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Preface

Topology is a major area in mathematics. At an undergraduate
level, at a research level, and in many areas of mathematics (and even
outside mathematics in some cases), a good understanding of the basics
of the theory of general topology is required. Many students find the
course "Topology" (at least in the beginning) a bit confusing and not
too easy (even hard for some of them) to assimilate. It is like moving
to a different place where the habits are not as they used to be, but in
the end we know that we have to live there and get used to it. They are
usually quite familiar with the real line R and its properties. So when
they study topology they start to realize that not everything true in R
needs to remain true in an arbitrary topological space. For instance,
there are convergent sequences which have more than one limit, the
identity mapping is not always continuous, a normally convergent series
need not converge (although the latter is not within the scope of this
book). So in many references, they use the word "usual topology of R",
a topology in which things are as usual! while there are many other
"unusual topologies" where things are not so "usual"!

The present book offers a good introduction to basic general topol-
ogy throughout solved exercises and one of the main aims is to make
the understanding of topology an easy task to students by proposing
many different and interesting exercises with very detailed solutions,
something that it is not easy to find in another manuscript on the same
subject in the existing literature. Nevertheless, and in order that this
books gives its fruits, we do advise the reader (mainly the students) to
use the book in a clever way inasmuch as while the best way to learn
mathematics is by doing exercises, the worst way of doing exercises is to
read the solution without thinking about how to solve the exercises (at
least for some time). Accordingly, we strongly recommend the student
to attempt the exercises before consulting the solutions. As a Chinese
proverb says: If you give someone a fish, then you have given him to
eat for one day, but if you teach him fishing, then you have given him
food for everyday. So we hope the students are going to learn to "fish"
using this book.
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vi PREFACE

The present manuscript is mainly intended for an undergraduate
course in general topology. It does not include algebraic and geometric
topologies. Other topics such as: nets, topologies of infinite products,
quotient topology, first countability, second countability and the Ti

separation axioms with i = 0, 3, 4, 5 are not considered either or are not
given much attention. It can be used by students as well as lecturers
and anyone who needs the basic tools of topology. Teaching this course
several times with many different exercises each year has allowed me to
collect all the exercises given in this book. I relied on many references
(I cannot remember all of them but most of them can be found in the
bibliography) in lectures and tutorials. If there is some source which I
have forgotten to mention, then I sincerely apologize for that.

Let us now say a few words about the contents of this book. The
exercises on the subjects covered in this book can be used for a one
semester course of 14 weeks.

The book is divided into two parts. In Part 1, each chapter (except
for the first one) contains five sections. They are:

(1) What You Need to Know: In this part, we briefly recall the
essential of notions and results which are needed for the exer-
cises. No proofs are given. We just note that this part cannot
in any case replace a detailed course on the subject. The reader
may also wish to consult the following references for further
reading: [1], [2], [3], [6], [7], [9], [10], [11], [13], [14], [15] and
[16].

(2) True or False: In this part some interesting questions are
proposed to the reader. They also contain common errors
which appear with different students almost every year. Thanks
to this section, students should hopefully avoid making many
silly mistakes. This part is an important back-up for the
"What You Need to Know" section. Readers may even find
some redundancy, but this is mainly because it is meant to
test their understanding.

(3) Exercises with Solutions: The major part and the core
of each chapter where many exercises are given with detailed
solutions.

(4) Tests: This section contains short questions given with just
answers or simply hints.

(5) More Exercises: In this part some unsolved exercises are pro-
posed to the interested reader.

In Part 2, the reader finds answers to the questions appearing in the
section "True or False" as well as solutions to Exercises and Tests.
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The prerequisites to use this book are basics of: functions of one
variable (some of several variables calculus is also welcome though not
very much), sequences and series, and set theory.

Since the terminology in topology is rich and may be different from
a book to another, we do encourage the readers to have a look at the
"Notations and Terminology" chapter to avoid an eventual confusion
or ambiguity with symbols and notations.

Before finishing, I welcome and I will be pleased to receive any sug-
gestions, questions (as well as pointing out eventual errors and typos)
from readers at my email: mhmortad@gmail.com.

Last but not least, thanks are due in particular to Dr Lim Swee
Cheng and Ms Tan Rok Ting, and all the staff of World Scientific
Publishing Company for their patience and help.

Oran on September the 24th, 2013
Mohammed Hichem Mortad
Department of Mathematics

Faculty of Exact and Applied Sciences
The University of Oran (Algeria)
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Notation and Terminology

0.1. Notation

• N is the set of natural numbers, i.e. N is the set {1, 2, · · · }
(note that N in the French literature contains 0 too).
• Z the set of all integers while Z+ is the set of positive numbers.
• Q the set of rational numbers.
• R the set of real numbers.
• C the set of complex numbers.
• [a, b] the closed interval with endpoints a and b.
• (a, b) the closed interval with endpoints a and b.
• (a, b) also denotes an ordered pair.
• i the complex square root of −1.
• x 7→ ex the usual exponential function.
• The complement of a set A in X is often denoted by Ac and

occasionally it is denoted by X \ A.
• The empty set is denoted by ∅.
• d(x,A) is the distance between a point x in X to a set A ⊂ X

where (X, d) is a metric space.
• d(A) is the diameter of a set A in a metric space (X, d).
• In a metric space (X, d), the open ball of radius r > 0 and

center x ∈ X is denoted by B(x, r).
• In a metric space (X, d), the closed ball of radius r > 0 and

center x ∈ X is denoted by Bc(x, r).
• In a metric space (X, d), the sphere of radius r > 0 and center
x ∈ X is denoted by S(x, r).

• The interior of a set A in a topological space is denoted by
◦
A.

• The closure of a set A in a topological space is denoted by A.
• A′ denotes the derived set of A, that is the set of limit points

of A (where A is a subset of a topological space X).
• The frontier of a set is denoted by Fr.
• card denotes the cardinal number of a set.
• Rℓ is the lower limit topology.
• RK is the K-topology.

xiii



xiv NOTATION AND TERMINOLOGY

• The set of neighborhoods of a point x ∈ X, where X is a
topological space, is denoted by V(x).
• Cx denotes the (connected) component of x ∈ X where X is

a topological space.
• The real part of a complex number is denoted by Re.
• The imaginary part of a complex number is denoted by Im.
• The conjugate of a complex number z is denoted by z.
• C([0, 1]) is the space of real-valued continuous functions on
[0, 1] taking values in R. If the field of values is C, then this
will be clearly mentioned.
• C1([0, 1]) is the space of real-valued continuous functions de-

fined on [0, 1], differentiable and having a continuous deriva-
tive.
• (R, | · |) is R equipped with the standard or the usual metric,

i.e. the absolute value function.

0.2. Terminology

• There is a general comment which should be remembered by
the reader. Except in the sections "True or False", if we say R
without specifying the topology or the metric, then this means
R endowed with its usual topology or metric. This applies to
C, Rn and Cn too.
• It will be comprehensible from the context whether "⊂" is for

comparing two sets or two topologies.
• It will be clear from the context whether (a, b) is the ordered

pair or the open interval.
• When it is not too important to specify the metric or the

topology, we simply say the topological (or metric ) space X.
• From time to time the reader will see "(why?)". In such a

case, this means that this a question whose answer should be
known by the reader. This is used by other authors such as
J. B. Conway (see [4]) and also M. Stoll (see [15]). Other
expressions such as "(is it not?)" are also used.
• A clopen set is a set that it is closed and open simultaneously.
• The letters "w.r.t." stand for with respect to.
• As it is used almost everywhere, "iff" means if and only if (for

the fun, the French use "ssi" for "si et seulement si". Even
in Arabic, it has been sorted out by doubling a letter in the
end!).
• WLOG, as it pleases many, stands for "without loss of gener-

ality".



PART 1

EXERCISES





CHAPTER 1

General Notions: Sets, Functions et al

1.1. What You Need to Know

In this section, we assume the reader is familiar with basic real
analysis including notions and results on sets and functions among
others. So we only recall results on countability.

Definition. A set A is called finite if it is empty or if there is a
bijection f : A→ {1, 2, · · · , n}. A set is said to be infinite if it is not
finite.

Theorem. If a set A is finite, then there is no bijection of A with
any proper subset of A.

Example. The set N is infinite.

Definition. A set A is called countable (or denumerable) if
it is finite or if there is a bijection f : A → N. A set which is not
countable is called uncountable.

Example.
(1) The set of even integers is countable.
(2) Z is countable.

When looking for a bijection between N and a given set A, it may
happen that we find a function f which is injective but not surjective
and vice versa. The next result is therefore quite practical

Theorem. A non-empty set A is countable iff one of the following
holds:

(1) There exists an injective map f : A→ N;
(2) There exists a surjective map g : N→ A.

Proposition. If X is countable, then so is any A ⊂ X.

Theorem.
(1) A countable union of countable sets remains countable.
(2) A finite product of countable sets is also countable.

3



4 1. GENERAL NOTIONS: SETS, FUNCTIONS ET AL

Theorem. Let A be a non-empty set, and let P(A) be the set of
all subsets of A. Then there si no injective map f : P(A)→ A

Corollary. P(N) is uncountable.

We finish this section with an important set in analysis. To define
it, consider first the set A0 = [0, 1]. The set A1 is obtained from A0 be
removing the middle third interval (1

3
, 2
3
). To obtain A2, remove from

A1 its middle thirds, namely (1
9
, 2
9
) and (7

9
, 8
9
). Then set

An = An−1\
∞⋃

p=0

(
1 + 3p

3n
,
2 + 3p

3n

)
.

Definition. The Cantor set, denoted by C, is the intersection
(over n ∈ N) of the An introduced just above, that is:

C =
⋂

n∈N
An.

Remark. The Cantor set is uncountable as will be seen in later
chapters. Its topological properties will be considered throughout the
present manuscript.

In measure theory, the Cantor set constitutes an example of an
uncountable set with zero Lebesgue measure.

1.2. Exercises With Solutions

Exercise 1.2.1. Let I be an arbitrary set. Let f : X → Y and
g : Y → Z be two functions. Also assume that A, Ai ⊂ X and
B, Bi ⊂ Y . Show that the following statements hold

(1) f(
⋃

i∈I
Ai) =

⋃

i∈I
f(Ai);

(2) f(
⋂

i∈I
Ai) ⊆

⋂

i∈I
f(Ai);

(3) f−1(
⋃

i∈I
Bi) =

⋃

i∈I
f−1(Bi);

(4) f−1(
⋂

i∈I
Bi) =

⋂

i∈I
f−1(Bi);

(5) f−1(Bc) = [f−1(B)]c;
(6) (g ◦ f)−1(A) = f−1(g−1(A));
(7) f(f−1(A)) ⊂ A;
(8) B ⊂ f−1(f(B)).

Exercise 1.2.2. Let f : X → Y be a function. If fA is the re-
striction of f to A ⊂ X, then show that for any subset U of X one
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has
f−1
A (U) = A ∩ f−1(U).

Exercise 1.2.3.
(1) Show, using the map

f : N× N→ N
(n,m) 7→ f(n,m) = 2n3m,

that N× N is countable.
(2) Deduce that if A and B are two countable sets, then so is their

Cartesian product A× B.

Exercise 1.2.4. Let Q[X] be the set of polynomials with rational
coefficients. Show that Q[X] is countable.

Exercise 1.2.5. Let X = {0, 1}N be the set of all sequences having
values in {0, 1}. Show that X is uncountable.

Exercise 1.2.6. Show that

(1)
⋂

n∈N

(−1
n

,
1

n

)
= {0};

(2)
⋃

n∈N
[−n, n] = R;

(3)
⋂

n∈N
[n,∞) = ∅.

Exercise 1.2.7. Let n ≥ 1. Find
⋂

n

An and
⋃

n

An in the following

cases
(1) An = {1, 2, · · · , n};
(2) An = (−n, n);
(3) An =

(
− 1

n
, 1 + 1

n

)
;

(4) An =
[
0, 1− 1

n

]
;

(5) An =
(
− 1

n
, 1
)
.

Exercise 1.2.8. [Young’s Inequality] Let a and b be two positive
real numbers. Let p > 1 and q > 1 be such that 1

p
+ 1

q
= 1 (q is called

the conjugate of p). Show that we have

ab ≤ ap

p
+

bq

q
.

Exercise 1.2.9. (A bit of number theory!) Show that e 6∈ Q (you

may use the sequences defined as xn =
k=n∑

k=0

1

k!
and yn = xn +

1
n!n

).
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Exercise 1.2.10. Show that the set of rational numbers Q is dense
in R, that is, between any two real numbers, there is a rational one.

Remark. The precise meaning of density will be made clear in its
general context in Chapter 3.

Exercise 1.2.11. Let X = C([0, 1]) and let f, g ∈ X. Show that
∫ 1

0

|f(x)g(x)|dx ≤ sup
0≤x≤1

|f(x)|
∫ 1

0

|g(x)|dx

Remark. The main purpose of the foregoing exercise is to fa-
miliarize the reader (especially the students) with the result therein.
Usually, when it is given like that they think that we have just taken
|f(x)| outside the integral which is of course not true. In the solution
below we show how to deal with this situation. This is something that
must be remembered. A similar idea will be applied to infinite series
in due time.

1.3. More Exercises

Exercise 1.3.1. Let X and Y be two sets where A ⊂ X. Let
f : X → Y be a function. Do we have

f(Ac) = (f(A))c?

Exercise 1.3.2. Let X and Y be two sets. Let f : X → Y be a
function. Show that:

(1) f is injective iff f(A ∩ B) = f(A) ∩ f(B) for all A,B ⊂ X iff
f−1(f(C)) = C for all C ⊂ X.

(2) f is surjective iff f(f−1(D)) = D for all D ⊂ Y .

Exercise 1.3.3 (π irrational). Let P be a polynomial of degree 2n.
Set

F (x) = P (x)− P ′′(x) + P (4)(x)− · · ·+ (−1)nP (2n)(x).

(1) By observing that P (x) sin x = (F ′(x) sin x−F (x) cos x)′, show
that∫ π

0

P (x) sin xdx = F (0) + F (π) (called Hermite’s Formula).

(2) Assume that π is rational, i.e. π = a
b

with a ∈ N and b ∈ N.
(a) Apply Hermite’s formula to P (x) = 1

n!
xn(a− bx)n.

(b) Show that P (0) = P ′(0) = · · ·P (n−1)(0) = 0 and deduce
that F (0), F (π) ∈ Z.
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(c) Now set In =
∫ π

0
P (x) sinxdx. Prove that In > 0 and that

lim
n→+∞

In = 0. Deduce from Question b) that In ∈ Z and

find a contradiction (leading to the irrationality of π).

Exercise 1.3.4. Show that between any two (different) reals, there
is an irrational.

Exercise 1.3.5. Show that {q
√
3 : q ∈ Q} is dense in R \Q.

Exercise 1.3.6. Exhibit an explicit dense subset of C. The same
question for Cn.

Exercise 1.3.7. Show that the direct image of a countable set under
any function remains countable.

