Asymmetry

V4-1. Proposed by the editor. Show that

$$
\sum_{n \geq 1} \frac{(-1)^{n-1}}{n(n+1) \cdots(n+k)}=\frac{2^{k}}{k!}\left(\ln 2-\sum_{i=1}^{k} \frac{(1 / 2)^{i}}{i}\right)
$$

where k is a nonnegative integer and for $k=0$ the second sum is considered to be 0 .
Solution V4-1, by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria.

The proposed problem corresponds to the particular case $z=1 / 2$ of the next more general result.

Lemma 1. For every nonnegative integer k, and every complex number z, with $\Re z \leq 1 / 2$, we have

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1) \cdots(n+k)}\left(\frac{z}{1-z}\right)^{n}=\frac{z^{-k}}{k!}\left(-\log (1-z)-\sum_{j=1}^{k} \frac{z^{j}}{j}\right)
$$

Proof. The case $k=0$ follows from the well-known power series expansion of $w \mapsto \log (1+w)$. So, we will assume that $k>0$. Noting that

$$
\frac{k!}{n(n+1) \cdots(n+k)}=\frac{\Gamma(k+1) \Gamma(n)}{\Gamma(n+k)}=\beta(k+1, n)=\int_{0}^{1} t^{k}(1-t)^{n-1} d t
$$

we see that for $|u| \leq 1$ we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{k!}{n(n+1) \cdots(n+k)} u^{n} & =\int_{0}^{1} t^{k}\left(\sum_{n=1}^{\infty}((1-t) u)^{n-1}\right) u d t \\
& =\int_{0}^{1} \frac{t^{k} u}{1-u(1-t)} d t
\end{aligned}
$$

In what follows, Log is the principal determination of the logarithm defined in the domain $\mathbb{C} \backslash(-\infty, 0]$, and we will write $\int_{[0, z]} f(\xi) d \xi$ to denote the path integration of f on the line segment $[0, z]$ in the complex plane \mathbb{C}.

Now, note that for $\Re z \leq \frac{1}{2}$ we have $\left|\frac{z}{1-z}\right| \leq 1$ and consequently, taking $u=-z /(1-z)$ in the previous formula we obtain

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{k!(-1)^{n-1}}{n(n+1) \cdots(n+k)}\left(\frac{z}{1-z}\right)^{n} & =\int_{0}^{1} \frac{t^{k}}{1-z t} z d t \\
& =\frac{1}{z^{k}} \int_{0}^{1} \frac{(z t)^{k}}{1-z t} z d t \\
& =\frac{1}{z^{k}} \int_{[0, z]} \frac{\xi^{k}}{1-\xi} d \xi
\end{aligned}
$$

But $\frac{\xi^{k}}{1-\xi}=\frac{1}{1-\xi}-\left(1+\xi+\xi^{2}+\cdots+\xi^{k-1}\right)$, hence

$$
\sum_{n=1}^{\infty} \frac{k!(-1)^{n-1}}{n(n+1) \cdots(n+k)}\left(\frac{z}{1-z}\right)^{n}=\frac{1}{z^{k}}\left(-\log (1-z)-\sum_{j=1}^{k} \frac{z^{j}}{j}\right)
$$

and the lemma follows.
Remark. Choosing $z=1 /(k+1)$, when $k \geq 1$ we obtain

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1) \cdots(n+k) k^{n}}=\frac{(k+1)^{k}}{k!}\left(\ln \left(1+\frac{1}{k}\right)-\sum_{j=1}^{k} \frac{1}{j(k+1)^{j}}\right) .
$$

V4-2. Proposed by the editor. Show that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-2 k)^{n+2}=\frac{2^{n} n(n+2)!}{6}
$$

Solution V4-2, by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria.

We have the following result.
Lemma 2. For every polynomial $P \in \mathbb{C}[X]$ with $\operatorname{deg} P \leq n+2$ and every $\tau \in \mathbb{C}$ we have

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} P(X-\tau k)=\tau^{n} P^{(n)}(X)-\frac{n}{2} \tau^{n+1} P^{(n+1)}(X)+\frac{n+3 n^{2}}{24} \tau^{n+2} P^{(n+2)}(X)
$$

Proof. The function $z \mapsto \frac{e^{z}-1}{z}$ is entire, and in the neighborhood of 0 we have

$$
\frac{e^{z}-1}{z}=1+\frac{z}{2}+\frac{z^{2}}{6}+\mathcal{O}\left(z^{3}\right)
$$

