
Asymmetry

V4-1. Proposed by the editor. Show that

∑
n≥1

(−1)n−1

n(n+ 1) · · · (n+ k)
=

2k

k!

(
ln 2−

k∑
i=1

(1/2)i

i

)

where k is a nonnegative integer and for k = 0 the second sum is considered to be 0.

Solution V4-1, by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

The proposed problem corresponds to the particular case z = 1/2 of the next more general
result.

Lemma 1. For every nonnegative integer k, and every complex number z, with ℜz ≤ 1/2, we
have

∞∑
n=1

(−1)n−1

n(n+ 1) · · · (n+ k)

(
z

1− z

)n

=
z−k

k!

−Log(1− z)−
k∑

j=1

zj

j

 .

Proof. The case k = 0 follows from the well-known power series expansion of w 7→ Log(1 + w).
So, we will assume that k > 0. Noting that

k!

n(n+ 1) · · · (n+ k)
=

Γ(k + 1)Γ(n)

Γ(n+ k)
= β(k + 1, n) =

∫ 1

0
tk(1− t)n−1dt

we see that for |u| ≤ 1 we have

∞∑
n=1

k!

n(n+ 1) · · · (n+ k)
un =

∫ 1

0
tk

( ∞∑
n=1

((1− t)u)n−1

)
u dt

=

∫ 1

0

tku

1− u(1− t)
dt

In what follows, Log is the principal determination of the logarithm defined in the domain
C \ (−∞, 0], and we will write

∫
[0,z] f(ξ)dξ to denote the path integration of f on the line

segment [0, z] in the complex plane C.

Now, note that for ℜz ≤ 1
2 we have

∣∣∣ z
1−z

∣∣∣ ≤ 1 and consequently, taking u = −z/(1 − z) in

the previous formula we obtain

∞∑
n=1

k!(−1)n−1

n(n+ 1) · · · (n+ k)

(
z

1− z

)n

=

∫ 1

0

tk

1− zt
z dt

=
1

zk

∫ 1

0

(zt)k

1− zt
zdt

=
1

zk

∫
[0,z]

ξk

1− ξ
dξ
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But ξk

1−ξ = 1
1−ξ − (1 + ξ + ξ2 + · · ·+ ξk−1), hence

∞∑
n=1

k!(−1)n−1

n(n+ 1) · · · (n+ k)

(
z

1− z

)n

=
1

zk

−Log(1− z)−
k∑

j=1

zj

j


and the lemma follows.

Remark. Choosing z = 1/(k + 1), when k ≥ 1 we obtain

∞∑
n=1

(−1)n−1

n(n+ 1) · · · (n+ k)kn
=

(k + 1)k

k!

ln

(
1 +

1

k

)
−

k∑
j=1

1

j(k + 1)j

 .
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V4-2. Proposed by the editor. Show that

n∑
k=0

(−1)k
(
n

k

)
(n− 2k)n+2 =

2nn(n+ 2)!

6
.

Solution V4-2, by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

We have the following result.

Lemma 2. For every polynomial P ∈ C[X] with degP ≤ n+ 2 and every τ ∈ C we have

n∑
k=0

(−1)k
(
n

k

)
P (X − τk) = τnP (n)(X)− n

2
τn+1P (n+1)(X) +

n+ 3n2

24
τn+2P (n+2)(X)

Proof. The function z 7→ ez−1
z is entire, and in the neighborhood of 0 we have

ez − 1

z
= 1 +

z

2
+

z2

6
+O(z3)

Hence (
ez − 1

z

)n

=

(
1 +

z

2
+

z2

6
+O(z3)

)n

.

