Problem 11775. [AMM, May 2014]. Proposed by I. Sofair, Fredericksburg, VA. Let A_{1}, \ldots, A_{k} be finite sets. For $J \subseteq\{1, \ldots, k\}$, let $N_{J}=\left|\cup_{j \in J} A_{j}\right|$, and let $S_{m}=$ $\sum_{J:|J|=m} N_{J}$.
(a) Express in terms of S_{1}, \ldots, S_{k} the number of elements that belong to exactly m of the sets A_{1}, \ldots, A_{k}.
(b) Same question as in (a), except that we now require the number of elements belonging to at least m of the sets A_{1}, \ldots, A_{k}.
Solution by Borislav Karaivanov, Lexington, SC. (a) Let T_{m} be the number of elements that belong to exactly m of the sets A_{1}, \ldots, A_{k}. An element b counted by T_{m} is counted in S_{i} once for each i-tuple of sets drawn from A_{1}, \ldots, A_{k} except for the i-tuples $\left(A_{j_{1}}, \ldots, A_{j_{i}}\right)$ such that none of $A_{j_{s}}$'s contains b. Therefore, $S_{i}=\sum_{m=1}^{k}\left(\binom{k}{i}-\binom{k-m}{i}\right) T_{m}$. (Here and below, we use the convention that $\binom{n}{l}=0$ when $n<l$, or $n<0$, or $l<0$.) Thus $S=(B-C) T$, where S and T are column vectors holding the S_{i} 's and T_{m} 's, and B and C are $k \times k$ matrices with entries given by $b_{i m}=\binom{k}{i}$ and $c_{i m}=\binom{k-m}{i}$, correspondingly. To solve the system for T, we left-multiply by the inverse D of $B-C$. The entries of D are given by $d_{m j}=(-1)^{k+1+m+j}\binom{j}{k-m}$. Indeed, for the entries of $B D$ we have

$$
\begin{aligned}
\sum_{m=1}^{k} b_{i m} d_{m j} & =(-1)^{k+1+j}\binom{k}{i} \sum_{m=1}^{k}(-1)^{m}\binom{j}{k-m}=(-1)^{j+1}\binom{k}{i} \sum_{m=0}^{k-1}(-1)^{m}\binom{j}{m} \\
& =(-1)^{j+1}\binom{k}{i}\left(\sum_{m=0}^{j}(-1)^{m}\binom{j}{m}-(-1)^{j}\binom{j}{j} \delta_{j k}\right)=\binom{k}{i} \delta_{j k},
\end{aligned}
$$

where $\delta_{j k}$ is the Kronecker delta, and for the entries of $C D$ we find

$$
\begin{aligned}
\sum_{m=1}^{k} c_{i m} d_{m j} & =(-1)^{k+1+j} \sum_{m=1}^{k}(-1)^{m}\binom{k-m}{i}\binom{j}{k-m} \\
& =(-1)^{k+j+1}\binom{j}{i} \sum_{m=0}^{k-1}(-1)^{m}\binom{j-i}{m+j-k}=-\binom{j}{i} \sum_{m=j+1-k}^{j}(-1)^{m}\binom{j-i}{m} \\
& =-\binom{j}{i}\left(\sum_{m=0}^{j-i}(-1)^{m}\binom{j-i}{m}-\binom{j-i}{0} \delta_{j k}\right)=-\binom{j}{i}\left(\delta_{i j}-\delta_{j k}\right) .
\end{aligned}
$$

Combining the last two results, we obtain $\sum_{m=1}^{k}\left(b_{i m}-c_{i m}\right) d_{m j}=\binom{k}{i} \delta_{j k}+\binom{j}{i}\left(\delta_{i j}-\delta_{j k}\right)=$ $\left(\binom{k}{i}-\binom{j}{i}\right) \delta_{j k}+\binom{j}{i} \delta_{i j}=\delta_{i j}$. Therefore, $T=D S$, i.e., defining $S_{0}=0$, we have

$$
T_{m}=\sum_{i=1}^{k} d_{m i} S_{i}=\sum_{i=1}^{k}(-1)^{k+1+m+i}\binom{i}{k-m} S_{i}=\sum_{i=k-m}^{k}(-1)^{k+1+m+i}\binom{i}{k-m} S_{i} .
$$

(b) For the number U_{m} of elements belonging to at least m of the sets A_{1}, \ldots, A_{k} we use part (a) to obtain

$$
\begin{aligned}
U_{m} & =\sum_{j=m}^{k} T_{j}=\sum_{j=m}^{k} \sum_{i=1}^{k}(-1)^{k+1+j+i}\binom{i}{k-j} S_{i}=\sum_{i=1}^{k}\left((-1)^{i+1} S_{i} \sum_{j=0}^{k-m}(-1)^{j}\binom{i}{j}\right) \\
& =\sum_{i=k-m+1}^{k}\left((-1)^{i+1} \sum_{j=0}^{k-m}(-1)^{j}\binom{i}{j}\right) S_{i} .
\end{aligned}
$$

