Problem 11270

(American Mathematical Monthly, Vol.114, January 2007)
Proposed by Sergey Sadov, Canada.
Let S_{n} be the $n \times n$ matrix in which the entries are 1 through n^{2}, spiraling inward with 1 in the $(1,1)$ entry. Show that for $n \geq 2$,

$$
\operatorname{det}\left(S_{n}\right)=(-1)^{n(n-1) / 2} 4^{n-1} \frac{3 n-1}{2} \prod_{k=0}^{n-2}\left(\frac{1}{2}+k\right)
$$

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy.

Let

$$
S_{n}(x)=\left(\begin{array}{ccccc}
x & x+1 & \cdots & x+n-2 & x+n-1 \\
x+4 n-5 & x+4 n-5 & \cdots & x+5 n-7 & x+n \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x+3 n-3 & x+3 n-4 & \cdots & x+2 n-1 & x+2 n-2
\end{array}\right)
$$

By adding the last row to the first row of $S_{n}(x)$ we obtain

$$
\left(\begin{array}{ccccc}
2 x+3 n-3 & 2 x+3 n-3 & \cdots & 2 x+3 n-3 & 2 x+3 n-3 \\
x+4 n-5 & x+4 n-5 & \cdots & x+5 n-7 & x+n \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x+3 n-3 & x+3 n-4 & \cdots & x+2 n-1 & x+2 n-2
\end{array}\right)
$$

and therefore for $n \geq 2$

$$
\operatorname{det}\left(S_{n}(x)\right)=(2 x+3 n-3) \cdot \operatorname{det}\left(U_{n}(x)\right)
$$

where

$$
U_{n}(x)=\left(\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
x+4 n-5 & x+4 n-5 & \cdots & x+5 n-7 & x+n \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x+3 n-3 & x+3 n-4 & \cdots & x+2 n-1 & x+2 n-2
\end{array}\right)
$$

By subtracting x times the first row from the other rows of $U_{n}(x)$ we obtain $U_{n}(0)$ and therefore $\operatorname{det}\left(U_{n}(x)\right)$ is independent of x.
By adding the second and the last row to the first row of $U_{n}(0)$ we obtain

$$
\left(\begin{array}{ccccc}
7 n-7 & 7 n-7 & \cdots & 7 n-7 & 3 n-1 \\
4 n-5 & 4 n-5 & \cdots & 5 n-7 & n \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
3 n-3 & 3 n-4 & \cdots & 2 n-1 & 2 n-2
\end{array}\right)
$$

Since $3 n-1=(7 n-7)-(4 n-6)$ then by the linearity of the determinant in the last column we get

$$
\operatorname{det}\left(U_{n}(0)\right)=(7 n-7) \cdot \operatorname{det}\left(U_{n-1}(0)\right)-(-1)^{n+1}(4 n-6) \cdot \operatorname{det}\left(S_{n-1}(2 n-1)\right)
$$

that is

$$
\begin{aligned}
(8-7 n) \operatorname{det}\left(U_{n}(0)\right) & =(-1)^{n}(4 n-6) \cdot(2(2 n-1)+3(n-1)-3) \cdot \operatorname{det}\left(U_{n-1}(0)\right) \\
& =(-1)^{n}(4 n-6) \cdot(7 n-8) \cdot \operatorname{det}\left(U_{n-1}(0)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{det}\left(U_{n}(0)\right) & =(-1)^{n-1} 2(2 n-3) \cdot \operatorname{det}\left(U_{n-1}(0)\right) \\
& =(-1)^{(n-1)+(n-2)} 2^{2}(2 n-3)(2 n-5) \cdot \operatorname{det}\left(U_{n-2}(0)\right) \\
& =(-1)^{n(n-1) / 2} 2^{n-2}(2 n-3)!!
\end{aligned}
$$

because $\operatorname{det}\left(U_{2}(0)\right)=-1$. Finally

$$
\begin{aligned}
\operatorname{det}\left(S_{n}(1)\right) & =(3 n-1) \cdot \operatorname{det}\left(U_{n}(0)\right) \\
& =(-1)^{n(n-1) / 2} 2^{n-2}(3 n-1)(2 n-3)!! \\
& =(-1)^{n(n-1) / 2} 2^{n-2}(3 n-1) \prod_{k=0}^{n-2}(2 k+1) \\
& =(-1)^{n(n-1) / 2} 4^{n-1} \frac{3 n-1}{2} \prod_{k=0}^{n-2}\left(k+\frac{1}{2}\right) .
\end{aligned}
$$