= 1 + n

(
z

2
+

z2

6

)
+

n(n− 1)

2

(
z

2
+

z2

6

)2

+O(z3)

= 1 +
n

2
z +

n+ 3n2

24
z2 +O(z3)

This implies that

n∑
k=0

(−1)n−k

(
n

k

)
ekz = (ez − 1)n = zn +

n

2
zn+1 +

n+ 3n2

24
zn+2 +O(zn+3)

Comparing the coefficients of zj for 0 ≤ j ≤ n+ 2 on both sides we obtain

n∑
k=0

(−1)n−k

(
n

k

)
kj

j!
=


0 if 0 ≤ j < n,
1 if j = n,
n
2 if j = n+ 1,

n+3n2

24 if j = n+ 2,

Now, given a polynomial Q ∈ C[X] with degQ ≤ n+2, we have Q(X) =
∑n+2

j=0
Q(j)(0)

j! Xj . Thus

n∑
k=0

(−1)n−k

(
n

k

)
Q(k) = Q(n)(0) +

n

2
Q(n+1)(0) +

n+ 3n2

24
Q(n+2)(0).

And the lemma follows by applying this to Q(X) = P (z − τX).

Now, using the lemma with P (X) = Xn+2 and τ = 2 we get

n∑
k=0

(−1)k
(
n

k

)
(X − 2k)n+2 = (n+ 2)!2n−1

(
(X − n)2 +

n

3

)
,

and the desired formula follows by substituting X = n. �
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V4-3. Proposed by the editor. Let n be a nonnegative integer, m a positive integer and x ∈ C.
Show that for the values of n,m, x for which the denominators do not vanish, the following
identity holds:

n∑
k=0

(−1)k
(
n
k

)(
x

m−k

)
(m+ n− k)

(
x+n

m+n−k

) =
1

m
δn0,

where δn0 =
{

1, n=0
0, n ̸=0 is Kronecker’s delta.

Solution V4-3, by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

Note that for n = 0 the desired identity is trivially true. So, let us suppose that n > 0.
Clearly we have(

x
m−k

)
(m+ n− k)

(
x+n

m+n−k

) =
x(x− 1) · · · (x−m+ k + 1)

(m− k)!

(n+m− k − 1)!

(x+ n)(x+ n− 1) · · · (x−m+ k + 1)

=
(n− 1)!

(x+ n) · · · (x+ 1)

(
n+m− k − 1

n− 1

)
Thus, if we define the polynomial Q(X) by the formula Q(X) =

(
n+m−X−1

n−1

)
, then clearly we

have degQ = n− 1 and

n∑
k=0

(−1)k
(
n
k

)(
x

m−k

)
(m+ n− k)

(
x+n

m+n−k

) =
(n− 1)!

(x+ n) · · · (x+ 1)

n∑
k=0

(−1)k
(
n

k

)
Q(k) = 0,

where, for the last equality, we used the Lemma 2 of the solution to Problem V4-2. The desired
conclusion follows. �
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V4-4. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France.
For n ∈ Z and N ∈ N, let

an =

∫ 1

0

∫ 1

0
e−|x−y|+2inπ(x−y)dx dy and SN =

∑
(m,n)∈IN

aman

where IN = {(m,n) ∈ Z2 : |m| ≥ N or |n| ≥ N}. Evaluate lim
N→∞

(NSN ), if it exists.

Solution V4-4, by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

Note that

an =

∫ 1

0

∫ y

0
e−|x−y|+2iπn(x−y)dx dy +

∫ 1

0

∫ 1

y
e−|x−y|+2iπn(x−y)dx dy

=

∫ 1

0

∫ y

0
e−|x−y|+2iπn(x−y)dx dy +

∫ 1

0

∫ x

0
e−|x−y|+2iπn(x−y)dy dx

=

∫ 1

0

∫ y

0
e−|x−y|+2iπn(x−y)dx dy +

∫ 1

0

∫ y

0
e−|x−y|+2iπn(y−x)dx dy

= 2

∫ 1

0

∫ y

0
ex−y cos(2πn(x− y))dx dy = 2

∫ 1

0

(∫ y

0
e−t cos(2πnt)dt

)
dy

where we used the change of variables t = y − x in the last inner integral. Thus,

an =

[
2(y − 1)

(∫ y

0
e−t cos(2πnt)dt

)]y=1

y=0

− 2

∫ 1

0
(y − 1)e−y cos(2πny)dy

= 2

∫ 1

0
(1− y)e−y cos(2πny)dy = 2ℜ(cn), (1)

here cn is defined as follows:

cn =

∫ 1

0
(1− y)e−y e−2inπydy =

∫ 1

0
(1− y)e(−1−2iπn)ydy

=

[
(1− y)e(−1−2iπn)y

−1− 2iπn

]y=1

y=0

+
1

−1− 2iπn

∫ 1

0
e(−1−2iπn)ydy

=
1

1 + 2iπn
+

e−1 − 1

(1 + 2iπn)2
. (2)