Hence

$$
\begin{aligned}
\left(\frac{e^{z}-1}{z}\right)^{n} & =\left(1+\frac{z}{2}+\frac{z^{2}}{6}+\mathcal{O}\left(z^{3}\right)\right)^{n} \\
& =1+n\left(\frac{z}{2}+\frac{z^{2}}{6}\right)+\frac{n(n-1)}{2}\left(\frac{z}{2}+\frac{z^{2}}{6}\right)^{2}+\mathcal{O}\left(z^{3}\right) \\
& =1+\frac{n}{2} z+\frac{n+3 n^{2}}{24} z^{2}+\mathcal{O}\left(z^{3}\right)
\end{aligned}
$$

This implies that

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} e^{k z}=\left(e^{z}-1\right)^{n}=z^{n}+\frac{n}{2} z^{n+1}+\frac{n+3 n^{2}}{24} z^{n+2}+\mathcal{O}\left(z^{n+3}\right)
$$

Comparing the coefficients of z^{j} for $0 \leq j \leq n+2$ on both sides we obtain

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} \frac{k^{j}}{j!}=\left\{\begin{array}{cl}
0 & \text { if } 0 \leq j<n \\
1 & \text { if } j=n \\
\frac{n}{2} & \text { if } j=n+1 \\
\frac{n+3 n^{2}}{24} & \text { if } j=n+2
\end{array}\right.
$$

Now, given a polynomial $Q \in \mathbb{C}[X]$ with $\operatorname{deg} Q \leq n+2$, we have $Q(X)=\sum_{j=0}^{n+2} \frac{Q^{(j)}(0)}{j!} X^{j}$. Thus

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} Q(k)=Q^{(n)}(0)+\frac{n}{2} Q^{(n+1)}(0)+\frac{n+3 n^{2}}{24} Q^{(n+2)}(0)
$$

And the lemma follows by applying this to $Q(X)=P(z-\tau X)$.
Now, using the lemma with $P(X)=X^{n+2}$ and $\tau=2$ we get

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(X-2 k)^{n+2}=(n+2)!2^{n-1}\left((X-n)^{2}+\frac{n}{3}\right)
$$

and the desired formula follows by substituting $X=n$.

V4-3. Proposed by the editor. Let n be a nonnegative integer, m a positive integer and $x \in \mathbb{C}$. Show that for the values of n, m, x for which the denominators do not vanish, the following identity holds:

$$
\sum_{k=0}^{n}(-1)^{k} \frac{\binom{n}{k}\binom{x}{m-k}}{(m+n-k)\binom{x+n}{m+n-k}}=\frac{1}{m} \delta_{n 0},
$$

where $\delta_{n 0}=\left\{\begin{array}{ll}1, & n=0 \\ 0, & n \neq 0\end{array}\right.$ is Kronecker's delta.
Solution V4-3, by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria.

Note that for $n=0$ the desired identity is trivially true. So, let us suppose that $n>0$. Clearly we have

$$
\begin{aligned}
\frac{\binom{x}{m-k}}{(m+n-k)\binom{x+n}{m+n-k}} & =\frac{x(x-1) \cdots(x-m+k+1)}{(m-k)!} \frac{(n+m-k-1)!}{(x+n)(x+n-1) \cdots(x-m+k+1)} \\
& =\frac{(n-1)!}{(x+n) \cdots(x+1)}\binom{n+m-k-1}{n-1}
\end{aligned}
$$

Thus, if we define the polynomial $Q(X)$ by the formula $Q(X)=\binom{n+m-X-1}{n-1}$, then clearly we have $\operatorname{deg} Q=n-1$ and

$$
\sum_{k=0}^{n}(-1)^{k} \frac{\binom{n}{k}\binom{x}{m-k}}{(m+n-k)\binom{x+n}{m+n-k}}=\frac{(n-1)!}{(x+n) \cdots(x+1)} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} Q(k)=0
$$

where, for the last equality, we used the Lemma 2 of the solution to Problem V4-2. The desired conclusion follows.

V4-4. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France.
For $n \in \mathbb{Z}$ and $N \in \mathbb{N}$, let

$$
a_{n}=\int_{0}^{1} \int_{0}^{1} e^{-|x-y|+2 i n \pi(x-y)} d x d y \quad \text { and } \quad S_{N}=\sum_{(m, n) \in I_{N}} a_{m} a_{n}
$$

where $I_{N}=\left\{(m, n) \in \mathbb{Z}^{2}:|m| \geq N\right.$ or $\left.|n| \geq N\right\}$. Evaluate $\lim _{N \rightarrow \infty}\left(N S_{N}\right)$, if it exists.
Solution V4-4, by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria.

