GENERALIZATION OF MUSSELMAN'S THEOREM. SOME PROPERTIES OF ISOGONAL CONJUGATE POINTS

NGO QUANG DUONG

AbStRACT. In this article, we generalize of Musselman's theorem and study on some properties of isogonal conjugate points with angle chasing mainly.

1. Introduction

Theorem 1. (Musselman, [1]) $\triangle A B C, D, E, F$ are reflections of A, B, C in $B C, C A, A B$, respectively. Let O be circumcenter of $\triangle A B C$. ($A O D$), $(B O E),(C O F)$ are coaxial and the intersection other than O is the inverse of Kosnita point with respect to (O).

Figure 1. Musselman's theorem
The inverse of Kosnita point (X_{54}) with respect to (O) is X_{1157} in Encyclopedia of Triangle Centers, see [2]. X_{1157} lies on Neuberg cubic and it is the tangential of O on the Neuberg cubic.

[^0]Theorem 2. (Yiu, [3]) (AEF), (BFD), (CDE) pass through the inverse of Kosnita point with respect to (O).

Figure 2

Figure 3. Gibert point
Theorem 3. (Gibert, [4]) X, Y, Z are reflections of X_{1157} in $B C, C A, A B$. $A X, B Y, C Z$ are concurrent at a point on (O).
Neuberg cubic is locus of P such that reflections of P in $B C, C A, A B$ form a triangle that perspective with $\triangle A B C$, locus of the perspectors is a cubic [5]. When P coincides with X_{1157}, we obtain X_{1141}, the only perspector lies on circumcircle other than A, B, C.
2. Generalization of Musselman's theorem and some properties around its CONFIGURATION

2.1. Generalization theorem.

Theorem 4. (Generalization of Musselman's theorem, [6]) Let P, Q be isogonal conjugate points with respect to $\triangle A B C$.
$P A, P B, P C$ intersects $(P B C),(P C A),(P A B)$ at $D, E, F \neq P$, respectively.
Then $(A Q D),(B Q E),(C Q F)$ are coaxial.

Figure 4. Generalization of Musselman's theorem
If P coincides with orthocenter of $\triangle A B C$, we have Musselman's theorem.
Proof. Let $Q A, Q B, Q C$ intersect ($Q B C$), ($Q C A$), $(Q A B)$ at $X, Y, Z \neq Q$.
First, we need some lemmas.
Lemma 5. $P Q$ is parallel to $D X, E Y, F Z$.
Proof. Since P, Q are isogonal conjugate:

$$
\begin{gathered}
(A B, A P)=(A Q, A C)=(A X, A C) \\
(X A, X C)=(X Q, X C)=(B Q, B C)=(B A, B P)
\end{gathered}
$$

Therefore $\triangle A B P$ and $\triangle A X C$ are directly similar (angle-angle).
Thus $A B \cdot A C=A P . A X$. Similarly, $A B \cdot A C=A Q \cdot A D$.

$$
\Rightarrow A P \cdot A X=A Q \cdot A D \Leftrightarrow \frac{A P}{A D}=\frac{A Q}{A X}
$$

$\Rightarrow P Q \| D X$. Similarly, we can prove $P Q \| E Y, F Z$.
Lemma 6. D and X, E and Y, F and Z are isogonal conjugate points with respect to $\triangle A B C$.
$B F, C E$ pass through $X ; C D, A F$ pass through $Y ; A E, B D$ pass through Z.
$B Z, C Y$ pass through $D ; C X, A Z$ pass through $E ; A Y, B X$ pass through F.

Figure 5

Figure 6
Proof. (See figure 6) Similar to the proof of lemma 5, we have $\triangle A P C$ and $\triangle A B X$ are directly similar, $\triangle A P B$ and $\triangle A C X$ are directly similar.

$$
\begin{aligned}
& (B C, B D)=(P C, P D)=(P C, P A)=(B X, B A) \\
& (C B, C D)=(P B, P D)=(P B, P A)=(C X, C A)
\end{aligned}
$$

So D, X are isogonal conjugate.

$$
(B X, B F)=(B X, B A)+(B A, B F)=(P C, P A)+(P A, P F)=0
$$

Hence $B F$ passes through X.