Thus

an =
2

1 + 4π2n2
+ 2(e−1 − 1)

1− 4π2n2

(1 + 4π2n2)2

=
4− 2e−1

1 + 4π2n2
− 4(1− e−1)

(1 + 4π2n2)2
. (3)

This shows that an = a−n > 0 for every integer n, and an = O(1/n2). So, we can define

A =
∑
n∈Z

an, and RN =
∑

|n|≥N

an = 2

∞∑
n=N

an.
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Further, the double series
∑

m,n aman is convergent and

SN =
∑

(m,n)∈Z2

aman −
∑

|m|<N,|n|<N

aman = A2 − (A−RN )2 = (2A−RN )RN . (4)

Now note that, according to (3), we have

an − 2− e−1

2π2n(n+ 1)
= O

(
1

n3

)
,

so,
∞∑

n=N

(
an − 2− e−1

2π2n(n+ 1)

)
= O

(
1

N2

)
,

or equivalently

RN = 2
∞∑

n=N

an =
2− e−1

π2N
+O

(
1

N2

)
(5)

On the other hand, the definition of cn in formula (2) shows that cn is the exponential Fourier
coefficient Cn(f) of the 1-periodic function f defined on (0, 1) by f(t) = (1− t)e−t with f(0) =
1/2. Using, Dirichlet’s test, we know that, for every t ∈ [0, 1). we have

f(t) =
∑
n∈Z

cne
2iπnt

In particular, 1
2 = f(0) = limN→∞

∑N
−N cn. Taking, real parts and recalling that an = 2ℜcn,

we obtain A = 1. Combining A = 1 and (5) with (4) we obtain

SN =
2(2− e−1)

π2N
+O

(
1

N2

)

and consequently lim
N→∞

(NSN ) =
2(2− e−1)

π2
. �
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V4-5. Proposed by Serafeim Tsipelis, Ioannina, Greece. Show that∫ π/2

0
x log(1− cosx) dx =

35

16
ζ(3)− π2 log 2

8
− πG,

where G is the Catalan constant and ζ is the Riemann zeta function.

Solution V4-5, by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

Our starting point is the well-known power series expansion

−Log(1− z) =

∞∑
n=1

zn

n

where Log is the principal determination of the logarithm defind in the domain C \ (−∞, 0].

Using Abel’s transformation, it is easy to see that
∑∞

n=1
einx

n is convergent for every x ∈ (0, 2π),
and using Abel’s theorem we conclude that, for every x ∈ (0, 2π),

−Log(1− eix) =

∞∑
n=1

einx

n

Taking real parts we find that

− log
∣∣1− eix

∣∣2 = ∞∑
n∈Z∗

einx

|n|

Finally, for every x ∈ (0, 2π),

− log(2(1− cosx)) =

∞∑
n∈Z∗

einx

|n|

So, if f is the 2π-periodic function defined by f(x) = log(2(1− cosx)) on (0, 2π), then clearly f
belongs to L2(T ) and its exponential Fourier coefficients are given by Cn(f) = −1/ |n| for n ̸= 0
and C0(f) = 0.

On the other hand, let g be the 2π-periodic function defined on (0, 2π) by g(x) = x if
0 ≤ x ≤ π/2 and g(x) = 0 otherwise. Clearly g ∈ L2(T ), and if (Cn(g))n∈Z are its exponential
Fourier coefficients then C0(g) =

π
16 and

Cn(g) =
1

2π

∫ π/2

0
xe−inxdx =

1

2π

(
π(−i)n

−2in
+

1

in

∫ π/2

0
e−inxdx

)

=
(−i)n−1

4n
+

(−i)n − 1

2πn2

Using Parseval’s formula:

1

2π

∫ 2π

0
f(x)g(x) dx =

∑
n∈Z

Cn(f)Cn(g)

7



we obtain∫ π/2

0
x log(2(1− cosx))dx = −

∑
n∈Z∗

(
πin−1

2n |n|
+

in − 1

n2 |n|

)