Note that

$$
\begin{aligned}
a_{n} & =\int_{0}^{1} \int_{0}^{y} e^{-|x-y|+2 i \pi n(x-y)} d x d y+\int_{0}^{1} \int_{y}^{1} e^{-|x-y|+2 i \pi n(x-y)} d x d y \\
& =\int_{0}^{1} \int_{0}^{y} e^{-|x-y|+2 i \pi n(x-y)} d x d y+\int_{0}^{1} \int_{0}^{x} e^{-|x-y|+2 i \pi n(x-y)} d y d x \\
& =\int_{0}^{1} \int_{0}^{y} e^{-|x-y|+2 i \pi n(x-y)} d x d y+\int_{0}^{1} \int_{0}^{y} e^{-|x-y|+2 i \pi n(y-x)} d x d y \\
& =2 \int_{0}^{1} \int_{0}^{y} e^{x-y} \cos (2 \pi n(x-y)) d x d y=2 \int_{0}^{1}\left(\int_{0}^{y} e^{-t} \cos (2 \pi n t) d t\right) d y
\end{aligned}
$$

where we used the change of variables $t=y-x$ in the last inner integral. Thus,

$$
\begin{align*}
a_{n} & =\left[2(y-1)\left(\int_{0}^{y} e^{-t} \cos (2 \pi n t) d t\right)\right]_{y=0}^{y=1}-2 \int_{0}^{1}(y-1) e^{-y} \cos (2 \pi n y) d y \\
& =2 \int_{0}^{1}(1-y) e^{-y} \cos (2 \pi n y) d y=2 \Re\left(c_{n}\right), \tag{1}
\end{align*}
$$

here c_{n} is defined as follows:

$$
\begin{align*}
c_{n} & =\int_{0}^{1}(1-y) e^{-y} e^{-2 i n \pi y} d y=\int_{0}^{1}(1-y) e^{(-1-2 i \pi n) y} d y \\
& =\left[\frac{(1-y) e^{(-1-2 i \pi n) y}}{-1-2 i \pi n}\right]_{y=0}^{y=1}+\frac{1}{-1-2 i \pi n} \int_{0}^{1} e^{(-1-2 i \pi n) y} d y \\
& =\frac{1}{1+2 i \pi n}+\frac{e^{-1}-1}{(1+2 i \pi n)^{2}} . \tag{2}
\end{align*}
$$

Thus

$$
\begin{align*}
a_{n} & =\frac{2}{1+4 \pi^{2} n^{2}}+2\left(e^{-1}-1\right) \frac{1-4 \pi^{2} n^{2}}{\left(1+4 \pi^{2} n^{2}\right)^{2}} \\
& =\frac{4-2 e^{-1}}{1+4 \pi^{2} n^{2}}-\frac{4\left(1-e^{-1}\right)}{\left(1+4 \pi^{2} n^{2}\right)^{2}} . \tag{3}
\end{align*}
$$

This shows that $a_{n}=a_{-n}>0$ for every integer n, and $a_{n}=\mathcal{O}\left(1 / n^{2}\right)$. So, we can define

$$
A=\sum_{n \in \mathbb{Z}} a_{n}, \quad \text { and } \quad R_{N}=\sum_{|n| \geq N} a_{n}=2 \sum_{n=N}^{\infty} a_{n} .
$$

Further, the double series $\sum_{m, n} a_{m} a_{n}$ is convergent and

$$
\begin{equation*}
S_{N}=\sum_{(m, n) \in \mathbb{Z}^{2}} a_{m} a_{n}-\sum_{|m|<N,|n|<N} a_{m} a_{n}=A^{2}-\left(A-R_{N}\right)^{2}=\left(2 A-R_{N}\right) R_{N} . \tag{4}
\end{equation*}
$$

Now note that, according to (3), we have

$$
a_{n}-\frac{2-e^{-1}}{2 \pi^{2} n(n+1)}=\mathcal{O}\left(\frac{1}{n^{3}}\right)
$$

so,

$$
\sum_{n=N}^{\infty}\left(a_{n}-\frac{2-e^{-1}}{2 \pi^{2} n(n+1)}\right)=\mathcal{O}\left(\frac{1}{N^{2}}\right)
$$

or equivalently

$$
\begin{equation*}
R_{N}=2 \sum_{n=N}^{\infty} a_{n}=\frac{2-e^{-1}}{\pi^{2} N}+\mathcal{O}\left(\frac{1}{N^{2}}\right) \tag{5}
\end{equation*}
$$

