Asymmetry

V4-1. Proposed by the editor. Show that

—ymt ok R (1/2)
Zn(n+(1) )(n—l—k) =7 <1n2—2(/i)>

n>1 =1

where k is a nonnegative integer and for k = 0 the second sum is considered to be 0.

Solution V4-1, by OMRAN KouBA, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

The proposed problem corresponds to the particular case z = 1/2 of the next more general
result.

Lemma 1. For every nonnegative integer k, and every complex number z, with Rz < 1/2, we

have
o (_1)n—1 2 n_z_ Z]‘
;”("+1)---(n+k)<1_z> R —Log(l—z)—z7

Proof. The case k = 0 follows from the well-known power series expansion of w +— Log(1 + w).
So, we will assume that £ > 0. Noting that

k! _ T(k+1)(n)

1
—_ _ k(1 _ p\n—
W)t k) T(nth) —B(k—i—l,n)—/ot(l £y Lat

we see that for |u| <1 we have

00 1 00
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In what follows, Log is the principal determination of the logarithm defined in the domain
C\ (—o0,0], and we will write f[o . f(&)d¢ to denote the path integration of f on the line
segment [0, z] in the complex plane C.

z

Now, note that for Rz < % we have | 1%

< 1 and consequently, taking v = —z/(1 — 2) in

the previous formula we obtain

i n(n j—;!g)_-l-)-n(_nlﬂL k) <1iz>n - /01 1 iﬁdt

n=1
1 1 k
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But £ = lp — (1+£+&+ - + €51, hence

2 )<1+k><1zz>n<mglz

and the lemma follows.
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Remark. Choosing z = 1/(k + 1), when k > 1 we obtain
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V4-2. Proposed by the editor. Show that

3o (1) - Zir 2

k=0

Solution V4-2, by OMRAN KouBA, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

We have the following result.

Lemma 2. For every polynomial P € C[X] with deg P < n+ 2 and every 7 € C we have

n

> (-1t @P(X —7k) = 7" PO(X) = St PO (X) 4
k=0

n + 3n?

n+2 p(n+2)
YR P (X)

Proof. The function z — 627_1 is entire, and in the neighborhood of 0 we have

Z_1 2
—— =l S OGY)

e* —1\" z 22 )"
(“57) =(1+5+5+0) -

Hence

This implies that

n 2
Z(_l)n—k (Z) ekz — (ez o 1)n — " gzn—H + n —;jn Zn+2 + O(Zn+3)
k=0

Comparing the coefficients of 27 for 0 < j < n + 2 on both sides we obtain
0 if0<j<n,
- k(™ kj_ 1 if j =n,
kZ_O(_) k)T if j=n+1,
- LEZLQ if j=n+2,

Now, given a polynomial @ € C[X] with deg @ < n+ 2, we have Q(X) = E;‘ig jo' Thus

- 2
Z(_l)nfk <Z> Q(k) = QM (0) + gQ(nH)(O) + %Q(nﬂ) (0).
k=0
And the lemma follows by applying this to Q(X) = P(z — 7X). =

Now, using the lemma with P(X) = X"2 and 7 = 2 we get

n

St () 6 - 207 = 202 (-4 5).

k=0

and the desired formula follows by substituting X = n. O



V4-3. Proposed by the editor. Let n be a nonnegative integer, m a positive integer and x € C.
Show that for the values of n,m,x for which the denominators do not vanish, the following
identity holds:

S W6

+n = 7(5n07
k=0 (m+n—k) (m—:r_z—k) m

where 8,0 = {(1) Z;g is Kronecker’s delta.
Solution V4-3, by OMRAN KOUBA, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

Note that for n = 0 the desired identity is trivially true. So, let us suppose that n > 0.
Clearly we have

(r) _a(@-1) (@ -mtkt1) (n+m—k— 1)
(m—f—n—k)(mfr‘;"_k) (m —k)! (x4+n)(z4+n—-1)--(z—m+k+1)
_ (n—1)! n+m-—=k—1
_(:z:—l—n)--'(x%—l)( n—1 )

Thus, if we define the polynomial Q(X) by the formula Q(X) = ("J”Z:f _1), then clearly we
have deg ) = n — 1 and

n

1k () Gt i) B (n—1)! " ok (n B

k=0 m+n—=k 0

where, for the last equality, we used the Lemma 2 of the solution to Problem V4-2. The desired
conclusion follows. O



V4-4. Proposed by Moubinool Omarjee, Lycée Henri 1V, Paris, France.
For n € Z and N € N, let

1 1
an:/ / e_|z_y|+2i"”(m_y)dxdy and Sy = Z AmQp
0 0

(m,n)eln

where Iy = {(m,n) € Z*: |m| > N or |n| > N}. Evaluate A}im (NSy), if it exists.
—00

Solution V4-4, by OMRAN KouBA, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

Note that

1y A 1 1 '
ay = / / e—|:c—y|+227rn(x—y)d$ dy + / / e—\x—y|+217rn(a:—y)dx dy
o Jo 0o Jy
1 Y ) 1 T )
_ / / e lz—yl+2imn(z—y) 7., dy + / / e*lwfy\Jern(zfy)dy dx
0 JO 0 JO
1 1
_ / /y e~ lE—yl+2irn(z—y) 4, dy +/ /y e~ le—yl+2imn(y—z) q,. dy
0 JO 0 JO

1 pry 1 Y
= 2/ / e’ Y cos(2mn(x — y))dx dy = 2/ </ et cos(27mt)dt> dy
o Jo o \Jo

where we used the change of variables ¢t = y — = in the last inner integral. Thus,

an = [2(3/ —1) </0y et cos(27rnt)dt>} " -2 /Ol(y — 1)e™Y cos(2mny)dy

y=0
1
= 2/ (1 —y)e Y cos(2mny)dy = 2R(cy), (1)
0

here ¢, is defined as follows:

1 1
o= [ myere iy = (1= et
0 0

C1—%m y=1
_ 1= y)el—1-2imn)y N 1 /1 (12 g,
—1 —2imn —1—2imn Jq
y=0
1 e -1
= . 2
1+ 2imn + (14 2imn)? @)
Thus
2 1 — 4m?n?
= 42t -1
T A2 e ) (1 + 472n2)?
4 —2e1 4(1—eh)
(3)

T 1t4dnn? (1 + 4m2n2)2’

This shows that a,, = a_, > 0 for every integer n, and a,, = O(1/n?). So, we can define

A:Zan, and Ry = Zan:2ian.
n=N

neL [n|>N



Further, the double series ) . amay, is convergent and

SN=Y_ @man— Y. aman=A>—(A-Ry)’= (24— Ry)Ry. (4)
(m,n)eZ? [m|<N,|n|<N

Now note that, according to (3), we have
2—e! 1
27" _ol=
(i 2m2n(n + 1) <n3) ’
o0
2—e! 1
2 (“" ~ 2nZn(n + 1)) =0 <N2> !
n=N

R —Qi —2_7671“9 L (5)
N n="02N N2

n=N

S0,
or equivalently

On the other hand, the definition of ¢, in formula (2) shows that ¢, is the exponential Fourier
coefficient C,,(f) of the 1-periodic function f defined on (0,1) by f(¢) = (1 —t)e™" with f(0) =
1/2. Using, Dirichlet’s test, we know that, for every ¢ € [0,1). we have

f(t) _ Z Cn€2i7rnt

ne”L

In particular, % = f(0) = limy— 00 ZZXN cn. Taking, real parts and recalling that a,, = 2Rc,,
we obtain A = 1. Combining A =1 and (5) with (4) we obtain

22—t 1
v=E—ay o TO <N2>

2(2 —e™ 1)

d tly lim (NSy) =
and consequen yNgnoo( N) 2



V4-5. Proposed by Serafeim Tsipelis, Ioannina, Greece. Show that

72 log 2
8

/2 35
/ xlog(l —cosx)dr = —((3) — G,
) 16

where G is the Catalan constant and ¢ is the Riemann zeta function.

Solution V4-5, by OMRAN KOUBA, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

Our starting point is the well-known power series expansion
o0 zn
—Log(1l —2) = —
g(1-2) nz_:l -

where Log is the principal determination of the logarithm defind in the domain C\ (—o0,0].
Using Abel’s transformation, it is easy to see that » -, ¢ is convergent for every x € (0,27),
and using Abel’s theorem we conclude that, for every x € (0, 27),

oo

—Log(1 — e™®) = Z

n=1

inT
e

n

Taking real parts we find that

—log|1 —eixf = Z €|n|

Finally, for every x € (0, 27),

—log(2(1 — cosx)) = Z —

nez*

So, if f is the 2m-periodic function defined by f(z) =log(2(1 —cosz)) on (0, 27), then clearly f
belongs to L?(T) and its exponential Fourier coefficients are given by C,,(f) = —1/ |n| for n # 0
and Cy(f) =0.

On the other hand, let g be the 27m-periodic function defined on (0,27) by g(z) = = if
0 <z < /2 and g(z) = 0 otherwise. Clearly g € L?(T), and if (Cy,(g))nez are its exponential

s

Fourier coefficients then Co(g) = {5 and

1 [7/2 . 1 (m(=i)» 1 [™2 _.
. - = —inT . L —inz
Cnl9) 27r/0 e T o ( “oin m/o ©

G N ) L

4n 2mn?2
Using Parseval’s formula:

1 2w

f@)g(@)de ="y Cu(f)Cnlg)

2
0 neE”L



we obtain

/2 il in—1
log(2(1 — do = — =
/0 xlog(2(1 — cos z))dx Z <2n|n! >

n? [n|
nez*

(1= (=DMt (14 (—1)n)im -2
=— +
> (" )

N n2 n3
<)t 1
_2C(3)_W2)(2n+1)2+4§:1 n3
=2((3) — G + % : §C<3)
35

= EC(S) -G
or
/2 35
/ (xlog2+ zlog(l — cosx))dx = EC(S) -G
0
and finally,
w/2 21002
/ zlog(l —cosx)dr = ﬁC(S)— T 82 G
o 16 8

which is the desired result.
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V4-6. Proposed by Serafeim Tsipelis, Ioannina, Greece. FEvaluate / W
0 e

Solution V4-6, by OMRAN KOUBA, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

Let us denote the considered integral by I. Clearly we have

1 [T log(cos®(z/2)) , 1 [T log(cos®(z/2))
A

== dz.
oo 1+ ell

2 14 e® 4

Now, consider the functions f and g defined by

flz) = —

= — =1 2(x/2
o and g(a) = log(cos?(2/2)
Clearly g is a square-integrable 27m-periodic function. Moreover, for every x € (—m, m) we have

g(z) = —2log2 + 2log |1 + €| = —2log 2 + 2R(Log(1 + €*))
=)
=21 N ) (pinx —inx
og?2+ Z - (e +e )
n=1
This proves that the exponential Fourier coefficients (C),(g))nez of g are given by
(-1
Co(g) =—2 10g27 and Cn(g) = for n # 0.

id

On the other hand, it is clear that we define a 27-periodic function F' by setting

F(z) =) flz—2rk) = ZH_Glx—Qﬂ'kl

k€EZ keZ

and it is easy to see that F' is a continuous function on [0, 27], because the series defining F' is
uniformly convergent on this interval. Moreover, if fx(x) = f(x — 27k) then clearly

2m 2 (k-+1)
/ (fr(2))* dz < / e~ At gt = sinh (2 )e 212k +1]
0 27k

Thus, the series >yc7 [ f&llL2(p) is convergent, and the series defining F' converges normally in
L?(T); the space of square integrable 27 periodic functions. Thus F € L?(T), using Parseval’s
identity, we conclude that

2 -
L P@)ga) de = 3 Cu(F)Calg)

o
0 nez

But,

2WF g(z)dz = i Sl ok onk)d
/0 ()9@) dz = lim gj/o f(x — 2mk)g(z — 2mk) da

2m™n
= Jin [ f@g@)de = [ f@gta) =1
—27n R

Also, in a similar way, we have

~

2m
27 Cy(F) _/0 F(z)e "™ dx = /Rf(x)eim dx = f(n)

where fis the Fourier transform of f.



For w € R we have

f(w):/edng/ de
So
q

—~ © o 2
w) — 2 (—1)p_1/ e P cos(wx) dx| < 2/ et gy = —
}; 0 0 q+1

consequently

= p? + w?
because [~ e P cos(wz) dx = oS V= In particular, f ( ) = 2log 2. Combining the above results
we obtain
o oo
—Hnt 2p
4T = —alog?2 425 EUT 1Pt
= p_
Or, I = —log?2 + J with
o0 oo
(=LPrrp
J = -
2\ L v

Now, this double series is not absolutely convergent, so we must be careful. First, exchanging

the roles of p and n we have
p+n
J = 7
> ()

Now, using the properties of convergent alternating we have

> (—1)Ptrn C —1)Ptnn
2 e 2 b )
with -
Rq<p>—(‘;)p;],$l+)n2 and Ry (p)] < 5oty
Thus
%
i (S L)

Now, since 5 for every g, the series Y 1/(2p?) < +oo and lim,—, oo o = 0 for

_ 4 < ——1
p(P?+¢?) — 2p p(p +q )
every p, we conclude that lim,_,, €, = 0, So, letting p tend to +oo we conclude that

oo 00 1p+n

n=1 p:l

10



Taking the sum of the two expressions of J we obtain

2J = Z Zn2+p <+£> ZZ Z(n)p = (—log2)* =log?2.

p n=1 \p=1

We conclude that I = —log?2 + J = —%. which is the desired conclusion. 0
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V4-8. (%) Proposed by Konstantinos Tsouvalas, University of Athens, Athens, Greece.

n n/3]
1
1. Show that <3> kz_o <Z> 27k — 3 without using probabilistic methods.

n [n/3]
2. Can we find a better approximation of the quantity <3> Z (Z) 27% than
k=0

|| denotes the integer part.