Lemma 7. $(A B C),(A P X),(A Q D)$ are coaxial.

Figure 7

Proof. Considering the inversion $\mathbf{I}(A, A B . A C)$:

$$
\begin{gathered}
B, C, P, Q, D, X \mapsto B^{\prime}, C^{\prime}, P^{\prime}, Q^{\prime}, D^{\prime}, X^{\prime} \\
(A B C),(A P X),(A Q D) \rightarrow B^{\prime} C^{\prime}, P^{\prime} X^{\prime}, Q^{\prime} D^{\prime}
\end{gathered}
$$

Since $A P \cdot A X=A Q \cdot A D=A B \cdot A C$, these pairs of points: $\left(B, C^{\prime}\right),\left(C, B^{\prime}\right),\left(P, X^{\prime}\right),\left(Q, D^{\prime}\right)$, $\left(D, Q^{\prime}\right),\left(X, P^{\prime}\right)$ are symmetrically through bisector of $\angle B A C$.
Hence, instead of prove $B^{\prime} C^{\prime}, P^{\prime} X^{\prime}, Q^{\prime} D^{\prime}$ are concurrent, we prove $B C, P X, Q D$ are concurrent.
Considering $\triangle B P D$ and $\triangle C X Q$:
According to lemma 6:
$B D$ intersects $C Q$ at $Z, B P$ intersects $C X$ at $E, P D$ intersects $Q X$ at A and Z, A, E are collinear.
Then by Desargues's theorem, $B C, P X, Q D$ are concurrent.

Back to the main proof.

From lemma 7: (ABC), (APX), (AQD) have two common points A, A^{\prime}
($A B C$), ($B P Y$), ($B Q E$) have two common points B, B^{\prime}
($A B C$), ($C P Z),(C Q F)$ have two common points C, C^{\prime}
Let N be midpoint of $P Q$.

$$
\begin{gathered}
\left(D A^{\prime}, D P\right)=\left(D A^{\prime}, D A\right)=\left(Q A^{\prime}, Q A\right)=\left(Q A^{\prime}, Q X\right) \\
\left(P A^{\prime}, P D\right)=\left(P A^{\prime}, P A\right)=\left(X A^{\prime}, X A\right)=\left(X A^{\prime}, X Q\right)
\end{gathered}
$$

Figure 8. Inverse

Figure 9
Hence, $\triangle A^{\prime} D P$ and $\triangle A^{\prime} Q X$ are similar.

$$
\Rightarrow \frac{A P}{A Q}=\frac{P D}{Q X}=\frac{d\left(A^{\prime}, A P\right)}{d\left(A^{\prime}, A Q\right)}
$$

(Note that $d(M, \ell)$ is distance from M to the line ℓ).
This means distances from A^{\prime} to $A P, A Q$ are proportional to $A P, A Q$.
So $A A^{\prime}$ is the symmedian of $\triangle A P Q$ then $A N, A A^{\prime}$ are isogonal lines with respect to $\angle B A C$. Similarly, $B B^{\prime}, B N$ are isogonal lines with respect to $\angle A B C ; C C^{\prime}, C N$ are isogonal
lines with respect to $\angle A C B$.
So $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent at N^{\prime} - isogonal conjugate of N with respect to $\triangle A B C$ (when P, Q coincide with orthocenter and circumcenter, N^{\prime} become Kosnita point). Let P^{\prime}, Q^{\prime} be two points on $P N^{\prime}, Q N^{\prime}$ such that:

$$
\overline{N^{\prime} P} \cdot \overline{N^{\prime} P^{\prime}}=\overline{N^{\prime} Q} \cdot \overline{N^{\prime} Q^{\prime}}=\mathcal{P}_{N^{\prime} /(A B C)}
$$

Then $(A Q D),(B Q E),(C Q F)$ pass through Q^{\prime} and $(A P X),(B P Y),(C P Z)$ pass through P^{\prime}.
$\Longrightarrow(A Q D),(B Q E),(C Q F)$ are coaxial, $(A P X),(B P Y),(C P Z)$ are coaxial.
Theorem 8. The circles $(A E F),(B F D),(C D E)$ pass through Q^{\prime}.