Exercise 1.3.8.
(1) Show that the countable union of countable sets is countable.
(2) Deduce that Q is countable too.

Exercise 1.3.9. An algebraic number is a root of a polynomial
having rational (or integer) coefficients. The set of algebraic numbers
certainly includes Q. It also includes many irrational numbers such as√
2,
√
3, 1√

2
and 1 + 3

√
5...etc.

A non-algebraic number is called transcendental. In number the-
ory, it is known that π or e are transcendental.

(1) Show that the set of algebraic numbers is countable.
(2) Need the set of transcendental numbers be countable? Why?
(3) Show that the sets of algebraic and transcendental numbers

are both dense in R.

Exercise 1.3.10. Let A ⊂ R be non void and bounded. Show that
sup
x,y∈A

|x− y| = supA− inf A.





CHAPTER 2

Metric Spaces

2.1. What You Need to Know

2.1.1. Definitions and Examples.

Definition. Let X be a non-empty set. A metric (or a dis-
tance) on X is a function d : X ×X → R+ verifying:

(1) d(x, y) = 0⇐⇒ x = y.
(2) ∀x, y ∈ X : d(x, y) = d(y, x).
(3) ∀x, y, z ∈ X : d(x, z) ≤ d(x, y)+d(y, z) (Triangle Inequality).

The couple (X, d) is called a metric space.

Examples.
(1) The mapping d : R × R → R+ defined by d(x, y) = |x − y| is

a metric called the usual (or standard) metric on R. It may
be denoted by | · |.

(2) The mapping d : C× C → R+ defined by d(z, z′) = |z − z′| is
a metric called the usual (or standard) metric on C. It may
also be denoted by | · | or | · |C.

Here is another example.

Example (the discrete metric). Let X be a non-empty set. Define
a map on X ×X by

d(x, y) =

{
0, x = y,
1, x 6= y.

Then d is a metric on X called the discrete metric (for a proof and
some properties of d, see Exercise 2.3.5).

Remark. The discrete metric is not very useful in practise since it
can be defined on any non-empty set. However, it can be very valuable
as a source for counterexamples as will be illustrated in many exercises
in the sequel.

2.1.2. Important Sets in Metric Spaces.

Definition. Let (X, d) be a metric space.
9
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An open ball of center a ∈ X and radius r > 0, denoted by B(a, r),
is defined by:

B(a, r) = {x ∈ X : d(x, a) < r}.
A closed ball of center a ∈ X and radius r > 0, denoted by

Bc(a, r), is defined by:

Bc(a, r) = {x ∈ X : d(x, a) ≤ r}.
A sphere of center a ∈ X and radius r > 0, and denoted by S(a, r),

is given by:
S(a, r) = {x ∈ X : d(x, a) = r}.

Definition. Let (X, d) be a metric space and let U ⊂ X. Then
we say that U is open in (X, d) (or just in X) if:

∀x ∈ U, ∃r > 0 : B(x, r) ⊂ U.

A subset V of X is said to be closed if its algebraic complement V c is
open.

Examples.
(1) An open interval is an open set (see Exercise 2.3.17 for a more

general result).
(2) [0, 1] or [0, 1) are not open in usual R.
(3) In usual R again, {0} is not open.

Remark. Open and closed sets do not form a partition of the
metric space. There are sets which are neither open nor closed. The
reader will see many examples throughout the exercises in Chapters 2
& 3.

There are also sets which are open and closed simultaneously (for
example in a discrete metric space, see Exercise 2.3.5). We call them
"clopen".

Remark. It is clear that we can define different metrics on the
same set X. Hence a given subset A of X may be open with respect
to a metric and not open with respect to another one.

Theorem (See Exercise 2.3.15). Let (X, d) be a metric space.
Then

(1) ∅ and X are open.
(2) The union of any collection of open sets remains open.
(3) The intersection of a finite collection of open sets remains

open.
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Remark. We will see in the next chapter that a space in which
the properties of the previous theorem are verified will be called a
topological space. Thus a metric space is an example (very important
though) of a topological space.

Examples.
(1) [0, 1] is closed in usual R for its complement (−∞, 0)∪ (1,∞),

being a union of open sets, is open.
(2) A similar idea gives us the closedness of {0} in usual R.

Corollary (See Exercise 2.3.16). A subspace of a metric space
is open iff it is a union of open balls.

Example. Open sets in usual R are unions of open intervals.

The definition of closed sets combined with elementary set theory
yield

Corollary. Let (X, d) be a metric space. Then
(1) ∅ and X are closed.
(2) The intersection of any collection of closed sets stays closed.
(3) The union of a finite collection of closed sets remains closed.

Now we introduce the notion of a bounded set.

Definition. Let (X, d) be a metric space and let A ⊂ X. Define:

d(A) = sup
x,y∈A

d(x, y).

Then d(A) is called the diameter of A.

Remark. If A is a non-empty set, then d(A) ≤ ∞.

Definition. Let (X, d) be a metric space and let A ⊂ X. We
say that A is bounded if it is contained in a ball of a finite radius.
Equivalently, A is bounded if its diameter d(A) is finite.

Example. Usual R is not bounded while R equipped with a discrete
metric is bounded.

Definition. Let X be a non-empty set. Let (Y, d) be a metric
space. A function f : X → (Y, d) is said to be bounded if f(X) is
bounded in (Y, d).

2.1.3. Continuity in Metric Spaces.

Definition. Let (X, d) and (Y, d′) be two metric spaces. Let f :
(X, d) → (Y, d′) be a function. Then f is continuous at a point
a ∈ X if for every ball B(f(x), ε), there exists a ball B(x, d′) such
that f(B(x, d′)) ⊂ B(f(x), ε).
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This is the natural extension of the known definition of a continuous
real-valued function defined on an interval of R. It is equivalent to the
following result (which will be the actual definition of a continuous
function between two topological spaces):

Proposition (See Exercise 2.3.21). Let (X, d) and (Y, d′) be two
metric spaces. Let f : (X, d) → (Y, d′) be a function. Then f is
continuous iff for every open set U in (Y, d′), f−1(U) is open in (X, d).

Definition. Let (X, d) be a metric space and let A ⊂ X be non-
empty. The distance between a point x ∈ X and A, denoted by d(x,A)
is defined by:

d(x,A) = inf
t∈A

d(x, t).

Remark. The function x 7→ d(x,A) is continuous on X thanks to
the following result:

∀x, y ∈ X : |d(x,A)− d(y, A)| ≤ d(x, y).

We can also define uniform continuity of a function f between two
metric spaces.

Definition. Let (X, d) and (X, d′) be two metric spaces and let
f : (X, d) → (X, d′) be a function. We say that f is uniformly con-
tinuous if:

∀ε > 0, ∃α > 0, ∀x, x′ ∈ X : (d(x, x′) < α =⇒ d′(f(x), f(x′)) < ε).

Remark. It is plain that uniform continuity implies continuity.

Definition. Let (X, d) and (Y, d′) be two metric spaces. A func-
tion f(X, d)→ (Y, d′) is said to be an isometry if f is surjective and:

∀x, y ∈ X : d(x, y) = d′(f(x), f(y)).

Remarks.

(1) In some textbooks, they do not assume the surjectivity hy-
pothesis in the definition of an isometry (they then say an
isometry into).

(2) It is plain that an isometry is injective. Thus an isometry is
bijective.

(3) The inverse of an isometry is an isometry.
(4) It is also clear that an isometry is continuous.
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2.1.4. Equivalent Metrics.

Definition. Let d and d′ be two metrics on the same set X. Then
we say that d is equivalent (we may also say strongly equivalent or
Lipschitz equivalent) to d′ if:

∃α, β > 0, ∀x, y ∈ X : αd(x, y) ≤ d′(x, y) ≤ βd(x, y).

There is another type of equivalence of metrics, namely
Definition. Two metrics d and d′ on a set X are said to be

topologically equivalent if: a subset U is open in (X, d) iff it is open
in (X, d′).

Remark. (Strong) equivalence of two metrics implies topological
equivalence, but not vice versa. For a counterexample, see e.g. Exercise
2.3.26.

Examples.
(1) The metrics dp with 1 ≤ p ≤ ∞, defined in Exercise 2.3.9, are

equivalent, hence topologically equivalent.
(2) In R, the discrete metric is not topologically equivalent to the

usual metric for an open set w.r.t. the discrete metric need
not be open w.r.t. the usual one. This also implies that the
two metrics are not (strongly) equivalent.

2.2. True or False: Questions

Questions. Comment on the following questions/statements and
indicate those which are false and those which are true when this ap-
plies. Justify your answers.

(1) Let X be set with cardX ≥ 2. We can always define a metric
on X.

(2) Let d be a metric on some set X. Then d is a positive function.
(3) The set {0} is not open.
(4) The set {0} is not open in (R, | · |) since it is closed.
(5) In a metric space, a ball can contain another ball of strictly

bigger radius.
(6) The set (0, 1) is bounded.
(7) Let (X, d) be a metric space and let A, B and C be three

subsets of X. Define (not to be confused with the diameter of
a given set)

d(A,B) = inf
(a,b)∈A×B

d(a, b).

Then
d(A,C) ≤ d(A,B) + d(B,C).
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(8) Let (X, d) and (X, d′) be two metric spaces such that d and d′

are equivalent. Show that

U open in (X, d) if and only if U open in (X, d′).

(9) Every closed ball is a closed set. What about the converse?
(10) The sphere is a closed set.
(11) There is a metric space in which all triangles are isosceles.

2.3. Exercises With Solutions

Exercise 2.3.1. Assume that a function d on X×X into R+ verifies



d(x, y) = 0⇔ x = y,
d(x, y) = d(y, x), ∀x, y ∈ X,

d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z distinct and in X.

Show that d is a metric on X.

Exercise 2.3.2. Let (X, d) be a metric space. Show that

∀x, y, z ∈ X : |d(x, z)− d(y, z)| ≤ d(x, y).

Exercise 2.3.3. Are the following functions metrics on X?
(1) d(x, y) = |x2 − y2|, X = R;
(2) d(x, y) = |x3 − y3|, X = R;
(3) d(x, y) = ex−y, X = R;
(4) d(x, y) =

∣∣∣ 1x − 1
y

∣∣∣, X = R∗;
(5) d(x, y) = |x− 3y|, X = R.

Exercise 2.3.4. In the usual metric of R, what is the ball corre-
sponding to the open interval (0, 1) (i.e. what is its center and what is
its radius?).

Exercise 2.3.5 (the discrete metric). Let X be a non-empty set.
Define a map on X ×X by

d(x, y) =

{
0, x = y,
1, x 6= y.

(1) Show that d is a metric on X.
(2) Let r > 0 and let x ∈ X. Find the open ball B(x, r) and the

closed ball Bc(x, r).
(3) Find the sphere S(x, r).
(4) Show that every subset in a discrete metric space is open.
(5) Deduce that every subset in a discrete metric space is closed.
(6) Set X = R. Show that the discrete metric on R is not equiva-

lent to the usual metric on R.



2.3. EXERCISES WITH SOLUTIONS 15

Exercise 2.3.6. Let (X, d) be a metric space. Show that d′(x, y) =√
d(x, y) defines a metric on X.

Exercise 2.3.7. On N× N, we define

d(x, y) =

{
0, x = y,

3 + x+y
xy

, x 6= y.

Show that d is a metric on N.

Exercise 2.3.8. On Rn × Rn, define the function d by

d(x, y) =

n∑

k=1

|xk − yk|

for all x = (xk), y = (yk) ∈ Rn. Show that d is a metric on Rn (called
in many references the taxicab metric).

Exercise 2.3.9. Let p > 1 and q > 1 be such that 1
p
+ 1

q
= 1. Let

a1, · · · , an and b1, · · · , bn be positive real numbers.
(1) Prove the following Hölder’s inequality

n∑

k=1

akbk ≤
(

n∑

k=1

(ak)
p

) 1
p
(

n∑

k=1

(bk)
q

) 1
q

.

(2) Prove the following so-called Minkowski’s inequality
(

n∑

k=1

(ak + bk)
p

) 1
p

≤
(

n∑

k=1

(ak)
p

) 1
p

+

(
n∑

k=1

(bk)
p

) 1
p

.

(3) Let p ≥ 1. Define the following functions on Rn × Rn

dp(x, y) =

(
n∑

k=1

|xk − yk|p
) 1

p

and d∞(x, y) = max
1≤k≤n

(|xk − yk|).

(a) Show that dp and d∞ are metrics on Rn.
(b) Show that they are equivalent metrics and deduce that

lim
p→∞

dp(x, y) = d∞(x, y).

Remarks.
(1) If p = 1, then we get back the taxicab metric whose proof does

not require the Minkowski inequality.
(2) If p = 1, then in general, we allow q to be ∞ and the same

applies for q = 1. This is, however, not discussed in this
exercise.
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(3) If p = q = 2, we get back one of the versions of the Cauchy-
Schwarz inequality . Therefore, Hölder’s Inequality generalizes
Cauchy-Schwarz’s.

(4) From Question 3, b), we now know why we use the notation
d∞.

Exercise 2.3.10. Let M = (X, d) be a metric space.
(1) Show that both

(a) δ(x, y) = min(1, d(x, y)) and
(b) ρ(x, y) = d(x,y)

1+d(x,y)

define metrics on X (hint: for ρ you may start by showing that
0 ≤ x ≤ y ⇒ x

1+x
≤ y

1+y
and x+y

1+x+y
≤ x

1+x
+ y

1+y
, ∀x, y ≥ 0).

(2) Regardless of what X can be, is (X, δ) bounded? Is (X, ρ)
bounded?

Exercise 2.3.11. Let (Xn, dn), n = 1, 2, · · · be a countable family of

metric spaces. Set X =

∞∏

n=1

Xn. Show that the function d : X×X → R

defined by,

d(x, y) =
∞∑

n=1

1

2n
× dn(xn, yn)

1 + dn(xn, yn)
,

for each x = (x1, · · · , xn, · · · ) et y = (y1, · · · , yn, · · · ) in X, is a metric
on X.

Exercise 2.3.12. Let X be the space of real-valued continuous func-
tions on [0, 1].

(1) Show that

d(f, g) =

∫ 1

0

|f(x)− g(x)|dx and d′(f, g) = sup
x∈[0,1]

|f(x)− g(x)|

are two metrics on X (d′ is usually called the supremum
metric ).

(2) Show that these two metrics are not equivalent.
(3) Does d remain a metric if X is replaced by the space of Riemann-

integrable functions?

Exercise 2.3.13. Let X = C1([0, 1],R) be the space of real-valued
continuous functions defined, differentiable and having a continuous
derivative on [0, 1]. Define a function from X ×X into R+ by

d(f, g) = sup
x∈[0,1]

|f ′(x)− g′(x)|

where f ′ stands for the derivative of f . Is d a metric on X?
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Exercise 2.3.14. Let M = (X, d) be a metric space. Also, let
x, y ∈ X and r, s > 0.