Solution V4-8, by OMRAN KOUBA, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

For a positive integer n, an integer k with 0 < k < n, and real p € (0,1) we consider

q
/ R — )Rt

0

Ulk,p,n) = (n — k) (Z)

where ¢ = 1 — p. Now, an integration by parts shows that, for 0 < k < n we have

Ulk,p,n) = KZ) k(1 - t)k] jo + k(Z) /Oq k(1L — kg

= (Z)pkq”k +U(k—1,p,n),

and clearly U(0,p,n) = ¢", thus

U(m,p,n) = i <Z>pkq"k

k=0

We are interested in S, = U(|n/3],1/3,n), and according to what we have proved we have

Sanp1 = (3n+1) <3:> /02/3(t2(1 —#))ndt

Synrg = (Bn+2)(3n+1) <3n> /2/3(752(1 oy
0

2n+1 n
3(3n+2)(3n+1) (3n /2/3 )
S3n+3 ot 1 n) s (1 —¢))"t(1 —t)dt

Now, the treatment of the three integrals is similar and standard. Let I, = 02/3 (t2(1—1))g(t)dt,
with g(t) = 1, g(t) = t or g(t) = t(1 — t) according to the considered case. since t — t* — t3
attains its maximum on [0,2/3] at t = 2/3, the change of variables ¢t = 2(1 — u)/3 shows that

I, = % <247>n/01(1 — 3u? + 2u®)"g <2(13_”)> du

12



Thus

2(3n+1) (4\" (3n ! 9 3
ntl = —— | == 1-— +2u”)"d
S3n+1 3 <27> <n>/0( 3u u’)"du

Synya = 4(3n92_22)f71l 1) (;) (3:> (1— 3u2 + 2u%)"(1 — u)du
Sanis = 4(3”92“234(5’? +1) ( ) (3:> (1 — 3u® + 2u3)"(1 — w)(1 + 2u)du

Now, using the well-known expansion

n! =V2rnn"e " <1—|—1+O< 1 >>

12 n2

we conclude that

(4 () s s+ (o)
27 n)  2v3mn  48nvV3mn 5/2

and consequently

[3n 17 1
S3nt+1 = o (1 + o + 0 <n2>) J,(Zl)
3n 29 1 9
Sz =7 (14 o 10 (())
3n 29 1 ,
Swes =7 (14 o 10 ()

Where .
JF) = / (1 — 3u® 4 2u®)"qp (u)du
0
with ¢1(u) =1, ¢2(u) =1 —w and g3(u) = (1 — u)(1 + 2u).
Now, the treatment of the integrals Jr(lk), k =1,2,3 is standard. we will follow F.W.J. Olver
[1][Chapter 3, §8].
The function u — p(u) = — In(1 —3u? +2u?) defines a strictly increasing bijection from [0, 1)

onto [0, +00), so we may consider its inverse function ¢ = p~!, which is analytic on the interval
(0,1), and the change of variables u = ¢(v) shows that

J = /0 e ((0)! (0)d

Now, starting from the series expansion
2 3,94 5 6
p(u) = 3u” —2u —i—iu —6u’ +O(u”)

we can find the following asymptotic expansions of ¢

1 1 _ o 5/2
\/§ﬁ+9 108\ff 486U "0

) = = 1 _A /
P =5ty 72\ff 530+ O™

p(v) =

13



o0 11 17 11 1
JW / —w (242 20 dv+ O
N OV TR 72\/§f 243V ) T O

_1 7T+1 17 7T+O 1
2V 3n  9n  144n\ 3n n2

Similarly,
= —— - — — v+ -—v+0
D(PW)E (1) = = = 35~ Vo g+ O6)
Thus,
&0 1 1 29 23 1
(2) — —nv -7 9
AS /0 e <%/37U 13 72\/§f—|—486v>dv+0<n5/2>
_ljm_ 1 T 5 (L
2\ 3n  18n 144n\ 3n n2 )’
And 1 5 139
/ - - e 3/2
BPW)S (1) = 7= + 15 = = = g+ O(?)
Thus,

o0 1 5 29 139 1
J®) — / —nw o 2 dv+0
" 0 © 2\/:% 18 72[ T 486" tO\ e
“2V3n T 18n 144n\ 3n n2 )’

We conclude that

g 1, 1 17 ( 1 )
sl = 2 3y 37Tn 216n+/ 37rn n?
1 1 29 1
Sant2 = = — —
2 6y 3t 432n+/ 37rn n

g = ip 0 1 +o<1)
ST 9 T 6y3rn | 432n3mn n?

and we are done. O
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