Figure 10
Proof.

$$
\begin{aligned}
\left(Q^{\prime} E, Q^{\prime} F\right) & =\left(Q^{\prime} E, Q^{\prime} Q\right)+\left(Q^{\prime} Q, Q^{\prime} F\right) \\
& =(B E, B Q)+(C Q, C F) \quad\left(B, Q, E, Q^{\prime} \text { are concyclic and } C, Q, F, Q^{\prime} \text { are concyclic }\right) \\
& =(B E, B A)+(B A, B Q)+(C Q, C A)+(C A, C F) \\
& =(B P, B A)+(B P, B C)+(C B, C P)+(C A, C P) \quad(P, Q \text { are isogonal conjugate }) \\
& =(B P, B A)+(A B, A C)+(C A, C P)+(A C, A B)+(P B, P C) \\
& =(A C, A B)+2(P B, P C) \\
& =(A C, A B)+(P B, P F)+(P E, P C) \\
& =(A C, A B)+(A B, A F)+(A E, A C) \\
& =(A E, A F)
\end{aligned}
$$

$\Rightarrow Q^{\prime}$ lies on (AEF).
Similarly, Q^{\prime} lies on (BFD), (CDE).
Theorem 9. (Generalization of Gibert point) Let the lines that pass through Q^{\prime} and parallel to $P A, P B, P C$ intersects $(A Q D),(B Q E),(C Q F)$ at $A_{Q}, B_{Q}, C_{Q} \neq Q$.
$A A_{Q}, B B_{Q}, C C_{Q}$ are concurrent at a point on $(A B C)$.

Figure 11
Proof. Let G be intersection of $A A_{Q}$ and $B B_{Q}$. We show that G lies on $(A B C)$.

$$
\begin{aligned}
(G A, G B) & =\left(A A_{Q}, B B_{Q}\right) \\
& =\left(A A_{Q}, Q^{\prime} A_{Q}\right)+\left(Q^{\prime} A_{Q}, Q^{\prime} B_{Q}\right)+\left(Q^{\prime} B_{Q}, B B_{Q}\right) \\
& =\left(Q A, Q Q^{\prime}\right)+(P A, P B)+\left(Q Q^{\prime}, Q B\right) \\
& =(P A, P B)+(Q A, Q B) \\
& =(A P, A B)+(B A, B P)+(A Q, A B)+(B A, B Q) \\
& =(A P, A B)+(B A, B P)+(A C, A P)+(B P, B C) \quad(P, Q \text { are isogonal conjugate }) \\
& =(C A, C B)
\end{aligned}
$$

Similarly, the intersections of $B B_{Q}, C C_{Q}$ lies on ($A B C$), therefore $A A_{Q}, B B_{Q}, C C_{Q}$ are concurrent at a point on $(A B C)$.

2.2. Some properties.

Proposition 10. The following sets of 4 points are concyclic:
(B,C,F,Y), (B,C, E, Z).
($C, A, D, Z),(C, A, F, X)$.
$(A, B, E, X),(A, B, D, Y)$.

Proof.

$$
(F B, F C)=(F B, F P)=(A B, A P)
$$

Since P, Q are isogonal conjugate

$$
(A B, A P)=(A Q, A C)=(Y Q, Y C)=(Y B, Y C)
$$

Hence, B, C, F, Y are concyclic.

Figure 12
Proposition 11. $E F, Y Z, B C$ are concurrent.

Figure 13
Proof. From lemma 6, $F Y$ intersect $E Z$ at $A, B F$ intersects $C E$ at $X . B Y$ intersects $C Z$ at Q. Since A, Q, X are collinear then by Desargues's theorem, $E F, Y Z, B C$ are concurrent.