(1) Show that B(x, r) = B(y, s) (for all x, y and all r, s) does not
always give x = y or r = s.

(2) Give one case when this is always correct.

Exercise 2.3.15. Let (X, d) be a metric space. Show that:
(1) X and ∅ are open sets in (X, d),
(2) The arbitrary union of open sets in (X, d) is open in (X, d),
(3) The finite union of open sets in (X, d) is open in (X, d). Does

this stays true for an infinite union?

Exercise 2.3.16. Show that in any metric space X, a subset U of
X is open if and only if it can be written as a union of open balls.

Exercise 2.3.17. Let (X, d) be a metric space. Show that an open
ball is an open set. Is the converse always true?

Exercise 2.3.18. Are the intervals [a, b], [a, b) or (a, b] open in R?

Exercise 2.3.19. Associate with R2 the euclidian metric and denote
it by d. Define on R2 ×R2 a function δ by

δ(x, y) =

{
0, x = y,

d(x, 0) + d(y, 0), x 6= y

where 0 = (0, 0).
(1) Check that δ is in effect a metric on R2.
(2) Let a 6= 0. Show that {a} is open.
(3) Is {0} open in (R2, δ)?
(4) What is R2 \ {0} restricted to δ?

Remark. The metric defined in the previous exercise has a par-
ticular name: In the UK, it is called the British Rail Metric. The main
reason for this designation is that often when one wants to travel from
a town to another, then he/she might have to pass by some train sta-
tion in London which is represented by 0 in our exercise. For the same
reason, the French call it the SNCF Metric. As for the Americans,
they call it the Post Office Metric. This latter is probably more mean-
ingful than the other two as if one wants to send a letter from his/her
place to somewhere else it will have to pass by the post office which is
represented by 0 in the exercise.

Exercise 2.3.20 (Ultrametric space). Let X be a non empty set.
Let d be a function from X ×X into R+ such that

• d(x, y) = 0⇔ x = y,
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• d(x, y) = d(y, x), ∀x, y ∈ X,
• d(x, z) ≤ max(d(x, y), d(y, z)), ∀x, y, z ∈ X.

(1) Show that d is a metric, called ultrametric.
(2) Show that at least two of d(x, y), d(y, z) and d(x, z) must be

equal. Interpret this result geometrically.
(3) Show that in a ultrametric space, every point in an open ball

is its center.
(4) Show that open balls are clopen and that so are closed balls

too.

Exercise 2.3.21. Let f : X → X ′ be a function where X and X ′ are
two topological spaces. Show that f is continuous on X iff whenever
U is an open set in X ′, f−1(U) is an open set in X.

Exercise 2.3.22. Let (X, d) be a metric space. Let
(1) Show that the function f : X → R defined for all x ∈ X by

f(x) = d(x, a) is continuous on X where a ∈ X and r > 0.
(2) Let B ⊂ X be non-empty. Set

g(x) = d(x,B) = inf
b∈B

d(x, b).

Show that g is uniformly continuous on X.

Exercise 2.3.23. Let R+ be equipped with the induced usual metric
| · |. Let d be the metric, defined for all x, y ∈ R+, by

d(x, y) = |√x−√y|.
Let f : (R+, | · |)→ (R+, d) be the identity map.

(1) Show that f is uniformly continuous.
(2) Interpret the result of the previous question differently.

Exercise 2.3.24. In usual R, give an example of a:
(1) function f : R→ R not continuous at every point,
(2) function f : R→ R continuous at only one point,
(3) function f : R→ R continuous at only two points.

Exercise 2.3.25. Show that the open ball B(a, r) is open in the
metric space (X, d) by using the function f : x 7→ f(x) = d(x, a) where
a ∈ X.

Exercise 2.3.26. Let x and y be two reals. Set for all x and y

δ(x, y) = | arctanx− arctan y|.
(1) Show that δ is a metric on R. Is R bounded with respect to

this metric?
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(2) Compare the open balls B(0, 2), B(0, 4) and B(1, 4). What do
you observe?

(3) Show that δ is not equivalent to the usual metric on R.
(4) Is δ topologically equivalent to the usual metric on R?

Exercise 2.3.27. Let (X, d) be a metric space. Let ρ be as in
Exercise 2.3.10.

(1) Is d equivalent to ρ?
(2) Are they topologically equivalent?

2.4. Tests

Test 1. Show that even if a metric d is not defined into R+, the
three properties of a metric will guarantee its positivity, i.e.

d(x, y) ≥ 0 for all x, y ∈ X.

Test 2. Let X = R. We define on R×R, the function d by

d(x, y) = ln(1 + |x− y|), ∀x, y ∈ R.

Show that d is a metric on X.

Test 3. Let X = C([0, 1],R). Define a function d on X ×X by

d(f, g) =

(∫ 1

0

|f(x)− g(x)|2dx
) 1

2

where f, g ∈ X. Show that d is a metric on X.

Test 4. Let X = {x, y}. Let a > 0. Assume that a function d on
X ×X verifies {

d(x, x) = d(y, y) = 0,
d(x, y) = d(y, x) = a.

Show that d is a metric on X.

Test 5. Let (X, d) be a metric space and let A be some non-empty
set. Let f : A→ X be a one-to-one mapping. Set

δ(x, y) = d(f(x), f(y)), ∀x, y ∈ A.

Show that δ defines a metric on A.

Test 6. Give an example of a metric which is ultrametric and an
example of one which is not.
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2.5. More Exercises

Exercise 2.5.1. Let (X, d) be a metric space. Show that

d(x1, xn) ≤ d(x1, x2)+d(x2, x3)+· · ·+d(xn−1, xn), ∀x1, x2, · · · , xn ∈ X.

Exercise 2.5.2. Let (X, d) be a metric space.
(1) Show that

|d(x, z)− d(y, t)| ≤ d(x, y) + d(z, t).

(2) Why can this result be considered as a generalization of the
inequality appearing in Exercise 2.3.2?

Exercise 2.5.3. Let X be a non-void set. Assume that a function
d on X ×X verifies

{
d(x, x) = 0,

1 ≤ d(x, y) = d(y, x) ≤ 2, x 6= y.

Show that d is a metric on X.

Exercise 2.5.4. Let d be a function defined on C× C by

d(z, z′) =

{
0, z = z′,

|z|+ |z′|, z 6= z′.

(1) Prove that d is a metric on C.
(2) Is d topologically equivalent to the usual metric on C?

Exercise 2.5.5. Describe the open sets in the metric spaces of Ex-
ercise 2.3.19.

Exercise 2.5.6. Let (X, d) be a metric space.
(1) Show that the finite union of bounded sets is bounded.
(2) What about the arbitrary union?
(3) Show that the arbitrary intersection of bounded sets is bounded.

Exercise 2.5.7. Is d a metric on X in the following cases:
(1) d(f, g) = supx∈[0,1] |f ′(x)−g′(x)|+|f(0)−g(0)| where f ′ stands

for the derivative of f , X = C1([0, 1],R) (cf Exercise 2.3.13).
(2) d(f, g) = supx∈[a,b] |(f(x)−g(x))ω(x)| where ω ∈ X (a weight)

be not vanishing on [a, b], X = C([a, b]).

(3) d(f, g) = p

√∫ 1

0
|f(x)− g(x)|pdx where p ≥ 1, X = C([0, 1],R)

(hint: use Exercise 2.3.9).
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Exercise 2.5.8. Assume that (X, dk) are metric spaces for all 1 ≤
k ≤ n. Let p ≥ 1. Show that

d′(x, y) =

(
n∑

k=1

dk(xk, yk)
p

) 1
p

defines a metric on Xn. Does d remain a metric if 0 ≤ p < 1?

Exercise 2.5.9. Let A = (0, 2) × {1}. Show that A is open in
R× {1}. Is A open in R2?

Exercise 2.5.10. Let X be a non-empty set. Define a map on X×X
by

δ(x, y) =

{
0, if x = y,
2, if x 6= y.

(1) Show that δ is a metric on X.
(2) Is δ equivalent to the discrete metric? Are they topologically

equivalent?

Exercise 2.5.11. On N× N, define a function d by d(x, x) = 0 for
every x ∈ N and for x, y ∈ N, x 6= y by

d(x, y) = 5 +
1

x
+

1

y
.

Show that d is a metric on N.

Exercise 2.5.12. Show that the metrics defined in Exercise 2.3.12
are not topologically equivalent.

Exercise 2.5.13. For all x, y > 0, let
d(x, y) = | ln x− ln y|.

(1) Check that d is a metric on R∗
+.

(2) Prove that d is topologically equivalent to the induced usual
metric on R∗

+.





CHAPTER 3

Topological Spaces

3.1. What You Need to Know

3.1.1. General Notions.

Definition. Let X be a non-empty set. A topology T on X is
a subset of P(X) verifying the following axioms:

(1) ∅,X are both in T .
(2) The intersection of two (hence of a finite collection of) sets

in T remains in T .
(3) The arbitrary union of sets in T is again in T .

The couple (X, T ) is then called a topological space.
Elements of T are called open.

Examples.
(1) Let X be a set. Then T = {∅, X} is a topology on X called

the indiscrete (or trivial) topology. Notice that this topology
is not too interesting as there are practically no open or closed
sets.

(2) Also, take T = P(X), i.e. the collection of all subsets of X.
Then T is a topology on X. It is called the discrete topology.

(3) Every metric metric space is a topological space. Hence, the
usual metric on R gives us a topology which we call the usual
topology .

(4) Let {0, 1, 2} and let

T = {∅, {0}, {2}, X}.
Then T is not a topology on X.

Definition. Let (X, T ) be a topological space. A set V ⊂ X is
said to be closed if V c is open, that is, if V c ∈ T .

Examples.
(1) In standard R, Z is closed for its complement is a (here an

infinite) union of open intervals, hence Zc is an open set in R.
(2) In a metric space, we have seen that any closed ball is a closed

set.
23
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Remark. As in the case of metric spaces, there are:
(1) Open sets which are not closed.
(2) Closed sets which are not open.
(3) Sets which are neither open nor closed.
(4) Sets which are open and closed at the same time (we call them

"clopen").

By elementary set theory, we have:

Proposition. Let (X, T ) be a topological space. Then
(1) ∅ and X are closed.
(2) The union of a finite collection of closed sets is closed.
(3) The arbitrary intersection of closed sets is closed.

We saw above that every metric space is a topological space. We
may therefore ask whether any topological space can be seen as a metric
space in some sense? Giving this a specific terminology seems to be
appropriate. We have

Definition. Let (X, T ) be a topological space. We say that T is
metrizable if there is some metric d (on X) which gives the topology
of T .

Examples.
(1) A discrete topological space is metrizable. We can easily verify

that the discrete metric induces the discrete topology.
(2) An indiscrete topological space X (with cardX ≥ 2) is not

metrizable.

Remark. There are theorems giving conditions under which a
given topological space is metrizable, such as the "Urysohn Metrization
Theorem". But this is not within the scope of the present book. For
more details, see e.g. [10].

Definition. Let (X, T ) be a topological space and let x ∈ X. A
neighborhood of x is any open set U ∈ T which contains x.

The set of neighborhoods of x is denoted by V(x).
Remark. In some textbooks, neighborhoods are not taken to be

open. For further discussion, see the "True or False" section.

Definition. Let T and T ′ be two topologies on a set X. We say
that:

(1) T is finer than T ′ if T ′ ⊂ T ;
(2) T is coarser than T ′ if T ′ ⊃ T .
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If T and T ′ are such that T ′ ⊂ T or T ⊂ T ′, then we say that T
and T ′ are comparable.

Examples.
(1) The indiscrete topology is coarser than any other topology which

may be defined on the same set.
(2) The discrete topology is finer than any other topology which

may be defined on the same set.

Definition. A topological space (X, T ) is called Hausdorff (or
separated) if:

∀x, y ∈ X, x 6= y, ∃(U, V ) ∈ V(x)× V(y) : U ∩ V = ∅.

Examples.
(1) Any metric space is Hausdorff (Exercise 3.5.10).
(2) An indiscrete topological space is not Hausdorff.

Proposition (See Exercise 3.3.28). Let X be a topological space
which is Hausdorff. Let x ∈ X. Then:

(1) The singleton {x} (and hence every finite set) is always closed.
(2) The intersection of all open sets containing x is {x}.

Definition. Let (X, T ) be a topological space and let A ⊂ X. Let
x ∈ X.

(1) The closure of A, denoted by A, is the smallest (w.r.t. "⊂")
closed set containing A. Equivalently, it equals the intersection
of all closed sets containing A.

(2) The interior of A, denoted by
◦
A, is the largest (w.r.t. "⊂")

open set contained in A. Equivalently, it equals the union of
all open sets contained in A.

(3) We say that x is a limit point of A if:

∀U ∈ V(x) : U ∩ A− {x} 6= ∅.

The set of limit points of A is denoted by A′ (we call it the
derived set of A).

(4) If a point x is not a limit point, then we call it an isolated
point.

Remark. In some textbooks, they use the term cluster or an
accumulation point instead of a limit point.

Remark. In a metric space, and in the definition of a limit point,
it suffices to consider open balls of center x rather than arbitrary neigh-
borhoods.
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Remark. Let (X, d) be a metric space and let A ⊂ X. We may

easily characterize
◦
A as follows:

x ∈
◦
A⇐⇒ ∃r > 0, B(x, r) ∈ A.

We have the following relationship between the interior and the
closure of a set.

Proposition (for a proof, see Exercise 3.3.5). Let X be a topo-
logical space and let A ⊂ X. Then:

Ac = (
◦
A)c and

◦
Ac = (A)c.

Examples.

(1) In usual R, Q′ = R and
◦
Q = ∅.

(2) In usual R, if A = [0, 2], then
◦
A = (0, 2).

(3) In usual R, if A = (0, 3) ∪ {4}, then
◦
A = (0, 3).

(4) In usual R, [0, 2) = [0, 2].

Proposition. Let (X, T ) be a topological space and let A ⊂ X;
Ai ∈ X, where I is arbitrary. Then

(1) A is closed iff A = A.

(2) A is open iff A =
◦
A.

(3)
x ∈ A⇐⇒ ∀U ∈ V(x) : U ∩A 6= ∅.

(4)
A = A′ ∪ A.

Theorem. Let (X, T ) be a topological space and let A,B ⊂ X;
Ai ∈ X, i ∈ I, where I is arbitrary. Then

(1) A ⊂ B ⇒ A ⊂ B.
(2) A = A.
(3) A ∪ B = A ∪ B.
(4) ⋃

i∈I
Ai ⊂

⋃

i∈I
Ai.

(5) ⋂

i∈I
Ai ⊃

⋂

i∈I
Ai.

Definition. Let (X, T ) be a topological space, and let A ⊂ X.
We say that A is dense in X if A = X.
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Remark. We may also say "everywhere dense" in lieu of "dense".

Examples.
(1) In usual R, Q is dense in R.
(2) In a discrete topological space X, the only dense set is X itself.
(3) In an indiscrete topological space, all subsets (apart from ∅)

are dense.