= −
∞∑
n=1

(
π(1− (−1)n)in−1

4n2
+

(1 + (−1)n)in − 2

n3

)

= 2ζ(3)− π
∞∑
n=0

(−1)n

(2n+ 1)2
+

1

4

∞∑
n=1

(−1)n−1

n3

= 2ζ(3)− πG+
1

4
· 3
4
ζ(3)

=
35

16
ζ(3)− πG

or ∫ π/2

0
(x log 2 + x log(1− cosx))dx =

35

16
ζ(3)− πG

and finally, ∫ π/2

0
x log(1− cosx) dx =

35

16
ζ(3)− π2 log 2

8
− πG

which is the desired result. �
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V4-6. Proposed by Serafeim Tsipelis, Ioannina, Greece. Evaluate

∫ +∞

0

log(cos2 x)

1 + e2x
dx.

Solution V4-6, by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

Let us denote the considered integral by I. Clearly we have

I =
1

2

∫ +∞

0

log(cos2(x/2))

1 + ex
dx =

1

4

∫ +∞

−∞

log(cos2(x/2))

1 + e|x|
dx.

Now, consider the functions f and g defined by

f(x) =
1

1 + e|x|
and g(x) = log(cos2(x/2))

Clearly g is a square-integrable 2π-periodic function. Moreover, for every x ∈ (−π, π) we have

g(x) = −2 log 2 + 2 log
∣∣1 + eix

∣∣ = −2 log 2 + 2ℜ(Log(1 + eix))

= −2 log 2 +
∞∑
n=1

(−1)n−1

n

(
einx + e−inx

)
This proves that the exponential Fourier coefficients (Cn(g))n∈Z of g are given by

C0(g) = −2 log 2, and Cn(g) =
(−1)n−1

|n|
for n ̸= 0.

On the other hand, it is clear that we define a 2π-periodic function F by setting

F (x) =
∑
k∈Z

f(x− 2πk) =
∑
k∈Z

1

1 + e|x−2πk| ,

and it is easy to see that F is a continuous function on [0, 2π], because the series defining F is
uniformly convergent on this interval. Moreover, if fk(x) = f(x− 2πk) then clearly∫ 2π

0
(fk(x))

2 dx ≤
∫ 2π(k+1)

2πk
e−2|t| dt = sinh(2π)e−2π|2k+1|

Thus, the series
∑

k∈Z ∥fk∥L2(T ) is convergent, and the series defining F converges normally in

L2(T ); the space of square integrable 2π periodic functions. Thus F ∈ L2(T ), using Parseval’s
identity, we conclude that

1

2π

∫ 2π

0
F (x)g(x) dx =

∑
n∈Z

Cn(F )Cn(g)

But, ∫ 2π

0
F (x)g(x) dx = lim

n→∞

n−1∑
k=−n

∫ 2π

0
f(x− 2πk)g(x− 2πk) dx

= lim
n→∞

∫ 2πn

−2πn
f(x)g(x) dx =

∫
R
f(x)g(x) = 4I

Also, in a similar way, we have

2πCn(F ) =

∫ 2π

0
F (x)e−inx dx =

∫
R
f(x)e−inx dx = f̂(n)

where f̂ is the Fourier transform of f .
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For w ∈ R we have

f̂(w) =

∫
R

e−iwx

1 + e|x|
dx = 2

∫ ∞

0

cos(wx)

1 + ex
dx

So ∣∣∣∣∣∣f̂(w)− 2

q∑
p=1

(−1)p−1

∫ ∞

0
e−px cos(wx) dx

∣∣∣∣∣∣ ≤ 2

∫ ∞

0
e−(q+1)x dx =

2

q + 1

consequently

f̂(w) =
∞∑
p=1

(−1)p−1 2p

p2 + w2

because
∫∞
0 e−px cos(wx) dx = p

p2+w2 . In particular, f̂(0) = 2 log 2. Combining the above results
we obtain

4I = −4 log2 2 + 2
∞∑
n=1

(−1)n−1

n

 ∞∑
p=1

(−1)p−1 2p

p2 + n2


Or, I = − log2 2 + J with

J =

∞∑
n=1

 ∞∑
p=1

(−1)p+np

n(n2 + p2)