Proposition 12.

$$
\begin{aligned}
& (D Y Z),(E Z X),(F X Y),(P D X),(P E Y),(P F Z) \text { have a common point. } \\
& (X E F),(Y F D),(Z D E),(Q D X),(Q E Y),(Q F Z) \text { have a common point. }
\end{aligned}
$$

Proof. From lemma 6, D, Y, C are collinear and D, Z, B are collinear, then:
$(D Y, D Z)=(D C, D B)=(P C, P B)$
Similarly:
$(E Z, E X)=(E A, E C)=(P A, P C)$
$(F X, F Y)=(F B, F A)=(P B, P A)$
$\Rightarrow(D Y, D Z)+(E Z, E X)+(F X, F Y)=0$. Hence $(D Y Z),(E Z X),(F X Y)$ have a common

Figure 14
point S. Now from symmetry we only need to prove that S lies on (PDX).

$$
\begin{aligned}
& (S D, S X)=(S D, S Y)+(S Y, S X) \\
& =(Z D, Z Y)+(F Y, F X) \quad(S, D, Y, Z \text { are concyclic, } S, X, Y, F \text { are concyclic }) \\
& =(Z B, Z Y)+(F A, F B) \quad(Z, D, B \text { are collinear }) \\
& =(Z B, Z Y)+(P A, P B) \quad(F, A, B, P \text { are concyclic }) \\
& (P D, P X)=(P A, P X) \\
& =\left(P^{\prime} A, P^{\prime} X\right) \quad\left(A, P, X, P^{\prime} \text { are concyclic }\right) \\
& =\left(P^{\prime} A, P^{\prime} Z\right)+\left(P^{\prime} Z, P^{\prime} X\right) \\
& =(A Y, Y Z)+(B Z, B X) \quad\left(A, P^{\prime}, Y, Z \text { are concyclic, } B, Z, X, P^{\prime} \text { are concyclic }\right)
\end{aligned}
$$

$$
\begin{aligned}
(S D, S X)-(P D, P X) & =(P A, P B)+(B Z, A Y)+(B X, B Z) \\
& =(P A, P B)+(B Z, B A)+(A B, A Y)+(B X, B C)+(B C, B Z) \\
& =(P A, P B)+(B C, B F)+(A E, A C)+(B A, B D)+(B F, B A) \\
& =(P A, P B)+(B C, B D)+(A E, A C) \\
& =(P A, P B)+(P C, P D)+(P E, P C) \\
& =(P A, P B)+(P C, P A)+(P B, P C) \\
& =0
\end{aligned}
$$

Therefore, S lies on $(P D X)$.

Proposition 13. $(A D X),(A E Y),(A F Z),(A P Q)$ are tangent at A.
$(B D X),(B E Y),(B F Z),(B P Q)$ are tangent at B.
$(C D X),(C E Y),(C F Z),(C P Q)$ are tangent at C.

Figure 15

Proof. Since $E Y \| F Z$ and $E Z, F Y$ pass through $A,(A E Y)$ and $(A F Z)$ are tangent at A. $D X \| P Q, P D, Q X$ pass through A so $(A P Q),(A D X)$ are tangent at A.
Let $A M, A N$ be tangent lines of $(A P Q),(A E Y)$ at A.

$$
\begin{aligned}
(A M, A N) & =(A M, A P)+(A P, A E)+(A E, A N) \\
& =(Q A, Q P)+(A P, A E)+(Y E, Y A) \quad(A N \text { is tangent line of }(A E Y))
\end{aligned}
$$

Since $P Q \| E Y$:

$$
\begin{aligned}
(A M, A N) & =(A Q, A Y)+(A P, A E) \\
& =(A Q, A C)+(A C, A Y)+(A P, A B)+(A B, A E)
\end{aligned}
$$

Because P, Q and E, Y are isogonal conjugate with respect to $\triangle A B C$:

$$
(A Q, A C)+(A P, A B)=0 \quad(A C, A Y)+(A B, A E)=0
$$

$\Rightarrow(A M, A N)=0$, then A, M, N are collinear.
Hence, $(A D X),(A E Y),(A F Z),(A P Q)$ are tangent at A.
Proposition 14. Suppose that:
ℓ_{a} is radical axis of $(A D X),(A E Y),(A F Z),(A P Q)$
ℓ_{b} is radical axis of $(B D X),(B E Y),(B F Z),(B P Q)$
ℓ_{c} is radical axis of $(C D X),(C E Y),(C F Z),(C P Q)$
Then $\ell_{a}, \ell_{b}, \ell_{c}$ are concurrent at a point on $(A B C)$.