Definition. Let X be a topological space and let A ⊂ X. We say

that A is nowhere dense in X if
◦
A = ∅.

Examples.

(1) In standard R, Z is nowhere dense in R for
◦
Z = ∅.

(2) In standard R again, the following set
{
1

n
: n ∈ N

}

is also nowhere dense in R.
(3) Q is not nowhere dense in standard R.

Definition. Let X be a topological space, and let A ⊂ X. The
frontier (also known as the boundary) of A is (the set!) defined by:

Fr(A) = A−
◦
A.

Examples.
(1) In usual R,

Fr[0, 2) = [0, 2]− (0, 2) = {0, 2}.
(2) In a discrete topological space all frontiers are empty!

Definition. We say that a topological space (X, T ) is separable
if it contains a countable and everywhere dense subset.

Example. The standard R is separable for it contains Q which is
countable and dense in R.

Now we give the definition of a basis for a topology.

Definition. Let X be a topological space. A basis (or a base)
for X is a collection B constituted of subsets of X verifying:

(1) X is a union of elements of B.
(2) If B1, B2 ∈ B, then B1 ∩ B2 is a union of elements of B.
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Examples.
(1) Let X = {1, 2, 3} and let T be any topology on X. Set B =
{{1, 3}, {2, 3}}. Then B is not a base for T .

(2) In a metric space, the set of open balls is basis for it.
(3) Let X be a discrete topological space. Then B = {{x}}x∈X is

a basis for X.

Remark. A given topological space may have different bases.

Remark. There is a topology associated with a totally ordered
set. It may be seen as a generalization of the usual topology of R. We
shall not consider this topology in the present book (for more details,
see [10]).

Having this in mind, we set R = R ∪ {−∞,+∞} = [−∞,+∞].
Then we extend the order of R to R (by staying careful with some
arithmetic operations, e.g. +∞−∞ or 0× (±∞), although the latter
is acceptable in the context of Measure Theory). The set R equipped
with this order and the associated topology is called the extended
real line.

3.1.2. The Subspace Topology.

Definition. Let (X, T ) be a topological space, and let A ⊂ X.
Set

TA = {A ∩ U : U ∈ T}.
Then (A, TA) is a topology on A (for a proof see Exercise 3.3.16). We
call it the subspace topology.

It may also be called relative or induced topology.

Remark. Going back to the definition of an isolated point, com-
bined with the subspace topology we may state with ease that: x is an
isolated point of a A (A ⊂ X, X is a topological space) iff {x} is open
in A as a subspace of X.

Remark. The set A = [0, 1) is not open in usual R, but it is open
in TA. So one has to be careful when using the word "open" when
dealing with the subspace topology. However, there are cases when the
"two" open sets coincide. We have

Proposition. Let X be a topological space, and let A ⊂ X be
equipped with the subspace topology. Then if U is open in A and A is
open in X, then U is open in X.

The next result tells us what closures and closed sets are in the
subspace topology.
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Proposition. Let X be a topological space and let A ⊂ X be
endowed with the subspace topology. Then:

(1) The closed sets in A are of the form V ∩A where V is a closed
set in X.

(2) The closure of B in A is B ∩ A where B is the closure of B
in X.

3.1.3. The Product and Quotient Topologies.

Definition. Let X and Y be two topological spaces. We call an
elementary open of X × Y every set of the form U × V , where U is
open in X and V is open in Y .

Definition. Let X and Y be two topological spaces. Let B be the
collection of elementary open sets in X × Y .

The product topology on X × Y is the topology having B as a
basis.

Remark. An open set in a product space is not necessarily an el-
ementary open! For a counterexample, see the "True or False" section.

Theorem (for a proof, see Exercise 3.3.34). Let X and Y be two
topological spaces. Let A and B two subsets of X and Y respectively.
Then

(1) A× B = A× B.

(2)
◦︷ ︸︸ ︷

A× B =
◦
A×

◦
B.

We finish this section with the quotient topology.

Proposition (for a proof, see Exercise 3.3.37). Let X be a topo-
logical space and let R be an equivalence relation on X. Let ϕ : X →
X/R be the quotient map. Let

T = {A ∈ X/R : ϕ−1(A) is open in X}.
Then T is a topology in X/R.

Definition. The topology defined on X/R in the previous propo-
sition is called the quotient topology.

3.2. True or False: Questions

Questions. Comment on the following questions/statements and
indicate those which are false and those which are true when this ap-
plies. Justify your answers.

(1) Let X be a non-empty set. We can always define a topology
on X.
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(2) To prove a given part, T say, is a topological space we need to
show (among others) that the finite intersection of elements in
T is again in T . But it is always sufficient to do that for the
intersection of two elements. Why is this?

(3) Let T and T ′ two topologies on the same set X. Then T ∪ T ′

is a topology on X.
(4) Let T and T ′ two topologies on the same set X. Then T ∩ T ′

is a topology on X.
(5) Let X be a topological space and let A ⊂ X. The mappings

A 7→ A and A 7→
◦
A are "monotonic" with respect to "⊂".

(6) Let X be a topological space and let A ⊂ X. Then it may

well happen that
◦
A = X.

(7) Let X be a topological space. Let A ⊂ X. If A is dense in X,

then
◦
A = ∅.

(8) Let X be a topological space and let A ⊂ X. Then it may
well happen that A = ∅.

(9) Let X be a topological space. Whether we say X is separable
or separated, we are talking about the same thing!

(10) Let X be a topological space and let A be a topological sub-
space of X. Then

A Hausdorff =⇒ A Hausdorff.
(11) Every subspace of a Hausdorff space is Hausdorff.
(12) Let T and T ′ be two topologies on X such that T ′ is finer than

T . If T is Hausdorff, then so is T ′.
(13) Every subspace of a separable space is separable.
(14) There exists a topological space X in which all subsets (except

∅) are dense.
(15) Let X be a topological space and let Y be a subset of X

endowed with the induced topology of X. Then
◦
A

Y

= Y ∩
◦
A

X

.

(16) There is a definition of a bounded set in an arbitrary topolog-
ical space.

(17) Let X and Y be two given sets and let A and B be two subsets
of X and Y respectively. Then

(A× B)c = Ac ×Bc.

(18) Let X and Y be two topological spaces. If Ω = U × V is open
(respectively closed) in X × Y , then U is open (respectively
closed) in X and V is open (respectively closed) in Y .
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(19) Let X and Y be two topological spaces. We endow X×Y with
the product topology. Then there is an open set in X×Y which
is not of the form U × V where U is open in X and V is open
in Y .

(20) Let X be a topological space and let A ⊂ X. If we unify the
interior of A together with its exterior we get back the whole
of X.

(21) Let X be a topological space and let A ⊂ X. Then
◦
A =

◦
A.

(22) Let X be a topological space and let A ⊂ X. Then A =
◦
A.

(23) Let (X, d) be a metric space. Let A be a closed set in X.
Every point in A is a limit point of A.

(24) Let X be a topological space and let A ⊂ X. Denote the
derived set of A, i.e. the set of limit points of A, by A′. Then
A′ is always closed.

(25) Let X be a topological space and let A ⊂ X. Then A and A′

can be disjoint, comparable and they can be equal as well.
(26) Let X be a topological space and let A and B be two subsets

of X. Then
A ⊂ B ⇐⇒ A′ ⊂ B′.

(27) Let X be a topological space and let A ⊂ X. Then

Fr(A) = Fr(A).

(28) Let X be a topological space and let A ⊂ X. Then

Fr(
◦
A) = Fr(A).

(29) Let X be a topological space and let A,B ⊂ X. Then

Fr(A ∪B) = Fr(A) ∪ Fr(B).

(30) Let X be a topological space and let A ⊂ X. Then

FrA ⊂ A.

(31) Let X be a topological space and let A ⊂ X. Then

FrA ⊂ A.

(32) Let X be a topological space and let A,B ⊂ X such that
A ⊂ B. Then

Fr(A) ⊂ Fr(B).

(33) Let (X, d) be a metric space and let x ∈ X. Let: B(x, r) be
the open ball, Bc(x, r) be the closed ball and S(x, r) be the
sphere, all of radius r > 0 and center x. Then

Fr(B(x, r)) = S(x, r) or Fr(Bc(x, r)) = S(x, r).
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(34) In usual R, the sets

(−1, 1], (−2, 2), (0, 2], [−1, 0] and [0, 1]

are neighborhoods of 0.
(35) Let T and T ′ be two topologies on the same set X. If T ⊂ T ′,

then every open set in T is so in T ′. For closed sets, every
closed set in T ′ is so in T .

(36) The quotient of a separated space is separated.

3.3. Exercises With Solutions

Exercise 3.3.1. List all possible topologies which can be defined
on the sets X = {1} and Y = {1, 2}.

Exercise 3.3.2. Let X = {a, b, c, d, e}. We define the subset T of
P(X) as T = {∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}, X}.

(1) Show that T is a topology on X.
(2) What are the closed sets in T ?
(3) What are the closures and the interiors of {a}, {b} as well as

their boundaries?
(4) Give the closure of {a, b}. What can deduce from that?
(5) Give the neighborhoods of c and d.
(6) Is T Hausdorff?

Exercise 3.3.3. Let n ∈ N. Set An = {n, n+ 1, n+ 2, · · · } and

T = {∅, An}n∈N.
(1) Verify that T is a topology on N.
(2) Is {1, 3, 5, 7, · · · } open in T ?
(3) Determine V(2) and V(3).
(4) Is T separated?
(5) What are the closed sets in T ?
(6) What is the interior and the closure of {4} and of {2, 4, 6, 8, · · · }?
(7) What are the dense sets in T ?

Exercise 3.3.4. Let T be a topology on the set X = {a, b, c}. Show
that if the singletons {a}, {b} and {c} are open in T , then T is the
discrete topology.

Exercise 3.3.5. Let (X, T ) be a topological space and let A ⊂ X.
Show that

Ac = (
◦
A)c and

(
A
)c

= (
◦
Ac).



3.3. EXERCISES WITH SOLUTIONS 33

Exercise 3.3.6. Let X be a topological space. Show that for every
subset A of X and for every open set U we have

A ∩ U = ∅⇔ A ∩ U = ∅.

Exercise 3.3.7. Let R be endowed with its standard topology.
(1) Find the closures of Q, R \Q, (0, 1] and {1} ∪ (2, 3].
(2) Find the interior of Q, R \Q and (0, 1].
(3) Do we always have

(⋂

n≥1

An

)◦

=
⋂

n≥1

◦
An or

⋃

n≥1

An =
⋃

n≥1

An?

(4) Is R Hausdorff?

Exercise 3.3.8. Let (X, d) be a metric space and let A ⊂ X be an
open set. Show that every point in A is a limit point of A.

Exercise 3.3.9. Let R be endowed with its usual topology and let
A =

{
1
n
: n ≥ 1

}
.

(1) Find the interior, the isolated and the limit point(s) of A.
(2) Find A and check that A is not closed. What is then the

frontier of A.
(3) Show that A is nowhere dense in R.

Exercise 3.3.10. Give an example of a set A for which the sets A,
◦
A, A,

◦
A and

◦
A are pairwise different.

Exercise 3.3.11. Let X be a non-void set. Equip it with the dis-
crete topology and let A ⊂ X. What is A′ worth?

Exercise 3.3.12. Let R be equipped with its usual topology. Let
A be a non-empty and bounded subset of R.

(1) Show that inf A, supA ∈ A.
(2) Does this result remain valid in other topologies on R?

(3) Do we have an analogous result for
◦
A?

Exercise 3.3.13. Let A be a non-void and bounded above subset
of R.

(1) Show that in usual R, supA = supA.
(2) Show that the previous result need not hold in another topol-

ogy of R.
(3) In the usual topology of R again, do we have sup

◦
A = supA?
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Exercise 3.3.14. Let (X, d) be a metric space. Let r > 0 and let
x ∈ X. We denote the open ball in X of center x and radius r by
B(x, r) while the closed ball in X of center x and radius r is denoted
by Bc(x, r).

(1) Show that B(x, r) ⊂ Bc(x, r).
(2) Give two examples (one in R and one in an arbitrary metric

space) which show that the backward inclusion is not always
true.

Exercise 3.3.15. Let X be a non-empty set and let (Y, T ) be a
topological space. Let f : X → Y be some function. Show that

T ′ = {f−1(U) : U ∈ T}
is a topology on X.

Exercise 3.3.16. Consider a non-empty set X with a topology T .
Let A ⊂ X. Show that

TA = {A ∩ U : U ∈ T}
is a topology on A.

Exercise 3.3.17. Let R be endowed with its standard topology. Let
A be a topological subspace of R.

(1) Is {3} open in A = [0, 1) ∪ {3}?
(2) Are [0, 1) and (0, 1) open in A = [0, 1]?
(3) Let n ∈ N. Is {n} open in A = N?
(4) Show that [0, 1] and (2, 3) are both open in A = [0, 1] ∪ (2, 3).

What can you deduce from that?
(5) What is the closure of

(
0, 1

2

)
in A = (0, 1]?

(6) Go back to Exercise 3.3.2 and set A = {b, c, d}. Give the
subspace topology on A. Give the closure of {b, d} in A by
two methods (you will need to find its closure in X as well).

Exercise 3.3.18. Endow both A = Q and B = R \ Q with the
induced usual topology of R.

(1) Is X = A ∩ [
√
2, π] clopen in A?

(2) Is Y = B ∩ [0, 2] clopen in B?
(3) Is Z = A ∩ [

√
2, π) closed or open in A?

(4) Is Z ′ = B ∩ [
√
2, π) closed or open in B?

Exercise 3.3.19. Show that in R, [0, 1] ∩Q is dense in [0, 1].
Exercise 3.3.20. Consider the set

X =

{
x ∈ [0, 1] : x =

∞∑

n=1

αn

10n
where αn = 3 or αn = 5

}
.
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(1) Describe the elements of X.
(2) Show that X is not dense in [0, 1].

Exercise 3.3.21. Let X a set with cardX ≥ 2. Endow X with
the indiscrete topology. Show that X is not metrizable using different
approaches.

Exercise 3.3.22 (Co-finite Topology). Let X be an infinite set and
let T be the family given by

T = {∅} ∪ {U ⊂ X : U c finite }.
This will be called in the sequel the Co-finite topology. It is a

particular case of more general topology called the Zariski topology.
In this exercise X is taken to be R except for the last equation.

(1) Show that T is a topological space in R.
(2) Describe the closed sets in this topology.
(3) Compare T with the usual topology.
(4) Is it Hausdorff?
(5) Is it metrizable?

(6) (a) Let A be a finite subset of R. Find A,
◦
A and the boundary

of A.
(b) The same questions if we assume that A is infinite.

(7) Is R separable with respect to T ?
(8) What does T become if X is a finite set?

Exercise 3.3.23. Is T = {∅,R}∪ {U ⊂ R : U c infinite} a topology
on R?