On the other hand, the definition of c_{n} in formula (2) shows that c_{n} is the exponential Fourier coefficient $C_{n}(f)$ of the 1-periodic function f defined on $(0,1)$ by $f(t)=(1-t) e^{-t}$ with $f(0)=$ $1 / 2$. Using, Dirichlet's test, we know that, for every $t \in[0,1)$. we have

$$
f(t)=\sum_{n \in \mathbb{Z}} c_{n} e^{2 i \pi n t}
$$

In particular, $\frac{1}{2}=f(0)=\lim _{N \rightarrow \infty} \sum_{-N}^{N} c_{n}$. Taking, real parts and recalling that $a_{n}=2 \Re c_{n}$, we obtain $A=1$. Combining $A=1$ and (5) with (4) we obtain

$$
S_{N}=\frac{2\left(2-e^{-1}\right)}{\pi^{2} N}+\mathcal{O}\left(\frac{1}{N^{2}}\right)
$$

and consequently $\lim _{N \rightarrow \infty}\left(N S_{N}\right)=\frac{2\left(2-e^{-1}\right)}{\pi^{2}}$.

V4-5. Proposed by Serafeim Tsipelis, Ioannina, Greece. Show that

$$
\int_{0}^{\pi / 2} x \log (1-\cos x) d x=\frac{35}{16} \zeta(3)-\frac{\pi^{2} \log 2}{8}-\pi G,
$$

where G is the Catalan constant and ζ is the Riemann zeta function.
Solution V4-5, by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria.

Our starting point is the well-known power series expansion

$$
-\log (1-z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n}
$$

where \log is the principal determination of the logarithm defind in the domain $\mathbb{C} \backslash(-\infty, 0]$. Using Abel's transformation, it is easy to see that $\sum_{n=1}^{\infty} \frac{e^{i n x}}{n}$ is convergent for every $x \in(0,2 \pi)$, and using Abel's theorem we conclude that, for every $x \in(0,2 \pi)$,

$$
-\log \left(1-e^{i x}\right)=\sum_{n=1}^{\infty} \frac{e^{i n x}}{n}
$$

Taking real parts we find that

$$
-\log \left|1-e^{i x}\right|^{2}=\sum_{n \in \mathbb{Z}^{*}}^{\infty} \frac{e^{i n x}}{|n|}
$$

Finally, for every $x \in(0,2 \pi)$,

$$
-\log (2(1-\cos x))=\sum_{n \in \mathbb{Z}^{*}}^{\infty} \frac{e^{i n x}}{|n|}
$$

So, if f is the 2π-periodic function defined by $f(x)=\log (2(1-\cos x))$ on $(0,2 \pi)$, then clearly f belongs to $L^{2}(T)$ and its exponential Fourier coefficients are given by $C_{n}(f)=-1 /|n|$ for $n \neq 0$ and $C_{0}(f)=0$.

On the other hand, let g be the 2π-periodic function defined on $(0,2 \pi)$ by $g(x)=x$ if $0 \leq x \leq \pi / 2$ and $g(x)=0$ otherwise. Clearly $g \in L^{2}(T)$, and if $\left(C_{n}(g)\right)_{n \in \mathbb{Z}}$ are its exponential Fourier coefficients then $C_{0}(g)=\frac{\pi}{16}$ and

$$
\begin{aligned}
C_{n}(g) & =\frac{1}{2 \pi} \int_{0}^{\pi / 2} x e^{-i n x} d x=\frac{1}{2 \pi}\left(\frac{\pi(-i)^{n}}{-2 i n}+\frac{1}{i n} \int_{0}^{\pi / 2} e^{-i n x} d x\right) \\
& =\frac{(-i)^{n-1}}{4 n}+\frac{(-i)^{n}-1}{2 \pi n^{2}}
\end{aligned}
$$

Using Parseval's formula:

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \overline{g(x)} d x=\sum_{n \in \mathbb{Z}} C_{n}(f) \overline{C_{n}(g)}
$$

we obtain

$$
\begin{aligned}
\int_{0}^{\pi / 2} x \log (2(1-\cos x)) d x & =-\sum_{n \in \mathbb{Z}^{*}}\left(\frac{\pi i^{n-1}}{2 n|n|}+\frac{i^{n}-1}{n^{2}|n|}\right) \\
& =-\sum_{n=1}^{\infty}\left(\frac{\pi\left(1-(-1)^{n}\right) i^{n-1}}{4 n^{2}}+\frac{\left(1+(-1)^{n}\right) i^{n}-2}{n^{3}}\right) \\
& =2 \zeta(3)-\pi \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}+\frac{1}{4} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3}} \\
& =2 \zeta(3)-\pi G+\frac{1}{4} \cdot \frac{3}{4} \zeta(3) \\
& =\frac{35}{16} \zeta(3)-\pi G
\end{aligned}
$$

or

$$
\int_{0}^{\pi / 2}(x \log 2+x \log (1-\cos x)) d x=\frac{35}{16} \zeta(3)-\pi G
$$

and finally,

$$
\int_{0}^{\pi / 2} x \log (1-\cos x) d x=\frac{35}{16} \zeta(3)-\frac{\pi^{2} \log 2}{8}-\pi G
$$

which is the desired result.