Proof. $\ell_{a}, \ell_{b}, \ell_{c}$ are tangent lines at A, B, C of $(A P Q),(B P Q),(C P Q)$.
Tangent line at A of $(A P Q)$ is isogonal line of the line that passes through A and parallel to $P Q$ with respect to $\angle B A C$. Therefore, ℓ_{a} passes through isogonal conjugate of infinity point on $P Q$, which lies on $(A B C)$. Hence $\ell_{a}, \ell_{b}, \ell_{c}$ are concurrent at a point on $(A B C)$.

Figure 16

Proposition 15. The following sets of 4 points are concyclic:

$$
\left(Q^{\prime}, D, X, P^{\prime}\right),\left(Q^{\prime}, E, Y, P^{\prime}\right),\left(Q^{\prime}, F, Z, P^{\prime}\right),\left(Q^{\prime}, P, Q, P^{\prime}\right)
$$

Figure 17

Proof. Let N_{a}, N_{b}, N_{c} be midpoints of $D X, E Y, F Z$ and $N_{a}^{\prime}, N_{b}^{\prime}, N_{c}^{\prime}$ be isogonal conjugate of N_{a}, N_{b}, N_{c} with respect to $\triangle A B C$. In the proof of theorem 4 , we had:

$$
\overline{N^{\prime} P} \cdot \overline{N^{\prime} P^{\prime}}=\overline{N^{\prime} Q} \cdot \overline{N^{\prime} Q^{\prime}}=\mathcal{P}_{N^{\prime} /(A B C)}
$$

So $P, Q, P^{\prime}, Q^{\prime}$ are concyclic.
Since D, X are isogonal conjugate with respect to $\triangle A B C$ and $D A, D B, D C$ intersect $(D B C),(D C A),(D A B)$ at P, Z, Y. Then by theorem $4,(A X P),(B X Z),(C X Y)$ are coaxial and from theorem $5,(A X P),(B X Z),(C X Y)$ pass through X and P^{\prime}. Similarly, $(A D Q)$, $(B D F),(C D E)$ pass through D and Q^{\prime}, so $D N_{a}^{\prime}, X N_{a}^{\prime}$ pass through Q^{\prime}, P^{\prime}, respectively, and:

$$
\overline{N_{a}^{\prime} D} \cdot \overline{N_{a}^{\prime} Q^{\prime}}=\overline{N_{a}^{\prime} X} \cdot \overline{N_{a}^{\prime} P^{\prime}}=\mathcal{P}_{N_{a}^{\prime} /(A B C)}
$$

Hence, $D, X, P^{\prime}, Q^{\prime}$ are concyclic.
Proposition 16. The following sets of lines are concurrent:
($\left.N N^{\prime}, N_{a} N_{a}^{\prime}, B C\right),\left(N N^{\prime}, N_{b} N_{b}^{\prime}, C A\right),\left(N N^{\prime}, N_{c} N_{c}^{\prime}, A B\right)$.
$\left(N_{b} N_{b}^{\prime}, N_{c} N_{c}^{\prime}, B C\right),\left(N_{c} N_{c}^{\prime}, N_{a} N_{a}^{\prime}, C A\right),\left(N_{a} N_{a}^{\prime}, N_{b} N_{b}^{\prime}, A B\right)$.

Figure 18

Proof. From lemma 5 and lemma 7, $P Q X D$ is a trapezoid, the intersection L_{a} of $P X, Q D$ lies on $B C$.
Then A, N, L_{a}, N_{a} are collinear and $\left(A L_{a} N N_{a}\right)=-1$ so $B\left(A L_{a} N N_{a}\right)=-1$.
Since $B A, B C, B N, B N_{a}$ are reflections of $B C, B A, B N^{\prime}, B N_{a}^{\prime}$ in bisector of $\angle A B C$

$$
\Rightarrow B\left(C A N^{\prime} N_{a}^{\prime}\right)=B\left(A L_{a} N N_{a}\right)=-1
$$

$A N^{\prime}, A N_{a}^{\prime}$ are isogonal lines of $A N, A N_{a}$ with respect to $\angle B A C$ so $A, N^{\prime}, N_{a}^{\prime}$ are collinear. Let $A N^{\prime}$ intersects $B C$ at K_{a}.

$$
\Rightarrow B\left(C A N^{\prime} N_{a}^{\prime}\right)=\left(K_{a} A N^{\prime} N_{a}^{\prime}\right)=\left(A K_{a} N^{\prime} N_{a}^{\prime}\right)=-1=\left(A L_{a} N N_{a}\right)
$$

So $B C, N N^{\prime}, N_{a} N_{a}^{\prime}$ are concurrent.