Exercise 3.3.24 (co-countable topology). Let X be an uncountable
set. Put

T = {∅} ∪ {U ⊂ X : U c is countable}.
(1) Show that T a topological space on X (called the co-countable

topology).
(2) Is it Hausdorff?
(3) Let A be a proper closed set of X. Show that all subsets of A

are closed.
(4) Prove that the countable intersection of open sets in T remains

open. Is this result true in usual R?
(5) Show that the finite intersection of open sets is non-empty. Is

this result true in usual R?
(6) Is Q dense in R endowed with the co-countable topology?

What about R \Q or [0, 1]?
(7) Give an example of a set X so that T reduces to the discrete

topology.
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Exercise 3.3.25. Let X be a non-empty set. Let a ∈ X be fixed
and set

T = {∅} ∪ {U ⊂ X : a ∈ U}.
(1) Check that T is a topology on X.
(2) Is T Hausdorff?
(3) Find {a}′.
(4) Deduce that open sets (except ∅) are all dense in T .
(5) Let A be a set containing a. Prove that A′ = X − {a}.
(6) Is X separable? What about X − {a}?
(7) Show that every proper subset of X is nowhere dense.
(8) What is T{a}c , the induced topology on {a}c? Is it Hausdorff?

Exercise 3.3.26. Let a > 0. Let X = [−a, a]. We declare

U "open" in T ⇐⇒ {0} 6⊂ U or (−a, a) ⊂ U.

(1) Show that T is actually a topology on X.
(2) Give all the closed sets in T .
(3) Set A = {a

3
}. What is A?

(4) Show that 0 is a limit point of any subset of B ⊂ (−a, a).
Exercise 3.3.27. Let X = [0, 2). Define

T = {[0, a) : 0 ≤ a ≤ 2}.
(1) Show that T is a topology on X.
(2) Give an example which shows that the arbitrary intersection

of elements of T need not be in T again.
(3) Is T Hausdorff?
(4) What are the closed sets in T ?
(5) Show that the closure of A =

[
1, 3

2

]
in T is [1, 2) and that its

interior is the empty set.
(6) Is X separable with respect to T ?

Exercise 3.3.28. Let T be a topology on X. Assume that T is
Hausdorff and let x ∈ X.

(1) Show that {x} (and hence every finite set) is always closed.
(2) Show, by an example, that the separation hypothesis cannot

be dispensed with.
(3) Give an example of a non-separated space in which singletons

are closed.
(4) Show that the intersection of all open sets containing x is {x}.
(5) Give an example of a non-separated space in which the previ-

ous result holds.
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Exercise 3.3.29 (Lower Limit Topology). Set

B = {[a, b) : a, b ∈ R}.
The topology generated by B is called the lower limit topology and
it is denoted by Rℓ (it is called in some references the Sorgenfrey
Topology).

(1) Check that B is in effect a base for R.
(2) Show that R is strictly coarser than Rℓ.
(3) Give examples of closed, open and clopen sets. What is the

nature of (a, b]?
(4) Is Rℓ Hausdorff?
(5) Is Rℓ separable?

Remark. Likewise, we may define a topology on R using the base
B = {(a, b] : a, b ∈ R}. This new topology is called the upper limit
topology.

Exercise 3.3.30 (K-topology). Set K = { 1
n
: n ∈ N}. The K-

topology on R is generated by the basis

B = {(a, b)} ∪ {(a, b)−K}
where a, b ∈ R. It is denoted by RK .

(1) Show that RK is strictly finer than R.
(2) Is RK Hausdorff?
(3) Are Rℓ and RK comparable?
(4) Is K closed in RK?
(5) Calculate K ′.

Exercise 3.3.31.
(1) Show that B = {(a, b) : a, b ∈ Q} is a basis generating the

usual R.
(2) Show that B′ = {[a, b) : a, b ∈ Q} is a basis that generates a

topology, denoted by RB′, different from Rℓ.

Exercise 3.3.32. Find

d((0, 1) ∩Q) and d((0, 1) ∩ R \Q).

Exercise 3.3.33. Let (X, d) be a metric space and let A be a non-
empty subset of X. Let x ∈ X. Define

d(x,A) = inf
a∈A

d(x, a).

(1) Justify the existence of d(x,A).
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(2) Show that

d(x,A) = 0⇔ x ∈ A.

Deduce yet another proof that singletons are closed in metric
spaces (cf. Exercise 3.3.28).

(3) Show that d(x,A) = d(x,A).

Exercise 3.3.34. Let X and Y be two topological spaces. Let A
and B two subsets of X and Y respectively.

(1) Show that A× B = A× B.
(2) Show that

◦︷ ︸︸ ︷
A× B =

◦
A×

◦
B.

Exercise 3.3.35. Show that the finite product of separable spaces
is separable.

Exercise 3.3.36. On usual R2, consider the sets

A =

{
(x, y) : y = sin

1

x
, x > 0

}
, B = {(x, x) : x ∈ R},

C = {(x, y) ∈ R2 : |x| < 2, |y| < 3} and D = {(1, 1)} × C

(D being defined on usual R4). Determine the interior and the closure
of each of these four sets.

Exercise 3.3.37. Let X be a topological space and let R be an
equivalence relation on X. Let ϕ : X → X/R be the quotient map.
Set

T = {A ∈ X/R : ϕ−1(A) is open in X}.
Show that T is a topology in X/R.

Exercise 3.3.38. Equip R with its usual topology. Define a relation
R on R by

xRy ⇐⇒ x− y ∈ Q

for all x, y ∈ R.

(1) Check that R is indeed an equivalence relation on R.
(2) Show that the quotient topology R/Q is not Hausdorff (cf.

Exercise 4.5.15).
(3) Show that R/Q is in fact the discrete topology.
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3.4. Tests

Test 7. Let (X, T ) be a topological space. Let A ⊂ X. Assume
that

∀x ∈ A, ∃U ∈ T : x ∈ U ⊂ A.

(1) Show that A is open in (X, T ).
(2) Does this result remind you of something you are familiar

with?

Test 8. Is the set A = {1, 22, 32, · · · } closed in R?

Test 9. Does every closed set in R intersect Q?

Test 10. Is the function assigning to each set its closure one-to-one?

Test 11. Let X = N−{1}. Define An = {d ∈ X : d | n} for n ∈ N
where d | n stands for d divides n. Is T = {An}n∈N a topology on X?

Test 12. Let X = {a, b, c}. Find the topologies on X having exactly
four open sets.

Test 13. Give an example of a bounded set having five limit points.

Test 14. Let X be a topological space. Let A ⊂ X. Find A′ in
the case of the the discrete topology and in the case of the co-finite
topology.

Test 15. Is the topology of Exercise 3.3.27 metrizable?

Test 16. Are the co-countable (see Exercise 3.3.24) and the usual
topologies comparable on R?

Test 17. Is R separable when endowed with the discrete topology?

Test 18. Let
T = {(−a, a) : a ≥ 0} ∪ {R}.

(1) Check that T is a topology on R.
(2) Find the interior and the closure of [−1, 2].
(3) The same question for {0} and {1}.

Test 19. Let A ⊂ X where X has the topology of Exercise 3.3.25.
When does A inherits the discrete topology?

Test 20. Let X be a topological space and let A ⊂ X. Can Fr(A)
be equal to some open set in X?

Test 21. Is {1, 1
2
, 1
3
, · · · } ∪ {0} closed in RK?

Test 22. Show that {(x, y) ∈ R2 : xy < 2} is open in usual R2 but
it is not an open ball.
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3.5. More Exercises

Exercise 3.5.1. Let X be a non-empty set and let A,B be two
non-void proper subsets of X. Let T = {∅, A, B,X}.

(1) Is T always a topology on X?
(2) What are the conditions so that T becomes a topology on X?

Exercise 3.5.2. Do all the questions of Exercise 3.3.2 for the couple
(X, T ) where X = {a, b, c, d} and

T = {∅, {a}, {b}, {a, b}, {a, b, d}, {a, b, c}, X}.
Exercise 3.5.3. Let n ∈ Z+.

T = {∅} ∪ {nZ}.
Show that T is not a topology on Z.

Exercise 3.5.4. Let X be an indiscrete topological space and let
A ⊂ X. Find A′.

Exercise 3.5.5. Let A be some subset of a topological space X.
Show that A′ = A

′ where the "′" is for the derived set.

Exercise 3.5.6. Find
◦
Q in R the following cases:

(1) R equipped with the co-finite topology;
(2) R endowed with the co-countable topology.

Exercise 3.5.7. Let T ⊂ P(N) be such that U ⊂ T is "open" iff
U = ∅ or 1 ∈ U .

(1) Verify that T is indeed a topology on N.
(2) Check that {1} is dense in N.

Exercise 3.5.8. What is the topology generated by the intervals of
the form [x, x+ 1] where x ∈ R?

Exercise 3.5.9. Let A be a non-void and bounded below subset of
R.

(1) Show that in usual R, inf A = inf A.
(2) Show that the previous result need not hold in another topol-

ogy of R.
(3) In the usual topology of R again, do we have inf

◦
A = inf A?

(4) Give an example of a topological space in which inf
◦
A = inf A.

Exercise 3.5.10. Show that a metric space is Hausdorff.

Exercise 3.5.11. Let X be a set endowed with the discrete topol-
ogy. Let A ⊂ X.
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(1) Find A,
◦
A and the boundary of A.

(2) What are the dense parts of X?
(3) When is X separable?

Exercise 3.5.12. Set
T = {∅,R} ∪ {(a,∞)}a∈R.

(1) Show that T is a topology on R.
(2) Is T Hausdorff?
(3) List the closed sets in T .
(4) What are the closures of the sets {0}, {0, 5, 11} and [2, 8).
(5) What is the interior of the interval [0,∞).
(6) Would T have remained a topology on R have we taken a ∈ Q?

Exercise 3.5.13. Let A = [−2, 2] considered as a topological sub-
space of R. Which of the following sets are open in A or in R?

(1) B = {x ∈ R : 1 < |x| < 2};
(2) C = {x ∈ R : 1 < |x| ≤ 2};
(3) D = {x ∈ R : 1 ≤ |x| < 2}?

Exercise 3.5.14. We say that a topological space T on some set X
is T1 if

∀x, y ∈ X; x 6= y, ∃U ∈ T with x ∈ U and y 6∈ U.

(1) Show that all Hausdorff spaces are T1.
(2) Show that the co-finite topology on R is T1 (but not Haus-

dorff).
(3) Is R T1 with respect to:

(a) the countable complement topology?
(b) the topology of Exercise 3.3.25?
(c) the topology of Exercise 3.3.26?

Exercise 3.5.15. We say that a topological space T on some set X
is first countable if it has a countable neighborhood basis at each of
its points. We say that T is second countable if it has a countable
basis.

(1) Show that any second countable spaces is necessarily a first
countable one. What about the converse? (hint: consider R
equipped with the lower limit topology).

(2) Show that a second countable space is separable. Is the con-
verse true? (hint: consider again R equipped with the lower
limit topology).

(3) Show that the usual topology and more generally, metric spaces,
are first countable.
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(4) Show that R is not first countable in the co-finite topology.
(5) Are the topologies of: Exercise 3.3.25, Exercise 3.3.26 first

countable? second countable?

Exercise 3.5.16. We say that a number is dyadic if it is a rational
written as m

2n
, m ∈ Z and n ∈ N. Show that the set of dyadic numbers

is dense in R.

Exercise 3.5.17. Let X be a topological space. Let A be an open
subset of X and let B ⊂ X. Show that

(1) If A ∩B = ∅, then A ∩ B = ∅.
(2) If B is dense in X, then A ∩B = A.
(3) Deduce that if A and B are both dense in X, then so are A∪B

and A ∩B.

Exercise 3.5.18. Give A and
◦
A where

A =

{
1

n
: n ∈ N

}

with respect to each of the following topologies:
(1) the co-finite topology,
(2) the co-countable topology,
(3) the lower limit topology,
(4) the topology of Exercise 3.3.26 with a = 1,
(5) the topology of Test 18.

Exercise 3.5.19. Let X be a topological space. Let A ⊂ X.
(1) Show that

A is clopen ⇐⇒ Fr(A) = ∅.

(2) Is Fr(A) always nowhere dense?
(3) Show that Fr(A) is nowhere dense whenever A is either open

or closed.

Exercise 3.5.20. Let X be a topological space and let A ⊂ X.
(1) Show that A is nowhere dense iff A

c is dense in X.
(2) Does the arbitrary union of nowhere dense sets remain dense?
(3) Show that the finite union of nowhere dense sets remains

dense.

Exercise 3.5.21. Let X be a topological space. If A and B are
nonvoid elements of X such that A ∩ B = ∅, then show that

◦
A ∩

◦
B = ∅.



3.5. MORE EXERCISES 43

Exercise 3.5.22. Let us endow R2 with the metric defined, for all
x = (x1, x2) and y = (y1, y2), by

d∞(x, y) = max(|x1 − y1|, |x2 − y2|).
Let Bc((0, 0), 1) be the closed ball in R2. Let A = {(z, z) : z ∈ R}.

(1) Show that
◦︷ ︸︸ ︷

Bc((0, 0), 1) = B((0, 0), 1).

(2) Show that
◦
A = ∅.

Exercise 3.5.23. Let A ⊂ R.

(1) Show that if in usual R we have
◦
A 6= ∅, then A must be

uncountable.
(2) Is this result always true in other topologies on R?

Exercise 3.5.24. On R2, consider the collection (B(0, r))r where r
is a positive number allowed to be +∞ as well.

(1) Show that the collection (B(0, r))r defines a topology on R2.
(2) Is this topology Hausdorff?
(3) Is this topology finer than the standard one on R2?

Exercise 3.5.25. Show that the product of two separated spaces is
separated.

Exercise 3.5.26.
(1) Show that the product of two discrete spaces is discrete.
(2) Show that the product of two indiscrete spaces is indiscrete.

Exercise 3.5.27.
(1) Show that usual R \Q is separable.
(2) Show that usual C is separable.

Exercise 3.5.28. Let (X, d) be a metric space. Let A ⊂ X be
bounded.

(1) Is d(A) = d(A)?

(2) Is d(A) = d(
◦
A)?





CHAPTER 4

Continuity and Convergence

4.1. What You Need to Know

4.1.1. Continuity.

Definition. Let (X, T ) and (Y, T ′) be two topological spaces. We
say that the function f : (X, T )→ (Y, T ′) is continuous if

∀U ∈ T ′, f−1(U) ∈ T.

Examples.

(1) Let (X, T ) be a topological space let f : (X, T ) → (X, T ) be a
function defined by f(x) = x. Then f is continuous.

(2) Let (X, T ) and (Y, T ′) be two topological spaces let f : (X, T )→
(Y, T ′) be a function defined by f(x) = a, where a ∈ Y . Then
f is continuous.

