of S1, . . . , Sk the number of elements that belong to exactly m of the
sets A1, . . . , Ak.
(b) Same question as in (a), except that we now require the number of elements belonging
to at least m of the sets A1, . . . , Ak.

Solution by Borislav Karaivanov, Lexington, SC. (a) Let Tm be the number of elements
that belong to exactly m of the sets A1, . . . , Ak. An element b counted by Tm is counted in
Si once for each i-tuple of sets drawn from A1, . . . , Ak except for the i-tuples (Aj1 , . . . , Aji)

such that none of Ajs ’s contains b. Therefore, Si =
∑k
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Tm. (Here and

below, we use the convention that
(
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)
= 0 when n < l, or n < 0, or l < 0.) Thus

S = (B − C)T , where S and T are column vectors holding the Si’s and Tm’s, and B and
C are k × k matrices with entries given by bim =
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and cim =
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)
, correspondingly.

To solve the system for T , we left-multiply by the inverse D of B − C. The entries of D
are given by dmj = (−1)k+1+m+j

(
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)
. Indeed, for the entries of BD we have
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where δjk is the Kronecker delta, and for the entries of CD we find
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Combining the last two results, we obtain
∑k

m=1(bim− cim)dmj =
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)
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)
(δij − δjk) =((
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δij = δij. Therefore, T = DS, i.e., defining S0 = 0, we have
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(b) For the number Um of elements belonging to at least m of the sets A1, . . . , Ak we use
part (a) to obtain
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Si. �


