A PROOF OF DAO'S THEOREM

GIANG NGOC NGUYEN

Abstract

We present a proof of Dao's generalization of Goormaghtigh theorem and Zaslavsky theorem and Carnot theorem.

1. INTRODUCTION

The Goormaghtigh's theorem and Zaslavsky's theorem are two nice theorems of Euclidean geometry, these theorems as follows:
Theorem 1.1 (Goormaghtigh [1]). Let $A B C$ be a triangle and point P distinct from A, B, C. Let a line Δ passes through $P . A_{1}, B_{1}, C_{1}$ belong to $B C, C A, A B$ respectively such that $P A_{1}, P B_{1}$, $P C_{1}$ are the images of $P A, P B, P C$ respetively by reflection R_{Δ}. Then, A_{1}, B_{1}, C_{1} are collinear.
Notation R_{Δ} refers to reflection against Δ.
Theorem 1.2 (Zaslavsky [2]). Let $A^{\prime} B^{\prime} C^{\prime}$ be the reflection of a triangle $A B C$ through a given point P, and let three parallel lines through $A^{\prime}, B^{\prime}, C^{\prime}$ intersect $B C, C A, A B$ at X, Y, Z respectively. Then the points X, Y, Z are collinear.
A proof of the Zaslavsky due to Darij Grinberg, see [3].
In 2014, O.T.Dao expanded the Goormaghtigh theorem as follows:
Theorem 1.3 (Dao [4]). Let ABC be a triangle and point P distinct from A, B, C. Lines L and L_{0} cut at P. Points A_{1}, B_{1}, C_{1} belong to $B C, C A, A B$ respectively such that $\left(P A, P A_{1}, L, L_{0}\right)=$ $\left(P B, P B_{1}, L, L_{0}\right)=\left(P C, P C_{1}, L, L_{0}\right)=-1$. Then three points A_{1}, B_{1}, C_{1} are collinear.
A proof of the Dao theorem due to Tran Hoang Son, see [5]. Continuing O.T.Dao expanded the theorem 1.2 and 1.3 as follows:

Theorem 1.4 (Dao [6]). Let a conic (S) and a point P on the plane. Construct three lines d_{a}, d_{b}, d_{c} through P such that they meet the conic at $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ respectively. Let D be a point on the polar of point P with respect to (S) or P lies on the conic (S). Let DA' $\cap B C=$ $A_{0} ; D B^{\prime} \cap A C=B_{0} ; D C^{\prime} \cap A B=C_{0}$. Then A_{0}, B_{0}, C_{0} are collinear.

- When point P at infinity the theorem 1.4 is the theorem 1.3
- When the conic is an ellipse, and the polar line of P is the major axis (or the minor axis) of the ellipse, the theorem 1.4 is the Goormaghtigh theorem.
- When point P is the center of the conic theorem 1.4 is the Zaslavsky theorem.
- When D be a point on the conic, and conic is a circle and P be a point at infinity the theorem 1.4 is the Carnot theorem, you can see the Carnot theorem in [7]. Note that the Carnot theorem is a generalization of the famous Simson line theorem.

Figure 1. A_{0}, B_{0}, C_{0} lies on the Dao's line

2. PROOF OF THEOREM 1.4

If P lies on the conic, you can see a proof by O.T.Dao in [8]. This paper the author gives a proof of case P lies on polar line of P respect to the conic (S).
Consider the projective target $\{A, B, C ; P\}$.
We have $A=(1,0,0) ; B=(0,1,0) ; C=(0,0,1)$.
Since $A, B, C \in(S)$, the equation of the conic (S) is of the form :

$$
a x_{2} x_{3}+b x_{3} x_{1}+c x_{1} x_{2}=0
$$

The coordinates of the equation of the line $P A$ are of the form:

$$
\left[\left|\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right|,\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|,\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|\right]
$$

Thus, $(P A): x_{2}=x_{3}$.
Since $A^{\prime}=P A \cap(S)$, the coordinates of the point A^{\prime} satisfy the system of equations:

$$
\left\{\begin{array}{l}
a x_{2} x_{3}+b x_{3} x_{1}+c x_{1} x_{2}=0 \\
x_{2}=x_{3}
\end{array}\right.
$$

Thus, $A^{\prime}=(-a ; b+c ; b+c)$.
Similarly, $B^{\prime}=(a+c,-b, a+c) ; C^{\prime}=(a+b, a+b,-c)$.
The coordinates of the equation of the line $B C$ are of the form:

$$
\left[\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|,\left|\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right|,\left|\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right|\right]=[1,0,0] .
$$

Thus, BC : $x_{1}=0$.
Similarly, $C A: x_{2}=0$. and $A B: x_{3}=0$.
The equation of the polar d of the point P to the conic (S) is:
$[1,1,1]\left[\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=0 \Leftrightarrow(b+c) x_{1}+(c+a) x_{2}+(a+b) x_{3}=0$
Since D is on the line d, so the coordinates of the point $D=(m, n, p)$ satisfy the equation:

$$
(b+c) m+(c+a) n+(a+b) p=0 \Rightarrow p=-\frac{(b+c) m+(a+c) n}{a+b}
$$

Thus, the coordinates of the point D are of the form:
$D=\left(m, n,-\frac{(b+c) m+(a+c) n}{a+b}\right)=((a+b) m,(a+b) n,-(b+c) m-(c+a) n)$
If the coordinates of the equation of the line $D A^{\prime}$ are $\left[x_{1}, x_{2}, x_{3}\right]$ then
$x_{1}=\left|\begin{array}{cc}n(a+b) & -(b+c) m-(c+a) n \\ b+c & b+c\end{array}\right|=(b+c)(n(a+b)+m(b+c)+(c+a) n) ;$
$x_{2}=\left|\begin{array}{cc}-(b+c) m-(c+a) n & m(a+b) \\ b+c & -a\end{array}\right|=a((b+c) m+(c+a) n)-(b+c) m(a+b)$
$x_{3}=\left|\begin{array}{cc}m(a+b) & n(a+b) \\ -a & b+c\end{array}\right|=(b+c) m(a+b)+a(a+b) n$.
Since $A_{0}=D A^{\prime} \cap B C$, the coordinates of the point A_{0} satisfy the system of equations:

$$
\left\{\begin{array}{l}
x_{1}=0 \\
((b+c)(n(a+b)+m(b+c)+(c+a) n)) x_{1}+(a((b+c) m+(c+a) n)-(b+c) m(a+b)) x_{2} \\
+((b+c) m(a+b)+a(a+b) n) x_{3}=0
\end{array}\right.
$$

Thus, $A_{0}=(0,(b+c) m(a+b)+a(a+b) n,(b+c) m(a+b)-a((b+c) m+(c+a) n))$
If the coordinates of the equation of the line $D B^{\prime}$ are $\left[x_{1}, x_{2}, x_{3}\right]$ then
$x_{1}=\left|\begin{array}{cc}n(a+b) & -(c+b) m-(c+a) n \\ -b & a+c\end{array}\right|=(a+c) n(a+b)-b((c+b) m+(c+a) n)$
$x_{2}=\left|\begin{array}{cc}-(b+c) m-(c+a) n & m(a+b) \\ c+a & c+a\end{array}\right|=-(c+a)((b+c) m+(c+a) n+m(a+b))$
$x_{3}=\left|\begin{array}{cc}m(a+b) & n(a+b) \\ c+a & -b\end{array}\right|=-m b(a+b)-(c+a) n(a+b)$.
Since $B_{0}=D B^{\prime} \cap C A$, the coordinates of the point B_{0} satisfy the system of equations:

$$
\left\{\begin{array}{l}
x_{2}=0 \\
((a+c) n(a+b)-b((c+b) m+(c+a) n)) x_{1}+(-(c+a)((b+c) m+(c+a) n+m(a+b))) x_{2} \\
+(-m b(a+b)-(c+a) n(a+b)) x_{3}=0
\end{array}\right.
$$