Proposition. Let (X, T ), (Y, T ′) and (Z, T ′′) be three topological
spaces. Let f : (X, T ) → (Y, T ′) and g : (Y, T ′) → (Z, T ′′) be two
continuous functions. Then g ◦ f : (X, T )→ (Z, T ′′) is continuous.

The next results gives a characterization of continuity:

Theorem (cf. Exercise 4.3.3). Let (X, T ) and (Y, T ′) be two topo-
logical spaces. Let f : (X, T )→ (Y, T ′) be a function. Then the follow-
ing are equivalent:

(1) f is continuous;
(2) for any A ⊂ X, f(A) ⊂ f(A);
(3) for any closed element V in T ′, f−1(V ) is closed in T .

Definition. Let (X, T ) and (Y, T ′) be two topological spaces. We
say that the bijective mapping f : (X, T ) → (Y, T ′) is a homeomor-
phism if f and f−1 are both continuous.

We say that two topological spaces are homeomorphic if there ex-
ists a homeomorphism between them.

45
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Examples.
(1) Let f : R→ (−1, 1) be defined by:

f(x) =
x

1 + |x| .

Then f is a homeomorphism (see Exercise 4.3.7).
(2) Every isometry is a homeomorphism.
(3) Any two open intervals in standard R are homeomorphic (see

Exercise 4.3.7).

Remark. Let X and Y be two topological spaces. Let f : X → Y
be a function. Then it is clear that f is a homeomorphism iff the
following three conditions hold:

(1) f is a bijection;
(2) for any open U in Y , f−1(U) is open in X;
(3) for any open V in X, f(V ) is open in Y .

Definition. Let X and Y be two topological spaces. Let f : X →
Y be a function. Then

(1) f is said to be open if for any open set U in X, f(U) is open
in Y .

(2) f is said to be closed if for any closed set V in X, f(V ) is
closed in Y .

Proposition. An open, continuous and bijective map is a home-
omorphism.

Definition. A topological property is a property shared by a
given topological space and any other topological space homeomorphic
to it.

Examples.
(1) We saw above that R is homeomorphic to (−1, 1). Thus two

consequences arise:
(a) Boundedness is not a topological property (see also Exer-

cise 4.3.5);
(b) The length is not a topological property either

(2) Closedness is not a topological property either. In the usual
topology, the closed R is homeomorphic to the open R∗

+ via the
function "ln".

Remark. Throughout this book, many examples of topological
properties will be met.
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Definition. Let f : X → Y be a function where X and Y are
two topological spaces. The graph of f , denoted by Gf , is defined as:

Gf = {(x, f(x)) : x ∈ X}.
4.1.2. Convergence.

Definition. Let (X, T ) be a topological space. A sequence (xn)
in X converges to x ∈ X if:

∀U ∈ V(x), ∃N ∈ N, ∀N ∈ N (n ≥ N =⇒ xn ∈ U).

Example. Let X = {1, 2, 3} be equipped with the topology:

T = {∅, {2}, {1, 2}, {2, 3}, X}.
Then the sequence defined by xn = 2 converges to 2. It also converges to
1 and 3. Thus a sequence in an arbitrary topological space can converge
to more than one limit.

Remark. One has to be careful with sequences in topological
spaces. The topology which equips a set may give us "surprises". For
example, sequences like xn = n or (−1)n may converge.

In a metric space we have the following definition (equivalent to the
previous one in this setting)

Definition. Let (X, d) be a metric space. A sequence (xn) in X
converges to x ∈ X if:

∀ε > 0, ∃N ∈ N, ∀N ∈ N (n ≥ N =⇒ d(xn, x) < ε.).

Example. In a discrete metric space, the only convergent se-
quences are the eventually constant ones.

Theorem. In a separated (Hausdorff) topological space, a se-
quence cannot converge to two different points.

Since any metric space is Hausdorff (Exercise 3.5.10), the previous
result implies

Corollary. In a metric space, if a sequence converges, then its
limit is unique.

We now give a fundamental and very practical result in metric
spaces:

Theorem. Let (X, d) be a metric space. Let A ⊂ X be non-empty.
Then we have:

(1)
x ∈ A⇐⇒ ∃xn ∈ A : xn −→ x.
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(2)

A is closed ⇐⇒ ∀xn ∈ A : (xn −→ x =⇒ x ∈ A).

Examples.
(1) In standard R, (0, 1] is not closed.
(2) In standard R again, { 1

n
: n ∈ N} is not closed.

Remark. Doubtlessly, the second result in the previous theorem
can also be used to show that a given set is (or is not) open. See
Exercises 4.3.21 & 4.3.22.

4.1.3. Sequential Continuity. We now come to a practical def-
inition of continuity. But, in a general setting, it not as strong as the
definition of continuity seen in the beginning of this chapter.

Definition. Let X and Y be two topological space and let f :
X → Y be a function. Then we say that f is sequentially continuous
at x ∈ X if for any convergent sequence (xn) to x, (f(xn)) converges
to f(x).

As usual, if f is sequentially continuous at each x ∈ X, then we
say that f is sequentially continuous on X.

Remark. Continuity implies sequential continuity but not vice
versa. See Exercise 4.3.16. However, the two notions match in a metric
space and we have

Proposition (For a proof see Exercise 4.3.16). Let (X, d) and
(Y, d′) be two metric spaces and let f : (X, d) → (Y, d′) be a function.
Then f is continuous on X iff it is sequentially continuous on X.

4.2. True or False: Questions

Questions. Comment on the following questions/statements and
indicate those which are false and those which are true when this ap-
plies. Justify your answers.

(1) The identity function between two topological spaces is always
continuous.

(2) Let X and Y be two topological spaces. If f is a continuous
function from X into Y , then for each open set U in X, f(U)
is open in Y .

(3) Let X and Y be two topological spaces. Assume that f : X →
Y is some function and let fA be its restriction to A ⊂ X. Then

f is continuous ⇐⇒ fA is continuous.
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(4) Let X be a topological space and let A ⊂ X. Then

x ∈ A⇐⇒ ∃xn ∈ A : xn −→ x.

(5) The sequence
(
1
n

)
converges to zero.

(6) Criticize the following proof: In the co-finite topology on R,
the sequence 1

n
converges to any point in R. To prove it,

assume that 1
n
6→ x for all x ∈ R. This means that

∃U ∈ V(x), ∀N ∈ N ∃n (n ≥ N and
1

n
6∈ U).

Hence 1
n
∈ U c for all but finitely many n and this is a contra-

diction since U c is finite!
(7) Find fault with the following reasoning: In usual R, consider

the set
A = {xn = n2 : n ∈ N}.

Then A is not closed as (xn) does not converge and hence it
cannot have a limit belonging to A.

(8) In the usual topology, let f : R∗
+ → R be such that f(x) = ln x.

Then f is continuous, but [0, 1] is closed in R and yet its
preimage is not closed in R. Is there anything wrong with
that?

(9) If f is continuous and −f is well-defined, then −f is continu-
ous.

(10) Let X be a topological space and let (xn) be a convergent
sequence in X. Then

X is Hausdorff ⇐⇒ (xn) has a unique limit.

(11) Let X be a topological space. Endow R with its usual topology.
Let f : X → R be some function. If we come to show that
f−1((a, b)) (a and b real numbers with a < b) is open in X,
then f is continuous.

(12) When are two sets homeomorphic? When are they not home-
omorphic?

(13) Let X and Y be two topological spaces and let f be a contin-
uous mapping from X into Y . Assume that A ⊂ X is dense.
Then f(A) is dense in f(X).

(14) Separability is a topological property.
(15) A bijective mapping between two topological spaces is contin-

uous.
(16) An open, closed and bijective mapping between two topologi-

cal spaces is continuous.
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(17) Let X be a topological space and let A ⊂ X. Let f : X → X
be a bijective mapping. Then

f is a homeomorphism iff f(A) = f(A).

(18) Every continuous bijection is a homeomorphism.
(19) Every continuous and open bijection is a homeomorphism.
(20) Hausdorffness is a topological property.
(21) Let X and Y be two topological spaces and let f : X → Y

be a continuous function. Let A ⊂ X. If x ∈ A′, then f(x) ∈
(f(A))′.

(22) Let f be a map between two topological spaces X and Y
such that Y is also assumed to be separated. Let Gf =
{(x, f(x)) : x ∈ X} ⊂ X × Y be the graph of f . Then

f is continuous⇐⇒ Gf is closed.

4.3. Exercises With Solutions

Exercise 4.3.1. Let X and Y be two topological spaces. Let f :
X → Y be a function. If f continuous in the following cases?

(1) f(x) = x, X is the indiscrete topology and Y = X equipped
with the discrete topology;

(2) f(x) = ex, X = (R, | · |) and Y = R endowed with the discrete
topology.

(3) f(x) = x2, X = (R, T ) and Y = (R, | · |) where

T = {∅,R} ∪ {(a,+∞), a ∈ R};
(4) f arbitrary, X discrete and Y arbitrary;
(5) f is the constant function;
(6) f is the canonical injection.

Exercise 4.3.2. Let X = {a, b, c} and let T = {∅, {a}, {b}, {a, b}}
be a topology on X. Let f : X → X be the function defined by

f(a) = a, f(b) = c and f(c) = b.

Is f continuous at a? at b? at c?

Exercise 4.3.3. Let X and Y be two topological spaces. Let f :
X → Y be a function. Show that

f is continuous⇐⇒ ∀U ⊂ Y : f−1(
◦
U) ⊂

◦︷ ︸︸ ︷
f−1(U).

Exercise 4.3.4. Let X be an uncountable set. We endow X with
the co-finite topology (see Exercise 3.3.22) and denote it by T . We also
equip X with the "co-countable topology" (see Exercise 3.3.24) and we



4.3. EXERCISES WITH SOLUTIONS 51

denote it by T ′. Let f : T ′ → T be defined for any x ∈ X by f(x) = x.
Is f a homeomorphism?

Exercise 4.3.5. Let (X, d) and (X, d′) be two metric spaces, where
d′ is defined for all x, y ∈ X by

d′(x, y) =
d(x, y)

1 + d(x, y)
.

Let f : (X, d′)→ (X, d) be defined by f(x) = x for all x ∈ X.
(1) Show that f is a homeomorphism.
(2) Deduce that boundedness is not a topological property.

Exercise 4.3.6. Show that Hausdorffness is a topological property.

Exercise 4.3.7.
(1) Show that:

(a) Any two open intervals in R are homeomorphic.
(b) Show that that R is homeomorphic to (−1, 1). Is R home-

omorphic to any open interval in R?
(2) Is R (the extended real line) homeomorphic to [−1, 1]?

Exercise 4.3.8. Let f be a continuous function from a topological
space X into R. Let a be a real number and set

A = {x ∈ X : f(x) = a}.
Verify that A is closed in X.

Exercise 4.3.9. Show that following sets are closed in X

(1) A = {(x, y) ∈ R2 : xy = 1}, X = R2;
(2) B = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, X = R2;
(3) (A bit of linear algebra) C = {A ∈ Mn(R) : detA = 0},

X =Mn(R), the (vector) space of square matrices of order n
with real entries and we associate with it any metric.

Exercise 4.3.10. Let a ∈ R. Let f : R→ R be a continuous where
R is endowed with the usual topology. Set

A = {x ∈ R : f(x) ≤ a}.
(1) Show that A is closed in R.
(2) Is the converse always true?

Exercise 4.3.11. Let T be a topology on X. Let R be endowed
with its usual topology. Let f : X → R be a function and let a ∈ R.
Show that

f is continuous iff f−1((a,+∞)) and f−1((−∞, a)) are open in T.
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Exercise 4.3.12 (Different limits of
(
1
n

)
). Let

(
1
n

)
n≥1

be a sequence
in R. To what point (s) does

(
1
n

)
n≥1

converge to (if there is any) with
respect to:

(1) the usual topology;
(2) the co-finite topology;
(3) the discrete topology;
(4) the indiscrete topology.

Exercise 4.3.13. Set xn = 1
n

for all n ∈ N, and let

K =

{
1

n
: n ∈ N

}
.

(1) Prove that (xn) does not converge to any point of R in the K-
topology RK (defined in Exercise 3.3.30). What about (−xn)?

(2) Show that −K is not closed in RK .
(3) Show that (xn)→ 0 in Rℓ. Can (xn) have another limit in Rℓ?
(4) Is f : RK → RK , defined by f(x) = −x, continuous?
(5) Is f : Rℓ → Rℓ, defined by f(x) = −x, continuous?

Exercise 4.3.14. Let X be an infinite countable set endowed with
the co-countable topology (see Exercise 3.3.24).

(1) Show that the only convergent sequences are the eventually
constant ones.

(2) Set X = [0, 3] and A = [2, 3].
(a) Show that 1 ∈ A′.
(b) Let (xn) be a sequence in A. Can (xn) converge to 1?
(c) What is then the conclusion?

Exercise 4.3.15. Let (X, d) be a metric space. Let (xn) and (yn)
be two convergent sequences to x and y respectively.

(1) Show that d(xn, yn)→ d(x, y).
(2) How can this result be interpreted?

Exercise 4.3.16 (Continuity Vs. Sequential Continuity). Let X
and Y be two topological spaces and let f : X → Y be a function.

(1) Show that if f is continuous, then it is sequentially continuous.
(2) Give an example that shows that the converse is not always

true.
(3) If X and Y are metric spaces, then show that f is continuous

iff it is sequentially continuous.

Exercise 4.3.17. Prove that every continuous and monotonic map-
ping from R into R is open.
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Exercise 4.3.18. Let P : R → R be a polynomial. Show that P
is a closed mapping (hint: if (xn) is a sequence and P (xn) is bounded,
then is (xn) bounded?).

Exercise 4.3.19. Let X and Y be two topological spaces and let
f : X → Y be a continuous function. Assume that A ⊂ X. Show that
f is continuous on A.

Exercise 4.3.20. Using sequences, are the following sets closed in
X

(1) A = (0, 1], X = R;
(2) B =

{
1
n
: n ≥ 1

}
, X = R;

(3) C = {(x, y) ∈ R2 : x2 + y2 < 1}, X = R2;
(4) D = {(x, y) ∈ R2 : 1 < x2 + y2 ≤ 3}, X = R2?

Exercise 4.3.21. Using sequences, show that the set
A = {(x, y) ∈ R2 : 0 < y < 1, xy = 1}

is neither open nor closed in R2 (endowed with the euclidian metric).

Exercise 4.3.22. Is the set A =
{

1
n
: n ≥ 1

}
open in R?

Exercise 4.3.23. Let f and g be two continuous functions defined
on a metric space X into another metric space Y .

(1) Let A = {x ∈ X : f(x) = g(x)}. Show that A is closed in X.
(2) Let B be a dense subset in X. If f and g coincide on B, then

show that they do coincide on X.

Exercise 4.3.24. Check that the following function is not continu-
ous at (0, 0)

f(x, y) =

{ xy
x2+y2

, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

Exercise 4.3.25. Let f : X → Y be a continuous and one-to-one
mapping where X and Y are two topological spaces.

(1) Show that if Y is Hausdorff, then so is X.
(2) Give a counterexample showing that the hypothesis of the con-

tinuity cannot merely be dropped.
(3) Give a counterexample showing that the hypothesis of the in-

jectivity cannot be completely eliminated.

Exercise 4.3.26. Let (X, d) be a metric space. Let A 6= ∅ and
B 6= ∅ be two closed sets such that A ∩ B = ∅. Define a real-valued
function f on X by

f(x) =
d(x,A)

d(x,A) + d(x,B)
.
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(1) Show that if g is a real-valued continuous function defined on
X, then its zero set is closed. Recall that the zero set of g,
denoted by Z(g) as in [11], is defined as

Z(g) = {x ∈ X : g(x) = 0}.
(2) Show that f is a continuous function on X.
(3) Find f−1({0}) and f−1({1}).
(4) Deduce a converse of the result of Question 1, that is, every

closed set can be regarded as the zero of some continuous real-
valued function.

(5) (cf. Exercise 4.5.10) Establish the existence of two disjoint
open sets U and V such that A ⊂ U and B ⊂ V .

Remark. The property in Question 5 (plus the closedness of
points!) is usually referred to as normality or regularity which is part
of the separation axioms in topological spaces (the reader may eas-
ily check that normality is more powerful than Hausdorffness). Thus
the previous exercise tells us that a metric space is necessarily normal.
The other properties of normal spaces are not discussed in the present
manuscript.

Exercise 4.3.27 (The moving bump). Let (fn) be the sequence of
functions defined as

fn(x) =





0, 0 ≤ x ≤ 1
n+1

,
2n(n + 1)(x− 1

n+1
), 1

n+1
< x ≤ 2n+1

2n(n+1)
,

−2n(n+ 1)(x− 1
n
), 2n+1

2n(n+1)
< x ≤ 1

n
,

0, 1
n
< x ≤ 1.

(This sequence is usually called the "moving bump"). Then all fns are
obviously continuous on [0, 1]. Show that for all n,m ∈ N with n 6= m:

d∞(fn, fm) = 1

(where d∞ denotes the supremum metric).

Remark. The importance of this sequence of functions will be
illustrated in the coming chapters.

Exercise 4.3.28. Let X = C([0, 1],R) and

A = {f ∈ X : f(0) = 0}.
Endow X with the metrics d and d′ of Exercise 2.3.12. Show that

A = A with respect to d′ and A = X with respect to d.

Exercise 4.3.29. Let X = C([0, 1],R) be endowed with the supre-
mum metric and let Aa = {f ∈ X : f(a) = 0} where a ∈ [0, 1].
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(1) Show that A is closed in X.
(2) Deduce that the set

B = {f ∈ X : g = 0},
where g is f restricted to I ⊂ [0, 1], is closed in X.

Exercise 4.3.30. Let X and Y be two topological spaces.
(1) Show that the projections

p : X × Y → X

(x, y) 7→ p(x, y) = x

and

q : X × Y → X

(x, y) 7→ q(x, y) = y

are continuous but they are not closed.

Hint. You may consider the set A = {(x, y) ∈ R2 : xy =
1}.

(2) Show that p and q are open mappings.

Exercise 4.3.31. Let X be a topological space. The diagonal of
X is defined to be the set

△ = {(x, x) : x ∈ X}.
(1) Show that X is Hausdorff iff its diagonal is closed.
(2) Deduce from the preceding question another proof of the first

question of Exercise 4.3.23 in a more general context, that is,
f, g : X → Y are continuous, X is any topological space and
Y is Hausdorff.

Exercise 4.3.32. Let A, X and Y be three topological spaces. Let
f : A→ X × Y be a function defined by f(x) = (g(x), h(x)).

(1) Show that f is continuous if and only if g and h are so.
(2) Can we have a similar result for functions of the type f :

X × Y → A, i.e. if f is continuous at any x ∈ X and f is
continuous at any y ∈ Y , then f is continuous on X × Y ?

Exercise 4.3.33. Let f : X → Y be a map between two topological
spaces X and Y where Y is Hausdorff.

(1) Show that if f is continuous, then its graph, Gf , is closed.
(2) Can the graph of a non-continuous function be closed?
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4.4. Tests

Test 23. Let R → Rℓ be the function defined by f(x) = x2 where
R is equipped with the discrete topology and Rℓ is the lower limit
topology on R. Is f a homeomorphism?

Test 24. Let f : R→ R∗ be a continuous function. Let

A = {x ∈ R : f(x) = 0}.
Why is A closed in R?

Test 25. Is the identity map continuous from R endowed with the
co-finite topology into R endowed with the topology of Exercise 3.3.25?
What about its inverse?

Test 26. Equip R with the topology of Exercise 3.3.25. To what
point (if there is any) does the sequence defined by xn = 1

n
converge

to?

Test 27. Does the sequence (− 1
n
) converge to 0 in Rℓ?

Test 28. Let X be a topological space and A ⊂ X. Let Y = {0, 1}
be equipped with the topology T = {∅, {1}, Y }. Define a function
f : X → Y by

f(x) =

{
1, x ∈ A,
0, x 6∈ A.

Show that f is continuous on X iff A is open in X.

Test 29. Let X be an indiscrete topological space. When is f :
X → R (R equipped with the usual topology) continuous?

Test 30. In R2 endowed with the euclidian metric, let

A =

{(
x,

1

x

)
: x > 0

}
and B = {(y, 0) : y ∈ R}.

(1) Show that A and B are closed in R2.
(2) Is A+B closed?

Test 31. Let X be a topological space and let △ be its diagonal.
Show that X and △ are homeomorphic.

Test 32. Is the "topological property" an equivalence relation?

Test 33. Show that (0, 1) is homeomorphic to (0,+∞).

Test 34. Let f : (X, T ) → (X, T ) the identity map, i.e. f(x) = x.
Show that f has a closed graph if and only if X is Hausdorff.
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4.5. More Exercises

Exercise 4.5.1. Let X and Y be two topological spaces. Let A,B ⊂
X be such that A = B. Let f : X → Y be a continuous function. Show
that f(A) = f(B).

Exercise 4.5.2. Let T and T ′ be two topologies on a set X. Show
that the following statements are equivalent:

(1) T ⊂ T ′;
(2) The identity map id : (X, T ′)→ (X, T ) is continuous;
(3) The identity map id : (X, T )→ (X, T ′) is open;
(4) The identity map id : (X, T )→ (X, T ′) is closed.

Exercise 4.5.3. Consider the topology of Exercise 3.3.27 and let
(xn)n be a sequence in X = [0, 2) which is convergent in R to 1. Show
that (xn)n converges with respect to T to any point of [1, 2).

Exercise 4.5.4. Using Exercise 4.3.30 and known results on the
sum and scalar-multiplication of continuous functions, show that real-
valued polynomials on Rn (and taking their values in R) are continuous.

Exercise 4.5.5. If X and Y are two topological spaces, show that
X × Y and Y ×X are homeomorphic.

Exercise 4.5.6. Let a ∈ R. Let f : R → R be a continuous where
R is endowed with the usual topology. Set

A = {x ∈ R : f(x) > a}.
(1) Show that A is open in R.
(2) Is the converse always true?

Exercise 4.5.7. In the usual topology, define a real-valued function
f on R by

f(x) =





1, x = 0,
0, x ∈ R \Q,
1
q
, x ∈ Q

where x in the last line is written as p
q
, p ∈ Z, q ∈ N and p and q are

coprime. This function is called the Riemann function.
Show that f is continuous at every irrational and it is not contin-

uous at every rational number.

Exercise 4.5.8. Let X and Y be two topological spaces. Let A and
B be two closed sets in X such that A ∪ B = X. Let f : A → Y and
g : B → Y be two continuous functions. Assume that f and g coincide
on A ∩ B.
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Define a function h as follows

h(x) =

{
f(x), x ∈ A,
g(x), x ∈ B.

Show that h is continuous.

Remark. The result in the previous exercise is usually called the
"pasting lemma".

Exercise 4.5.9. Show that the Cantor set does not have isolated
points.

Exercise 4.5.10 (cf. Exercise 4.3.26). Let (X, d) be a metric space.
Let A and B be two subsets of X such that either they are closed and
disjoint or they satisfy A ∩ B = A ∩B = ∅. Set

U={x ∈ X : d(x,A)<d(x,B)} and V ={x ∈ X : d(x,B)<d(x,A)}.
Show that U and V are two disjoint and open sets in (X, d) which
contain A and B respectively.

Exercise 4.5.10 (cf. Exercise 4.3.17). Show that if f : A → R is
increasing and open (A ⊂ R), then f is continuous.

Exercise 4.5.11. Prove that two discrete spaces are homeomorphic
iff they have the same cardinality.

Exercise 4.5.12. Show that a circle deprived of one point is home-
omorphic to a straight line.

Exercise 4.5.13. Let X and Y be two topological spaces, and let
f : X → Y be a continuous function. Show that the graph of f is
homeomorphic to X.

Exercise 4.5.14. We endow R with its usual topology. Let

A = {−p : p ≥ 2} and B =

{
n+

1

n
: n ≥ 2

}
.

(1) Show that A and B are two closed sets in R.
(2) Is A+B closed in R?

Exercise 4.5.16 (see [5] and the references therein). Let f, g : R→ R
be two functions.

(1) Can f and g have closed graph but f + g does not?
(2) Show that if f and g are nonnegative and have a closed graph,

then f + g has a closed graph.
Exercise 4.5.17 ([8]). Let X and Y be two topological spaces. Let
f : X → Y be any function. Denote its graph by Gf .
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(1) Show that if f is an open surjection such that Gf is closed,
then Y is Hausdorff.

(2) Show that if f is one-to-one and continuous with Gf closed,
then X is Hausdorff.

(3) Deduce that if f is a homeomorphism of X onto Y , then both
X and Y are Hausdorff.

Exercise 4.5.15. Let X be a topological space and let R be an
equivalence relation on X. Define

GR = {(x, y) ∈ X2 : xRy}
(called the graph of R).

(1) Show that if X/R is Hausdorff, then GR is closed.
(2) Is the converse always true? Justify your answer.
(3) Assume now that GR is closed and that the quotient map is

open. Show that X/R is Hausdorff.

Exercise 4.5.16. A direct set is a couple (I,≺) where I is a set
and ≺ is a relation which is: reflexive, transitive and such that: For
any a, b ∈ I, there is c ∈ A: a ≺ c and b ≺ c.

A net in a set X is a sequence (xi)i ⊂ X indexed by a direct set
(I,≺).

It is clear that this notion generalizes that of a sequence. We also
use the definition of a convergent net as the one of a sequence (with the
obvious changes). Other topological notions involving sequences may
be defined in terms of a net too.

(1) Give an example of a direct set.
(2) Let X, Y be two topological spaces and let A ⊂ X and x ∈ A.

Prove that:
(a) x lies in the closure of A iff x is a limit of a net (xi)i∈I

from A.
(b) X is Hausdorff iff every convergent net has a unique limit.
(c) A function f : X → Y is continuous at x iff for every

net (xi)i∈I converging to x, the net (f(xi))i∈I converges
to f(x).





CHAPTER 5

Compact Spaces

5.1. What You Need to Know

5.1.1. Compactness: General Notions.

Definition. Let A and I be two sets. A collection {Ui}i∈I of sets
is said to be a cover (or a covering) for A if

A ⊂
⋃

i∈I
Ui.

If all Ui are open, then we say an open cover.

Examples.
(1) Let X be a topological space. Then {X} is an open (and a

closed) cover for any subset A of X.
(2) In usual R, {[−n, n)}n∈N is a cover for R. Similarly, {(−n, n)}n∈N

is an open cover for R.

Definition. Let (X, T ) be a topological space. Then X is called
compact if every open cover of X has a finite subcollection (also called
subcover) that still covers X.

Remark. In this book we do not impose the separation (i.e. the
Hausdorffness) in the definition of compact sets. This is adopted by
many authors. But, in some references, especially the French ones,
they do add the separation in the definition of compact sets. One of
the reasons, is to exclude spaces not too interesting in the compactness
such as the indiscrete spaces. But this a dilemma as many interesting
spaces will be excluded too such as R in the co-finite topology.

However, many applications arise in the setting of metric spaces
where the two definitions coincide.

Remark. We may say a compact space or a compact set (or a
compact subspace or a compact subset), but we should not consider
this as a source of polemic.

Remark. Let X be a topological space and let A ⊂ X. Open
sets in A are of the form A ∩ U where U is open in X. So if we want

61
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to prove that the subspace A is compact, we may just consider covers
constituted of open sets in X (instead of open sets in A).

Examples.
(1) In usual R, A = [1,∞) is not compact since {(0, n)}n∈N is an

open cover for A which is not reducible to a finite subcover for
A as the union of elements of any finite subcover is of the form
(0, N) for some natural N .

(2) Every finite set (in any topological space) is compact. For a
proof see Exercise 5.3.8.

Another (fundamental) example is the following (for a proof see
Exercise 5.3.5):

Theorem (Heine-Borel). Every closed and bounded interval [a, b]
in (usual) R is compact.

In point of fact, the previous extends to Rn (also due to Heine-
Borel) and we have

Theorem. In the usual topology, every bounded and closed space
of Rn is compact.

The next two results are devoted to properties of compact spaces.

Proposition. Let (X, d) be a metric space and let A ⊂ X be
compact. Then A is bounded.

Theorem. Every closed subspace of a compact space is compact,
and every compact subspace of a Hausdorff space is closed.

Definition. Let X be a topological space and let A be a subspace
of X. We say that A is relatively compact if A is compact.

Examples. In the usual topology, (−1, 2) is relatively compact in
R since [−1, 2] is compact.

Now, we give a definition (more commonly known in R as the
Bolzano-Weierstrass property) of a different concept of compact-
ness in general topological spaces (see [10]):

Definition. A topological space X is called limit point compact
if every infinite subset of X has a limit point.

The next result tells us the relationship between compactness and
limit point compactness:

Proposition. Every compact space is limit point compact.



5.1. WHAT YOU NEED TO KNOW 63

Remark. The converse of the previous result is not always true.
As a counterexample (borrowed from [10]): Let Y = {a, b} and equip
it with an indiscrete topology. Then X = N×Y is limit point compact
but not compact.

Definition. A topological space X is said to be locally compact
at x ∈ X if there exists a compact subspace A of X such that U ⊂ A
where U is a neighborhood U of x.

We say that X is locally compact if it is so at each of its points.

Examples.
(1) Obviously, every compact space is locally compact.
(2) R and, Rn in general, are locally compact with respect to their

usual topologies.
(3) A discrete topological space is locally compact.

Here are some properties of locally compact spaces:

Proposition.
(1) A closed subspace of a locally compact space is locally compact.
(2) An open subspace of a locally compact Hausdorff space is locally

compact.

5.1.2. Compactness and Continuity.

Theorem. Let f : X → Y be a continuous map between two
topological spaces. If X is compact, then so is its image f(X).