Proposition 17. Suppose that P is inside $\triangle A B C$. Let $\mathcal{R}, \mathcal{R}_{a}, \mathcal{R}_{b}, \mathcal{R}_{c}$ be radii of pedal circles of P, D, E, F with respect to $\triangle A B C$. Then:

$$
\frac{1}{\mathcal{R}}=\frac{1}{\mathcal{R}_{a}}+\frac{1}{\mathcal{R}_{b}}+\frac{1}{\mathcal{R}_{c}}
$$

Figure 19

Proof. H_{a}, J_{a} are orthogonal projections of Q, D on $B C$. It is well-known that N is center of pedal circle of P with respect to $\triangle A B C$ and H_{a} lies on it. So $\mathcal{R}=N H_{a}$. Similarly, $\mathcal{R}_{a}=N_{a} J_{a}$. By Thales's theorem:

$$
\frac{L_{a} H_{a}}{L_{a} J_{a}}=\frac{L_{a} Q}{L_{a} D}=\frac{L_{a} N}{L_{a} N_{a}}
$$

Hence,

$$
N H_{a} \| N_{a} J_{a} \text { and } \frac{N H_{a}}{N_{a} J_{a}}=\frac{L_{a} N}{L_{a} N_{a}}=\frac{A N}{A N_{a}}=\frac{A P}{A D}
$$

From the proof of lemma 5:

$$
\frac{A P}{A D}=\frac{A P \cdot A Q}{A Q \cdot A D}=\frac{A P \cdot A Q}{A B \cdot A C}
$$

Therefore,

$$
\frac{\mathcal{R}}{\mathcal{R}_{a}}=\frac{A P \cdot A Q}{A B \cdot A C}
$$

According to IMO Shortlist 1998, geometric problem 4(see [7]):

$$
\begin{gathered}
\frac{A P \cdot A Q}{A B \cdot A C}+\frac{B P \cdot B Q}{B C \cdot B A}+\frac{C P \cdot C Q}{C A \cdot C B}=1 \\
\Rightarrow \frac{\mathcal{R}}{\mathcal{R}_{a}}+\frac{\mathcal{R}}{\mathcal{R}_{b}}+\frac{\mathcal{R}}{\mathcal{R}_{c}}=1 \Longrightarrow \frac{1}{\mathcal{R}_{a}}+\frac{1}{\mathcal{R}_{b}}+\frac{1}{\mathcal{R}_{c}}=\frac{1}{\mathcal{R}}
\end{gathered}
$$

References

[1] J. R. Musselman and R. Goormaghtigh (1939), Advanced Problem 3928. American Mathematics Monthly, volume 46, page 601.
[2] C.Kimberling, Encyclopedia of triangle centers. http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
[3] P. Yiu, Hyacinthos message 4533, December 12, 2001. https://groups.yahoo.com/neo/groups/Hyacinthos/conversations/topics/4533
[4] B.Gibert, Hyacinthos message 1498, 25 September, 2000.
https://groups.yahoo.com/neo/groups/Hyacinthos/conversations/topics/1498
[5] K060, bernard.gibert.pagesperso-orange.fr/Exemples/k060.html
[6] Q.D.Ngo, Anopolis message 2648, June 14, 2015.
https://groups.yahoo.com/neo/groups/Anopolis/conversations/topics/2648
[7] 39th IMO 1998 shortlisted problems
https://mks.mff.cuni.cz/kalva/short/sh98.html
High School for Gifted Student, Hanoi University of Science, Vietnam National University,
Hanoi, Vietnam
E-mail address: tenminhladuong@gmail.com

[^0]: 2010 Mathematics Subject Classification. 51M04.
 Key words and phrases. Triangle geometry, isogonal conjugate, circumcircle, concyclic, coaxial circle, angle chasing, collinear, concurrent.