V4-6. Proposed by Serafeim Tsipelis, Ioannina, Greece. Evaluate $\int_{0}^{+\infty} \frac{\log \left(\cos ^{2} x\right)}{1+e^{2 x}} d x$.
Solution V4-6, by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria.

Let us denote the considered integral by I. Clearly we have

$$
I=\frac{1}{2} \int_{0}^{+\infty} \frac{\log \left(\cos ^{2}(x / 2)\right)}{1+e^{x}} d x=\frac{1}{4} \int_{-\infty}^{+\infty} \frac{\log \left(\cos ^{2}(x / 2)\right)}{1+e^{|x|}} d x .
$$

Now, consider the functions f and g defined by

$$
f(x)=\frac{1}{1+e^{|x|}} \quad \text { and } \quad g(x)=\log \left(\cos ^{2}(x / 2)\right)
$$

Clearly g is a square-integrable 2π-periodic function. Moreover, for every $x \in(-\pi, \pi)$ we have

$$
\begin{aligned}
g(x) & =-2 \log 2+2 \log \left|1+e^{i x}\right|=-2 \log 2+2 \Re\left(\log \left(1+e^{i x}\right)\right) \\
& =-2 \log 2+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}\left(e^{i n x}+e^{-i n x}\right)
\end{aligned}
$$

This proves that the exponential Fourier coefficients $\left(C_{n}(g)\right)_{n \in \mathbb{Z}}$ of g are given by

$$
C_{0}(g)=-2 \log 2, \quad \text { and } C_{n}(g)=\frac{(-1)^{n-1}}{|n|} \text { for } n \neq 0
$$

On the other hand, it is clear that we define a 2π-periodic function F by setting

$$
F(x)=\sum_{k \in \mathbb{Z}} f(x-2 \pi k)=\sum_{k \in \mathbb{Z}} \frac{1}{1+e^{|x-2 \pi k|}},
$$

and it is easy to see that F is a continuous function on $[0,2 \pi]$, because the series defining F is uniformly convergent on this interval. Moreover, if $f_{k}(x)=f(x-2 \pi k)$ then clearly

$$
\int_{0}^{2 \pi}\left(f_{k}(x)\right)^{2} d x \leq \int_{2 \pi k}^{2 \pi(k+1)} e^{-2|t|} d t=\sinh (2 \pi) e^{-2 \pi|2 k+1|}
$$

Thus, the series $\sum_{k \in \mathbb{Z}}\left\|f_{k}\right\|_{L^{2}(T)}$ is convergent, and the series defining F converges normally in $L^{2}(T)$; the space of square integrable 2π periodic functions. Thus $F \in L^{2}(T)$, using Parseval's identity, we conclude that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} F(x) \overline{g(x)} d x=\sum_{n \in \mathbb{Z}} C_{n}(F) \overline{C_{n}(g)}
$$

But,

$$
\begin{aligned}
\int_{0}^{2 \pi} F(x) \overline{g(x)} d x & =\lim _{n \rightarrow \infty} \sum_{k=-n}^{n-1} \int_{0}^{2 \pi} f(x-2 \pi k) g(x-2 \pi k) d x \\
& =\lim _{n \rightarrow \infty} \int_{-2 \pi n}^{2 \pi n} f(x) g(x) d x=\int_{\mathbb{R}} f(x) g(x)=4 I
\end{aligned}
$$

Also, in a similar way, we have

$$
2 \pi C_{n}(F)=\int_{0}^{2 \pi} F(x) e^{-i n x} d x=\int_{\mathbb{R}} f(x) e^{-i n x} d x=\widehat{f}(n)
$$

where \widehat{f} is the Fourier transform of f.

For $w \in \mathbb{R}$ we have

$$
\widehat{f}(w)=\int_{\mathbb{R}} \frac{e^{-i w x}}{1+e^{|x|}} d x=2 \int_{0}^{\infty} \frac{\cos (w x)}{1+e^{x}} d x
$$

So

$$
\left|\widehat{f}(w)-2 \sum_{p=1}^{q}(-1)^{p-1} \int_{0}^{\infty} e^{-p x} \cos (w x) d x\right| \leq 2 \int_{0}^{\infty} e^{-(q+1) x} d x=\frac{2}{q+1}
$$

consequently

$$
\widehat{f}(w)=\sum_{p=1}^{\infty}(-1)^{p-1} \frac{2 p}{p^{2}+w^{2}}
$$

because $\int_{0}^{\infty} e^{-p x} \cos (w x) d x=\frac{p}{p^{2}+w^{2}}$. In particular, $\widehat{f}(0)=2 \log 2$. Combining the above results we obtain

$$
4 I=-4 \log ^{2} 2+2 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}\left(\sum_{p=1}^{\infty}(-1)^{p-1} \frac{2 p}{p^{2}+n^{2}}\right)
$$