Thus, $B_{0}=(m b(a+b)+(c+a) n(a+b), 0,(a+c) n(a+b)-b((c+b) m+(c+a) n))$
If the coordinates of the equation of the line $D C^{\prime}$ are $\left[x_{1}, x_{2}, x_{3}\right]$ then
$x_{1}=\left|\begin{array}{cc}n(a+b) & -(b+c) m-(c+a) n \\ a+b & -c\end{array}\right|=-c n(a+b)+(a+b)((b+c) m+(c+a) n) ;$
$x_{2}=\left|\begin{array}{cc}-(b+c) m-(c+a) n & m(a+b) \\ -c & a+b\end{array}\right|=-(a+b)((b+c) m+(c+a) n)+c m(a+$
b)
$x_{3}=\left|\begin{array}{cc}m(a+b) & n(a+b) \\ a+b & a+b\end{array}\right|=(a+b)^{2}(m-n)$.
Since $C_{0}=D C^{\prime} \cap A B$, the coordinates of the point C_{0} satisfy the system of equations:

$$
\left\{\begin{array}{l}
x_{3}=0 \\
(-c n(a+b)+(a+b)((b+c) m+(c+a) n)) x_{1}+(-(a+b)((b+c) m+(c+a) n)+c m(a+b)) x_{2} \\
+\left((a+b)^{2}(m-n)\right) x_{3}=0
\end{array}\right.
$$

$$
\text { Thus, } C_{0}=((a+b)((b+c) m+(c+a) n)-c m(a+b),-c n(a+b)+(a+b)((b+c) m+(c+a) n), 0)
$$

Consider the determinant

$$
\Delta=\left\lvert\, \begin{array}{ccc}
0 & (b+c) m(a+b)+a(a+b) n & (b+c) m(a+b)-a((b+c) m+(c+a) n) \\
m b(a+b)+(c+a) n(a+b) & 0 & (a+c) n(a+b)-b((c+b) m+(c+a) n) \\
(a+b)((b+c) m+(c+a) n)-c m(a+b) & -c n(a+b)+(a+b)((b+c) m+(c+a) n) & 0
\end{array}\right.
$$

We need to prove: $\Delta=0$

$$
\begin{aligned}
& \Delta=-[(m b+c n+a n) \cdot(a+b)] \cdot(a+b) . \\
& {[c n-(b m+c m+c n+a n)] \cdot\left[(b m+c m)(a+b)-\left(a m b+a m c+a n c+a^{2} n\right)\right]} \\
& \left.+(a+b)[(b+c) m+(c+a) n-c m] \cdot[a+b] \cdot[b m+c m+a n] \cdot\left[(a n+c n)(a+b)-\left(b m c+b^{2} m+b n c+b a m\right)\right)\right]
\end{aligned}
$$

We need to prove

$$
\begin{aligned}
& (m b+c n+a n) \cdot(b m+c m+a n) \cdot\left(b m a+b^{2} m+c m a+c m b-a m b-a m c-a n c-a^{2} n\right)+ \\
& {[b m+c m+c n+a n-c m] \cdot[b m+c m+a n] \cdot\left[a^{2} n+a b n+c a n+c b n-b m c-b^{2} m-b n c-b a n\right]=0}
\end{aligned}
$$

It is equivalent to

$$
b^{2} m+b m c-a n c-a^{2} n+a^{2} n+c a n-b m c-b^{2} m=0
$$

This is obviously. Thus $\Delta=0$, therefore A_{0}, B_{0}, C_{0} are collinear.

3. ACKNOWLEDGMENT

The author thanks Mr. Dao Thanh Oai for his help in the improvement of this paper.

References

[1] R. Goormaghtigh, Sur une g'en'eralisation du th'eoreme de Noyer, Droz-Farny et Neuberg, Mathesis 44 (1930) 25.
[2] A.Zaslavsky, Hyacinthos message 7123, May/13/2003.
[3] G. Darij, Hyacinthos message 7385, July/23/2003
[4] O.T.Dao, Advanced Plane Geometry Message 1271, April/26th/2014.
[5] Tran Hoang Son, A synthetic proof of Dao's generalization of Goormaghtigh theorem, Global Journal of Advanced Research on Classical and Modern Geometries, ISSN: 2284-5569, Vol.3, (2014), Issue 2, pp.125-129
[6] O.T.Dao, Advanced Plane Geometry Message 1307, May 22, 2014
[7] F. G.-M., Exercise de Géométrie, Éditions Jacques Gabay, 1991
[8] http://www.cut-the-knot.org/m/Geometry/DoublePascalConic.shtml
Doctorâs degree student, of The Vietnam Institute of Educational Sciences, 101 Tran Hung Dao, Hanoi, Viet Nam.
E-mail address: nguyenngocgiang.net@gmail.com