Now, this double series is not absolutely convergent, so we must be careful. First, exchanging
the roles of p and n we have

J =

∞∑
p=1

( ∞∑
n=1

(−1)p+nn

p(n2 + p2)

)
Now, using the properties of convergent alternating we have

∞∑
n=1

(−1)p+nn

p(n2 + p2)
=

q−1∑
n=1

(−1)p+nn

p(n2 + p2)
+Rq(p),

with

Rq(p) =
(−1)p

p

∞∑
n=q

(−1)nn

n2 + p2
and |Rq(p)| ≤

1

p
· q

p2 + q2

Thus

J = sumq−1
n=1

 ∞∑
p=1

(−1)p+nn

p(n2 + p2)

+ ϵq

with ϵq =
∑∞

p=1Rq(p). But

ϵq ≤
∞∑
p=1

q

p(p2 + q2)

Now, since q
p(p2+q2)

≤ 1
2p2

for every q, the series
∑

1/(2p2) < +∞ and limq→∞
q

p(p2+q2)
= 0 for

every p, we conclude that limq→∞ ϵq = 0, So, letting p tend to +∞ we conclude that

J =
∞∑
n=1

 ∞∑
p=1

(−1)p+nn

p(n2 + p2)


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Taking the sum of the two expressions of J we obtain

2J =

∞∑
n=1

 ∞∑
p=1

(−1)p+n

n2 + p2

(
n

p
+

p

n

) =

∞∑
n=1

 ∞∑
p=1

(−1)p+n

np

 = (− log 2)2 = log2 2.

We conclude that I = − log2 2 + J = − log2 2
2 . which is the desired conclusion. �

Omran KOUBA
H.I.A.S.T
P.O.B. 31983
Damascus, Syria.
e-mail : omran kouba@hiast.edu.sy

or : kouba.omran@gmail.com
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V4-8. (∗) Proposed by Konstantinos Tsouvalas, University of Athens, Athens, Greece.

1. Show that

(
2

3

)n ⌊n/3⌋∑
k=0

(
n

k

)
2−k =

1

2
without using probabilistic methods.

2. Can we find a better approximation of the quantity

(
2

3

)n ⌊n/3⌋∑
k=0

(
n

k

)
2−k than

(
2

3

)n ⌊n/3⌋∑
k=0

(
n

k

)
2−k =

1

2
+ o(1) ?

⌊·⌋ denotes the integer part.

Solution V4-8, by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

For a positive integer n, an integer k with 0 ≤ k ≤ n, and real p ∈ (0, 1) we consider

U(k, p, n) = (n− k)

(
n

k

)∫ q

0
tn−k−1(1− t)kdt

where q = 1− p. Now, an integration by parts shows that, for 0 < k < n we have

U(k, p, n) =

[(
n

k

)
tn−k(1− t)k

]q
t=0

+ k

(
n

k

)∫ q

0
tn−k(1− t)k−1d

=

(
n

k

)
pkqn−k + U(k − 1, p, n),

and clearly U(0, p, n) = qn, thus

U(m, p, n) =

m∑
k=0

(
n

k

)
pkqn−k

We are interested in Sn = U(⌊n/3⌋ , 1/3, n), and according to what we have proved we have

S3n+1 = (3n+ 1)

(
3n

n

)∫ 2/3

0
(t2(1− t))ndt

S3n+2 =
(3n+ 2)(3n+ 1)

2n+ 1

(
3n

n

)∫ 2/3

0
(t2(1− t))ntdt

S3n+3 =
3(3n+ 2)(3n+ 1)

2n+ 1

(
3n

n

)∫ 2/3

0
(t2(1− t))nt(1− t)dt

Now, the treatment of the three integrals is similar and standard. Let In =
∫ 2/3
0 (t2(1−t))ng(t)dt,

with g(t) = 1, g(t) = t or g(t) = t(1 − t) according to the considered case. since t 7→ t2 − t3

attains its maximum on [0, 2/3] at t = 2/3, the change of variables t = 2(1− u)/3 shows that