Or, $I=-\log ^{2} 2+J$ with

$$
J=\sum_{n=1}^{\infty}\left(\sum_{p=1}^{\infty} \frac{(-1)^{p+n} p}{n\left(n^{2}+p^{2}\right)}\right)
$$

Now, this double series is not absolutely convergent, so we must be careful. First, exchanging the roles of p and n we have

$$
J=\sum_{p=1}^{\infty}\left(\sum_{n=1}^{\infty} \frac{(-1)^{p+n} n}{p\left(n^{2}+p^{2}\right)}\right)
$$

Now, using the properties of convergent alternating we have

$$
\sum_{n=1}^{\infty} \frac{(-1)^{p+n} n}{p\left(n^{2}+p^{2}\right)}=\sum_{n=1}^{q-1} \frac{(-1)^{p+n} n}{p\left(n^{2}+p^{2}\right)}+R_{q}(p)
$$

with

$$
R_{q}(p)=\frac{(-1)^{p}}{p} \sum_{n=q}^{\infty} \frac{(-1)^{n} n}{n^{2}+p^{2}} \quad \text { and } \quad\left|R_{q}(p)\right| \leq \frac{1}{p} \cdot \frac{q}{p^{2}+q^{2}}
$$

Thus

$$
J=\operatorname{sum}_{n=1}^{q-1}\left(\sum_{p=1}^{\infty} \frac{(-1)^{p+n} n}{p\left(n^{2}+p^{2}\right)}\right)+\epsilon_{q}
$$

with $\epsilon_{q}=\sum_{p=1}^{\infty} R_{q}(p)$. But

$$
\epsilon_{q} \leq \sum_{p=1}^{\infty} \frac{q}{p\left(p^{2}+q^{2}\right)}
$$

Now, since $\frac{q}{p\left(p^{2}+q^{2}\right)} \leq \frac{1}{2 p^{2}}$ for every q, the series $\sum 1 /\left(2 p^{2}\right)<+\infty$ and $\lim _{q \rightarrow \infty} \frac{q}{p\left(p^{2}+q^{2}\right)}=0$ for every p, we conclude that $\lim _{q \rightarrow \infty} \epsilon_{q}=0$, So, letting p tend to $+\infty$ we conclude that

$$
J=\sum_{n=1}^{\infty}\left(\sum_{p=1}^{\infty} \frac{(-1)^{p+n} n}{p\left(n^{2}+p^{2}\right)}\right)
$$

Taking the sum of the two expressions of J we obtain

$$
2 J=\sum_{n=1}^{\infty}\left(\sum_{p=1}^{\infty} \frac{(-1)^{p+n}}{n^{2}+p^{2}}\left(\frac{n}{p}+\frac{p}{n}\right)\right)=\sum_{n=1}^{\infty}\left(\sum_{p=1}^{\infty} \frac{(-1)^{p+n}}{n p}\right)=(-\log 2)^{2}=\log ^{2} 2 .
$$

We conclude that $I=-\log ^{2} 2+J=-\frac{\log ^{2} 2}{2}$. which is the desired conclusion.

V4-8. (*) Proposed by Konstantinos Tsouvalas, University of Athens, Athens, Greece.

1. Show that $\left(\frac{2}{3}\right)^{n} \sum_{k=0}^{\lfloor n / 3\rfloor}\binom{n}{k} 2^{-k}=\frac{1}{2}$ without using probabilistic methods.
2. Can we find a better approximation of the quantity $\left(\frac{2}{3}\right)^{n} \sum_{k=0}^{\lfloor n / 3\rfloor}\binom{n}{k} 2^{-k}$ than

$$
\left(\frac{2}{3}\right)^{n} \sum_{k=0}^{\lfloor n / 3\rfloor}\binom{n}{k} 2^{-k}=\frac{1}{2}+o(1) ?
$$

$\lfloor\cdot\rfloor$ denotes the integer part.
Solution V4-8, by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria.

