
IMC2015, Blagoevgrad, Bulgaria

Day 1, July 29, 2015

Problem 1. For any integer n ≥ 2 and two n× n matrices with real entries A, B that
satisfy the equation

A−1 +B−1 = (A+B)−1

prove that det(A) = det(B).
Does the same conclusion follow for matrices with complex entries?

(Proposed by Zbigniew Skoczylas, Wrocªaw University of Technology)

Solution. Multiplying the equation by (A+B) we get

I = (A+B)(A+B)−1 = (A+B)(A−1 +B−1) =

= AA−1 + AB−1 +BA−1 +BB−1 = I + AB−1 +BA−1 + I

AB−1 +BA−1 + I = 0.

Let X = AB−1; then A = XB and BA−1 = X−1, so we have X+X−1+I = 0; multiplying
by (X − I)X,

0 = (X − I)X · (X +X−1 + I) = (X − I) · (X2 +X + I) = X3 − I.

Hence,

X3 = I

(detX)3 = det(X3) = det I = 1

detX = 1

detA = det(XB) = detX · detB = detB.

In case of complex matrices the statement is false. Let ω = 1
2
(−1 + i

√
3). Obviously

ω /∈ R and ω3 = 1, so 0 = 1 + ω + ω2 = 1 + ω + ω.
Let A = I and let B be a diagonal matrix with all entries along the diagonal equal to

either ω or ω = ω2 such a way that det(B) 6= 1 (if n is not divisible by 3 then one may
set B = ωI). Then A−1 = I, B−1 = B. Obviously I +B +B = 0 and

(A+B)−1 = (−B)−1 = −B = I +B = A−1 +B−1.

By the choice of A and B, detA = 1 6= detB.



Problem 2. For a positive integer n, let f(n) be the number obtained by writing n
in binary and replacing every 0 with 1 and vice versa. For example, n = 23 is 10111 in
binary, so f(n) is 1000 in binary, therefore f(23) = 8. Prove that

n∑
k=1

f(k) ≤ n2

4
.

When does equality hold?
(Proposed by Stephan Wagner, Stellenbosch University)

Solution. If r and k are positive integers with 2r−1 ≤ k < 2r then k has r binary digits,

so k + f(k) = 11 . . . 1︸ ︷︷ ︸
r

(2)
= 2r − 1.

Assume that 2s−1 − 1 ≤ n ≤ 2s − 1. Then

n(n+ 1)

2
+

n∑
k=1

f(k) =
n∑

k=1

(k + f(k)) =

=
s−1∑
r=1

∑
2r−1≤k<2r

(k + f(k)) +
∑

2s−1≤k≤n

(k + f(k)) =

=
s−1∑
r=1

2r−1 · (2r − 1) + (n− 2s−1 + 1) · (2s − 1) =

=
s−1∑
r=1

22r−1 −
s−1∑
r=1

2r−1 + (n− 2s−1 + 1)(2s − 1) =

= 2
3
(4s−1 − 1)− (2s−1 − 1) + (2s − 1)n− 22s−1 + 3 · 2s−1 − 1 =

= (2s − 1)n− 1
3
4s + 2s − 2

3

and therefore

n2

4
−

n∑
k=1

f(k) =
n2

4
−
(
(2s − 1)n− 1

3
4s + 2s − 2

3
− n(n+ 1)

2

)
=

= 3
4
n2 − (2s − 3

2
)n+ 1

3
4s − 2s + 2

3
=

=
3

4

(
n− 2s+1 − 2

3

)(
n− 2s+1 − 4

3

)
.

Notice that the di�erence of the last two factors is less than 1, and one of them must
be an integer: 2s+1−2

3
is integer if s is even, and 2s+1−4

3
is integer if s is odd. Therefore,

either one of them is 0, resulting a zero product, or both factors have the same sign, so
the product is strictly positive. This solves the problem and shows that equality occurs

if n =
2s+1 − 2

3
(s is even) or n =

2s+1 − 4

3
(s is odd).



Problem 3. Let F (0) = 0, F (1) = 3
2
, and F (n) = 5

2
F (n− 1)− F (n− 2) for n ≥ 2.

Determine whether or not
∞∑
n=0

1

F (2n)
is a rational number.

(Proposed by Gerhard Woeginger, Eindhoven University of Technology)

Solution 1. The characteristic equation of our linear recurrence is x2− 5
2
x+1 = 0, with

roots x1 = 2 and x2 =
1
2
. So F (n) = a ·2n+ b · (1

2
)n with some constants a, b. By F (0) = 0

and F (1) = 3
2
, these constants satisfy a + b = 0 and 2a + b

2
= 3

2
. So a = 1 and b = −1,

and therefore
F (n) = 2n − 2−n.

Observe that

1

F (2n)
=

22
n

(22n)2 − 1
=

1

22n − 1
− 1

(22n)2 − 1
=

1

22n − 1
− 1

22n+1 − 1
,

so
∞∑
n=0

1

F (2n)
=
∞∑
n=0

(
1

22n − 1
− 1

22n+1 − 1

)
=

1

220 − 1
= 1.

Hence the sum takes the value 1, which is rational.

Solution 2. As in the �rst solution we �nd that F (n) = 2n − 2−n. Then

∞∑
n=0

1

F (2n)
=

∞∑
n=0

1

22n − 2−2n
=

∞∑
n=0

(1
2
)2

n

1− (1
2
)2n+1

=
∞∑
n=0

(1
2
)2

n
∞∑
k=0

(
(1
2
)2

n+1
)k

=
∞∑
n=0

(1
2
)2

n
∞∑
k=0

(1
2
)2k·2

n

=
∞∑
n=0

∞∑
k=0

(1
2
)2

n(2k+1) =
∞∑

m=1

(1
2
)m = 1.

(Here we used the fact that every positive integer m has a unique representation m =
2n(2k + 1) with non-negative integers n and k.)

This shows that the series converges to 1.

Problem 4. Determine whether or not there exist 15 integers m1, . . . ,m15 such that

15∑
k=1

mk · arctan(k) = arctan(16). (1)

(Proposed by Gerhard Woeginger, Eindhoven University of Technology)

Solution. We show that such integers m1, . . . ,m15 do not exist.
Suppose that (1) is satis�ed by some integers m1, . . . ,m15. Then the argument of the

complex number z1 = 1 + 16i coincides with the argument of the complex number

z2 = (1 + i)m1 (1 + 2i)m2 (1 + 3i)m3 · · · · · · (1 + 15i)m15 .

Therefore the ratio R = z2/z1 is real (and not zero). As Re z1 = 1 and Re z2 is an integer,
R is a nonzero integer.



By considering the squares of the absolute values of z1 and z2, we get

(1 + 162)R2 =
15∏
k=1

(1 + k2)mk .

Notice that p = 1 + 162 = 257 is a prime (the fourth Fermat prime), which yields an
easy contradiction through p-adic valuations: all prime factors in the right hand side are
strictly below p (as k < 16 implies 1 + k2 < p). On the other hand, in the left hand side
the prime p occurs with an odd exponent.

Problem 5. Let n ≥ 2, let A1, A2, . . . , An+1 be n + 1 points in the n-dimensional
Euclidean space, not lying on the same hyperplane, and let B be a point strictly inside
the convex hull of A1, A2, . . . , An+1. Prove that ∠AiBAj > 90◦ holds for at least n pairs
(i, j) with 1 ≤ i < j ≤ n+ 1.

(Proposed by Géza Kós, Eötvös University, Budapest)

Solution. Let vi =
−−→
BAi. The condition ∠AiBAj > 90◦ is equivalent with vi · vj < 0.

Since B is an interior point of the simplex, there are some weights w1, . . . , wn+1 > 0 with
n+1∑
i=1

wivi = 0.

Let us build a graph on the vertices 1, . . . , n+1. Let the vertices i and j be connected
by an edge if vi · vj < 0. We show that this graph is connected. Since every connected
graph on n+ 1 vertices has at least n edges, this will prove the problem statement.

Suppose the contrary that the graph is not connected; then the vertices can be split
in two disjoint nonempty sets, say V and W such that V ∪W = {1, 2, . . . , n+ 1}. Since
there is no edge between the two vertex sets, we have vi ·vj ≥ 0 for all i ∈ V and j ∈ W .

Consider

0 =

( ∑
i∈V ∪W

wivi

)2

=

(∑
i∈V

wivi

)2

+

(∑
i∈W

wivi

)2

+ 2
∑
i∈V

∑
i∈W

wiwj(vi · vj).

Notice that all terms are nonnegative on the right-hand side. Moreover,
∑
i∈V

wivi 6= 0 and∑
i∈W

wivi 6= 0, so there are at least two strictly nonzero terms, contradiction.

Remark 1. The number n in the statement is sharp; if vn+1 = (1, 1, . . . , 1) and vi =
(0, . . . , 0︸ ︷︷ ︸

i−1

,−1, 0, . . . , 0︸ ︷︷ ︸
n−i

) for i = 1, . . . , n then vi · vj < 0 holds only when i = n+ 1 or j = n+ 1.

Remark 2. The origin of the problem is here: http://math.stackexchange.com/questions/476640/n

-simplex-in-an-intersection-of-n-balls/789390