In =
2

3

(
4

27

)n ∫ 1

0
(1− 3u2 + 2u3)ng

(
2(1− u)

3

)
du
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Thus

S3n+1 =
2(3n+ 1)

3

(
4

27

)n(3n
n

)∫ 1

0
(1− 3u2 + 2u3)ndu

S3n+2 =
4(3n+ 2)(3n+ 1)

9(2n+ 1)

(
4

27

)n(3n
n

)∫ 1

0
(1− 3u2 + 2u3)n(1− u)du

S3n+3 =
4(3n+ 2)(3n+ 1)

9(2n+ 1)

(
4

27

)n(3n
n

)∫ 1

0
(1− 3u2 + 2u3)n(1− u)(1 + 2u)du

Now, using the well-known expansion

n! =
√
2πnnne−n

(
1 +

1

12n
+O

(
1

n2

))
we conclude that (

4

27

)n(3n
n

)
=

3

2
√
3πn

− 7

48n
√
3πn

++O

(
1

n5/2

)
and consequently

S3n+1 =

√
3n

π

(
1 +

17

72n
+O

(
1

n2

))
J (1)
n

S3n+2 =

√
3n

π

(
1 +

29

72n
+O

(
1

n2

))
J (2)
n

S3n+3 =

√
3n

π

(
1 +

29

72n
+O

(
1

n2

))
J (3)
n

Where

J (k)
n =

∫ 1

0
(1− 3u2 + 2u3)nqk(u)du

with q1(u) = 1, q2(u) = 1− u and q3(u) = (1− u)(1 + 2u).

Now, the treatment of the integrals J
(k)
n , k = 1, 2, 3 is standard. we will follow F.W.J. Olver

[1][Chapter 3, §8].
The function u 7→ p(u) = − ln(1−3u2+2u3) defines a strictly increasing bijection from [0, 1)

onto [0,+∞), so we may consider its inverse function φ = p−1, which is analytic on the interval
(0, 1), and the change of variables u = φ(v) shows that

J (k)
n =

∫ ∞

0
e−nvqk(φ(v))φ

′(v)dv

Now, starting from the series expansion

p(u) = 3u2 − 2u3 +
9

2
u4 − 6u5 +O(u6)

we can find the following asymptotic expansions of φ

φ(v) =
1√
3

√
v +

1

9
v − 17

108
√
3
v
√
v − 11

486
v2 +O(v5/2)

φ′(v) =
1

2
√
3v

+
1

9
− 17

72
√
3

√
v − 11

243
v +O(v3/2)

13



J (1)
n =

∫ ∞

0
e−nv

(
1

2
√
3v

+
1

9
− 17

72
√
3

√
v − 11

243
v

)
dv +O

(
1

n5/2

)
=

1

2

√
π

3n
+

1

9n
− 17

144n

√
π

3n
+O

(
1

n2

)
Similarly,

q1(φ(v))φ
′(v) =

1

2
√
3v

− 1

18
− 29

72
√
3

√
v +

23

486
v +O(v3/2)

Thus,

J (2)
n =

∫ ∞

0
e−nv

(
1

2
√
3v

− 1

18
− 29

72
√
3

√
v +

23

486
v

)
dv +O

(
1

n5/2

)
=

1

2

√
π

3n
− 1

18n
− 29

144n

√
π

3n
+O

(
1

n2

)
.

And

q2(φ(v))φ
′(v) =

1

2
√
3v

+
5

18
− 29

72
√
3

√
v − 139

486
v +O(v3/2)

Thus,

J (3)
n =

∫ ∞

0
e−nv

(
1

2
√
3v

+
5

18
− 29

72
√
3

√
v − 139

486
v

)
dv +O

(
1

n5/2

)
=

1

2

√
π

3n
+

5

18n
− 29

144n

√
π

3n
+O

(
1

n2

)
.

We conclude that

S3n+1 =
1

2
+

1

3
√
3πn

+
17

216n
√
3πn

+O

(
1

n2

)
S3n+2 =

1

2
− 1

6
√
3πn

− 29

432n
√
3πn

+O

(
1

n2

)
S3n+3 =

1

2
+

5

6
√
3πn

+
145

432n
√
3πn

+O

(
1

n2

)
and we are done. �
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