For a positive integer n, an integer k with $0 \leq k \leq n$, and real $p \in(0,1)$ we consider

$$
U(k, p, n)=(n-k)\binom{n}{k} \int_{0}^{q} t^{n-k-1}(1-t)^{k} d t
$$

where $q=1-p$. Now, an integration by parts shows that, for $0<k<n$ we have

$$
\begin{aligned}
U(k, p, n) & =\left[\binom{n}{k} t^{n-k}(1-t)^{k}\right]_{t=0}^{q}+k\binom{n}{k} \int_{0}^{q} t^{n-k}(1-t)^{k-1} d \\
& =\binom{n}{k} p^{k} q^{n-k}+U(k-1, p, n),
\end{aligned}
$$

and clearly $U(0, p, n)=q^{n}$, thus

$$
U(m, p, n)=\sum_{k=0}^{m}\binom{n}{k} p^{k} q^{n-k}
$$

We are interested in $S_{n}=U(\lfloor n / 3\rfloor, 1 / 3, n)$, and according to what we have proved we have

$$
\begin{aligned}
& S_{3 n+1}=(3 n+1)\binom{3 n}{n} \int_{0}^{2 / 3}\left(t^{2}(1-t)\right)^{n} d t \\
& S_{3 n+2}=\frac{(3 n+2)(3 n+1)}{2 n+1}\binom{3 n}{n} \int_{0}^{2 / 3}\left(t^{2}(1-t)\right)^{n} t d t \\
& S_{3 n+3}=\frac{3(3 n+2)(3 n+1)}{2 n+1}\binom{3 n}{n} \int_{0}^{2 / 3}\left(t^{2}(1-t)\right)^{n} t(1-t) d t
\end{aligned}
$$

Now, the treatment of the three integrals is similar and standard. Let $I_{n}=\int_{0}^{2 / 3}\left(t^{2}(1-t)\right)^{n} g(t) d t$, with $g(t)=1, g(t)=t$ or $g(t)=t(1-t)$ according to the considered case. since $t \mapsto t^{2}-t^{3}$ attains its maximum on $[0,2 / 3]$ at $t=2 / 3$, the change of variables $t=2(1-u) / 3$ shows that

$$
I_{n}=\frac{2}{3}\left(\frac{4}{27}\right)^{n} \int_{0}^{1}\left(1-3 u^{2}+2 u^{3}\right)^{n} g\left(\frac{2(1-u)}{3}\right) d u
$$

Thus

$$
\begin{aligned}
& S_{3 n+1}=\frac{2(3 n+1)}{3}\left(\frac{4}{27}\right)^{n}\binom{3 n}{n} \int_{0}^{1}\left(1-3 u^{2}+2 u^{3}\right)^{n} d u \\
& S_{3 n+2}=\frac{4(3 n+2)(3 n+1)}{9(2 n+1)}\left(\frac{4}{27}\right)^{n}\binom{3 n}{n} \int_{0}^{1}\left(1-3 u^{2}+2 u^{3}\right)^{n}(1-u) d u \\
& S_{3 n+3}=\frac{4(3 n+2)(3 n+1)}{9(2 n+1)}\left(\frac{4}{27}\right)^{n}\binom{3 n}{n} \int_{0}^{1}\left(1-3 u^{2}+2 u^{3}\right)^{n}(1-u)(1+2 u) d u
\end{aligned}
$$

Now, using the well-known expansion

$$
n!=\sqrt{2 \pi n} n^{n} e^{-n}\left(1+\frac{1}{12 n}+O\left(\frac{1}{n^{2}}\right)\right)
$$

we conclude that

$$
\left(\frac{4}{27}\right)^{n}\binom{3 n}{n}=\frac{3}{2 \sqrt{3 \pi n}}-\frac{7}{48 n \sqrt{3 \pi n}}++O\left(\frac{1}{n^{5 / 2}}\right)
$$

and consequently

$$
\begin{aligned}
& S_{3 n+1}=\sqrt{\frac{3 n}{\pi}}\left(1+\frac{17}{72 n}+O\left(\frac{1}{n^{2}}\right)\right) J_{n}^{(1)} \\
& S_{3 n+2}=\sqrt{\frac{3 n}{\pi}}\left(1+\frac{29}{72 n}+O\left(\frac{1}{n^{2}}\right)\right) J_{n}^{(2)} \\
& S_{3 n+3}=\sqrt{\frac{3 n}{\pi}}\left(1+\frac{29}{72 n}+O\left(\frac{1}{n^{2}}\right)\right) J_{n}^{(3)}
\end{aligned}
$$

Where

$$
J_{n}^{(k)}=\int_{0}^{1}\left(1-3 u^{2}+2 u^{3}\right)^{n} q_{k}(u) d u
$$

with $q_{1}(u)=1, q_{2}(u)=1-u$ and $q_{3}(u)=(1-u)(1+2 u)$.
Now, the treatment of the integrals $J_{n}^{(k)}, k=1,2,3$ is standard. we will follow F.W.J. Olver [1][Chapter 3, §8].

The function $u \mapsto p(u)=-\ln \left(1-3 u^{2}+2 u^{3}\right)$ defines a strictly increasing bijection from $[0,1)$ onto $[0,+\infty)$, so we may consider its inverse function $\varphi=p^{-1}$, which is analytic on the interval $(0,1)$, and the change of variables $u=\varphi(v)$ shows that

$$
J_{n}^{(k)}=\int_{0}^{\infty} e^{-n v} q_{k}(\varphi(v)) \varphi^{\prime}(v) d v
$$

Now, starting from the series expansion

$$
p(u)=3 u^{2}-2 u^{3}+\frac{9}{2} u^{4}-6 u^{5}+O\left(u^{6}\right)
$$

we can find the following asymptotic expansions of φ

$$
\begin{aligned}
\varphi(v) & =\frac{1}{\sqrt{3}} \sqrt{v}+\frac{1}{9} v-\frac{17}{108 \sqrt{3}} v \sqrt{v}-\frac{11}{486} v^{2}+O\left(v^{5 / 2}\right) \\
\varphi^{\prime}(v) & =\frac{1}{2 \sqrt{3 v}}+\frac{1}{9}-\frac{17}{72 \sqrt{3}} \sqrt{v}-\frac{11}{243} v+O\left(v^{3 / 2}\right)
\end{aligned}
$$

$$
\begin{aligned}
J_{n}^{(1)} & =\int_{0}^{\infty} e^{-n v}\left(\frac{1}{2 \sqrt{3 v}}+\frac{1}{9}-\frac{17}{72 \sqrt{3}} \sqrt{v}-\frac{11}{243} v\right) d v+O\left(\frac{1}{n^{5 / 2}}\right) \\
& =\frac{1}{2} \sqrt{\frac{\pi}{3 n}}+\frac{1}{9 n}-\frac{17}{144 n} \sqrt{\frac{\pi}{3 n}}+O\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

Similarly,

$$
q_{1}(\varphi(v)) \varphi^{\prime}(v)=\frac{1}{2 \sqrt{3 v}}-\frac{1}{18}-\frac{29}{72 \sqrt{3}} \sqrt{v}+\frac{23}{486} v+O\left(v^{3 / 2}\right)
$$

Thus,

$$
\begin{aligned}
J_{n}^{(2)} & =\int_{0}^{\infty} e^{-n v}\left(\frac{1}{2 \sqrt{3 v}}-\frac{1}{18}-\frac{29}{72 \sqrt{3}} \sqrt{v}+\frac{23}{486} v\right) d v+O\left(\frac{1}{n^{5 / 2}}\right) \\
& =\frac{1}{2} \sqrt{\frac{\pi}{3 n}}-\frac{1}{18 n}-\frac{29}{144 n} \sqrt{\frac{\pi}{3 n}}+O\left(\frac{1}{n^{2}}\right) .
\end{aligned}
$$

And

$$
q_{2}(\varphi(v)) \varphi^{\prime}(v)=\frac{1}{2 \sqrt{3 v}}+\frac{5}{18}-\frac{29}{72 \sqrt{3}} \sqrt{v}-\frac{139}{486} v+O\left(v^{3 / 2}\right)
$$

Thus,

$$
\begin{aligned}
J_{n}^{(3)} & =\int_{0}^{\infty} e^{-n v}\left(\frac{1}{2 \sqrt{3 v}}+\frac{5}{18}-\frac{29}{72 \sqrt{3}} \sqrt{v}-\frac{139}{486} v\right) d v+O\left(\frac{1}{n^{5 / 2}}\right) \\
& =\frac{1}{2} \sqrt{\frac{\pi}{3 n}}+\frac{5}{18 n}-\frac{29}{144 n} \sqrt{\frac{\pi}{3 n}}+O\left(\frac{1}{n^{2}}\right) .
\end{aligned}
$$

We conclude that

$$
\begin{aligned}
& S_{3 n+1}=\frac{1}{2}+\frac{1}{3 \sqrt{3 \pi n}}+\frac{17}{216 n \sqrt{3 \pi n}}+O\left(\frac{1}{n^{2}}\right) \\
& S_{3 n+2}=\frac{1}{2}-\frac{1}{6 \sqrt{3 \pi n}}-\frac{29}{432 n \sqrt{3 \pi n}}+O\left(\frac{1}{n^{2}}\right) \\
& S_{3 n+3}=\frac{1}{2}+\frac{5}{6 \sqrt{3 \pi n}}+\frac{145}{432 n \sqrt{3 \pi n}}+O\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

and we are done.

References

[1] F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York, London, 1974.

Omran KOUBA
H.I.A.S.T
P.O.B. 31983

Damascus, Syria.
e-mail : omran_kouba@hiast.edu.sy or : kouba.omran@gmail.com