Corollary. Let (X, T ) be a compact topological space and let
(Y, d) be a metric space. If f : X → Y is continuous, then it is
bounded.

Corollary. Let X be a compact topological space. If f : X → R
is continuous, then sup f(X) and inf f(X) exist (i.e. f attains its
bounds on X).

The following examples show that the hypotheses in the previous
results cannot merely be dropped:

Examples. Let f : X → Y be a function.
(1) X = Y = R, f(x) = x is not bounded on the non-compact

(non-bounded) X.
(2) X = (0, 1] and Y = [1,∞), f(x) = 1

x
is not on the non-

compact (non-closed) X.
(3) X = R and Y = (−1, 1), f(x) = x

1+|x| does not attain its
bounds on the non-compact (non-bounded) X.
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(4) X = Y = (0, 1), f(x) = x does not attain its bounds on the
non-compact (non-closed) X.

We have already defined uniform continuity in metric spaces. The
next is an important result:

Theorem (Heine). Let (X, d) and (X, d′) be two metric spaces
such that (X, d) is compact. Let f : (X, d) → (X, d′) be a continuous
function. Then f is uniformly continuous.

We finish with a fundamental result on products of compact spaces.

Theorem (Tychonoff). If X and Y are two compact spaces, then
so is their product X × Y .

Remark. By induction, the previous result can be easily gener-
alized to a product of finitely many spaces. In fact, the result remains
valid even for an arbitrary product. This latter generalization is actu-
ally the Tychonoff theorem.

The reader is asked in Exercise 5.3.16 to prove the converse of the
previous theorem.

5.1.3. Sequential Compactness and Total Boundedness.

Definition. Let X be a metric space. Then X is said to be se-
quentially compact if every sequence (xn) in X has a convergent
subsequence in X.

Remark. A priori, there seems to be no direct link to the defini-
tion of compactness met above. The next result tells us that, in fact,
compactness, limit point compactness and sequential compactness all
coincide in a metric space:

Theorem. Let (X, d) be a metric space. Then the following are
equivalent:

(1) X is compact;
(2) X is sequentially compact;
(3) X is limit point compact.

The proof of the previous result necessitates the notion of total
boundedness, so we recall it here together with some of its properties.
We shall need it again in later chapters.

Definition. Let (X, d) be a metric space. Let ε > 0. An ε-net
for X is a subset A of X verifying X ⊂

⋃

x∈A
B(x, ε).
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Definition. Let (X, d) be a metric space and let A ⊂ X. We say
that A is totally bounded if A has an ε-net for all ε.

Remark. A bounded set is not necessarily totally bounded. For
a counterexample, consider the following infinite set

A = {e1 = (1, 0, 0, · · · ), e2 = (0, 1, 0, · · · ), e3 = (0, 0, 1, · · · ), · · · }
which is obviously a subset of ℓ2 (cf Exercise 7.3.9). Then A is bounded
but not totally bounded.

Now we list some properties of totally bounded sets:

Theorem.
(1) A subset of a totally bounded set is totally bounded.
(2) A totally bounded set is bounded.
(3) The closure of a totally bounded set is totally bounded.

The connection between compactness and total boundedness is elu-
cidated in the next theorem.

Theorem. A sequentially compact set is totally bounded.

We finish this subsection with a practical result on uncountability.

Theorem (see [10]). A non-empty compact Hausdorff space X
without any isolated point is uncountable.

Corollary. Every closed interval in R is uncountable.

Remarks.
(1) Of course, the previous corollary is not concerned with the

very particular closed interval of the form [a, a] (a ∈ R).
(2) The fact that the result is concerned with closed sets is not

a weakness. Indeed, if, for example, we want to prove that
[−1, 1) is uncountable, we consider [−1, 1] which is uncount-
able by the previous corollary. Then taking out a point of an
uncountable set does not make it countable!

(3) The Baire’s theorem (see Chapter 8) can also be used to give
a short proof of the uncountability of [a, b].

5.2. True or False: Questions

Questions. Comment on the following questions/statements and
indicate those which are false and those which are true when this ap-
plies. Justify your answers.

(1) Let X be a non-empty set. Let {Ui}i∈I be a cover for X. Then
X = ∪i∈IUi.
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(2) We saw in the first example of covers in the "What you need
to know" section that in any topological space X, {X} is an
open cover for X and any subset of X. It is also clearly a
subcover for X. Hence every subset of X is compact.

(3) The fact that we use open covers to define compact spaces is
purely conventional. We could adopt the same definition using
closed covers.

(4) In every topological space X, the countable intersection of
closed, non-empty and decreasing subsets in X is non-empty.

(5) Let (Cn) be a sequence of non-empty decreasing and closed
sets in a metric space X. If f : X → X is continuous, then

f(
⋂

n∈N
Cn) =

⋂

n∈N
f(Cn).

(6) ∅ is compact.
(7) The interval [a, b] is always compact.
(8) The closure of a compact subset is compact.
(9) Let X and Y be two topological spaces. Let f : X → Y be a

continuous function and let A ⊂ Y be compact. Then f−1(A)
is compact.

(10) In a topological space, a subspace is compact if and only if it
is closed and bounded.

(11) Let T and T ′ be two topologies on the same set X such that
T ⊂ T ′. If X is compact with respect to T ′, it will be so with
respect to T . What about the converse?

(12) Criticize the following proof of the compactness of R with re-
spect to the co-finite topology: Let {Ui}i∈I be an open cover

of R, i.e. R ⊂
⋃

i∈I
Ui. Now, assume R 6⊂

n⋃

i=1

Ui. Then

R ⊂
(

n⋃

i=1

Ui

)c

=
n⋂

i=1

U c
i (a finite set),

i.e. R would have to be finite and we arrived at a contradiction.
Thus R is compact with respect to the co-finite topology.

(13) Let f : [a, b] → R be a continuous function. Then f is
bounded.

(14) (0, 2) is relatively compact.
(15) The closed unit ball is always compact.
(16) Every compact set is closed.
(17) Compactness is a topological property.
(18) Sequential compactness is a topological property.
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(19) Local compactness is preserved under continuous maps.
(20) Local compactness is a topological property.
(21) The union of two locally compact spaces remains locally com-

pact.
(22) In a metric space, every finite part is totally bounded.
(23) Total boundedness is a topological property.

5.3. Exercises With Solutions

Exercise 5.3.1. Using (only) the definition of a compact set show
that R, [0,+∞) and (0, 1) are not compact in R (in the usual topology).

Exercise 5.3.2. Indicate which of the following sets are compact in
X

(1) A = Q, X = R;
(2) A = { 1

n
: n ∈ N}, X = R;

(3) A = Q ∩ [0, 1], X = R;
(4) A = [a, b], B = R, C an infinite set; X endowed with the

discrete topology;
(5) A = {(x, y) ∈ R2 : x2 + y2 = 1}, B = {(x, y) ∈ R2 : x2 + y2 <

1}, C = {(x, y) ∈ R2 : x2 + y2 > 1}; X = R2;
(6) A = {(x, y) ∈ R2 : x ≥ 1, 0 ≤ y ≤ 1

x
}; X = R2;

(7) A =
{(

x, 1
x

)
: 0 < x ≤ 1

}
, B =

{(
x, sin 1

x

)
: 0 < x ≤ 1

}
; X =

R2;

(8) A =
⋂

n∈N
B

(
0R2, 1 +

1

n

)
; X = R2?

(The topology of R2 in Questions 5 to 8 is the standard
one).

Exercise 5.3.3.
(1) Show that the following set is not compact in R2 with respect

to the standard topology

A = {(x, y) ∈ R2 : x+ y3 = 1}.
(2) What about the set

B = {(x, y) ∈ R2 : x4 + y2 = 1}?
Exercise 5.3.4. In the usual topology of R, show that

A =

{
1

n
: n ∈ N

}

is not compact using open covers.
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Exercise 5.3.5. Show that the closed bounded interval [a, b] (a and
b are reals with a ≤ b) is compact in usual R.

Remark. Another proof of the compactness of [a, b] may be found
in Exercise 7.3.23.

Exercise 5.3.6. Consider RK , the K-topology on R.
(1) Is [0, 1] compact in RK?
(2) What about any set that contains K = { 1

n
: n ∈ N}?

Exercise 5.3.7. Let X be a topological space which is Hausdorff.
Let (xn)n a sequence in X which converges to a. Show that the set
A = {xn : n ∈ N} ∪ {a} is compact.

Exercise 5.3.8. Let X be a topological space.
(1) Show that every finite set in X is compact.
(2) Deduce that if X is given the discrete topology, then a set is

compact if and only if it is finite.

Exercise 5.3.9.
(1) Show that the union of two (and hence of a finite number) of

compact sets is compact. Is this true for an arbitrary union?
(2) Show that the arbitrary intersection of compact sets in a Haus-

dorff topological space is always compact.

Exercise 5.3.10. Let (X, d) be a metric space and let A ⊂ X. We
know from earlier chapters that the union ∪x∈ABc(x, r) need not be
closed, where Bc(x, r) is the closed ball of center x and radius r > 0.

Show that if A is compact, then for any r > 0, ∪x∈ABc(x, r) is
closed in X (hint: you may show that

⋃

x∈A
Bc(x, r) = {t ∈ X : inf

x∈A
d(x, t) ≤ r}).

Exercise 5.3.11. Is R compact with respect to X = R endowed
with the co-finite Topology?

Exercise 5.3.12. Consider R with respect the co-countable topol-
ogy (see Exercise 3.3.24).

(1) Is R compact?
(2) Is [0, 1] compact?
(3) Let A be a countable set. Is A compact?

Exercise 5.3.13. On R, we define
T = {∅} ∪ {U ⊂ R : U c is compact in the usual R}.

(1) Show that T is a topological space on R.
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(2) Can T be Hausdorff?
(3) Show that R is separable with respect to T .
(4) Show that R is compact with respect to T .

Exercise 5.3.14. By going back to Exercise 3.3.26 and taking a = 1,
show that [−1, 1] is compact in T .

Exercise 5.3.15. In the usual topology, explain why (0, 1) is not
compact using limit point compactness.

Exercise 5.3.16. Let X and Y be two topological spaces. Show
that if X × Y is compact, then X and Y are also compact.

Exercise 5.3.17. Let Q be the metric space associated with the
metric d defined by d(x, y) = |x− y|.

(1) Show that the set A = {x ∈ Q : 2 < x2 < 3} is closed and
bounded but not compact.

(2) Is A open in Q?

Exercise 5.3.18. Consider the following metric defined on R by
d(a, b) = inf{|b− a|, 1}.

(1) Is (R, d) bounded?
(2) Using the sequence defined by an = n or otherwise, show that

(R, d) is not compact with respect to this metric.
(3) What can you deduce from the previous question?

Exercise 5.3.19.
(1) Show that R is not sequentially compact with respect to the

metric δ of Exercise 2.3.26.
(2) What can deduce from the previous question?

Exercise 5.3.20. Let X = C([0, 1],R) be equipped with the supre-
mum metric.

(1) What is dimX?
(2) Show that unit closed ball is not sequentially compact in X.
(3) Can the unit closed ball be compact in X?
(4) Is X locally compact?

Exercise 5.3.21. We endow R with two topologies, one is the co-
finite one and we denote it by X, the other is the discrete one and we
denote it by Y . Let f : X → Y be a function defined for all x ∈ R by
f(x) = x2.

(1) Is f(R) compact?
(2) What can you deduce from the previous question?
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Exercise 5.3.22. In the usual topology, is [0, 1] homeomorphic to
[0,∞)? to (0, 1]?

Exercise 5.3.23. Let X be a compact metric space. Let f : X → X
be continuous. If (An) is a sequence of decreasing nonvoid and closed
sets in X, then show that

f(
⋂

n∈N
An) =

⋂

n∈N
f(An).

Exercise 5.3.24.
(1) Indicate among the following spaces X those which are locally

compact and those which are not:
(a) X is a compact topological space,
(b) X = R in the usual topology,
(c) X = Q in the usual topology,
(d) X = R \Q in the usual topology,
(e) X is a discrete topological space,
(f) X equipped with the topology of Exercise 3.3.25.

(2) Give an example of a Hausdorff space which is not locally
compact and one which is locally compact.

Exercise 5.3.25. Give an example that shows the continuous image
of a locally compact space need not be locally compact.

Exercise 5.3.26. Let X be a locally compact space.
(1) Show that every closed subspace in X is locally compact.
(2) Show that every open subspace in X is locally compact pro-

vided X is Hausdorff.
(3) In usual R2, say why {(0, 0)} and {(x, y) ∈ R2 : x > 0} are

locally compact.
(4) In the usual topology again, is

{(0, 0)} ∪ {(x, y) ∈ R2 : x > 0}
locally compact?

(5) What is then the conclusion?
Hint: For the second question, use the following result: Let X be a
locally compact Hausdorff space. Let x ∈ X and U be a neighborhood
of x. Then there is a neighborhood of x, denoted by V such that its
closure is compact and it is included in U .

Exercise 5.3.27. Let (X, d) be a compact metric space. Let f :
X → X be a function satisfying

d(f(x), f(y)) < d(x, y), ∀x 6= y.
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(1) Can we say that there exists a k ∈ [0, 1) such that

d(f(x), f(y)) ≤ kd(x, y), ∀x, y.
(2) Show that f has a unique fixed point, that is, there is one and

only one point x ∈ X such that f(x) = x.

Exercise 5.3.28. Let (X, d) be a compact metric space. Prove that
(X, d) is separable.

Exercise 5.3.29. When is (X, d) totally bounded if X is an arbi-
trary set and d is the discrete metric?

5.4. Tests

Test 35. Using open covers, show that A = (0, 1] ∪ {2} is not
compact w.r.t. usual R.

Test 36. In the topology of Exercise 3.3.25, is {a} compact? What
about X? What can you deduce from that?

Test 37. Let (X, T ) be separated topological space. Let (X,S) be
a compact topological space. Show that if T ⊂ S, then T = S.

Test 38. Show that N is not compact with respect to the topology
of Exercise 3.5.7.

Test 39. Is R compact in Rℓ?

Test 40. Is Q relatively compact in R with respect to the co-finite
topology?

Test 41. Is the unit sphere in R3 homeomorphic to R2?

Test 42. Let X be a topological space. Let A be a finite subset of
X. Show that A is sequentially compact.

Test 43. Does the quotient of a compact space remain compact?

Test 44. Define a function f on [0, 1] by

f(x) =

{
0, x = 0,

x ln x, 0 < x ≤ 1.

Is f uniformly continuous on [0, 1]?

Test 45. Let Ai = {1,−1}. Without caring much about the (arbi-
trary) product topology involved, is

∏

i∈I
Ai compact (I is a set)?
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5.5. More Exercises

Exercise 5.5.1. Consider the topology of Exercise 3.3.27. Is [0, 2)
compact in this topology?

Exercise 5.5.2. Show that the set
A = {(x, y) ∈ R2 : x2 − xy + y2 ≤ 1}

is compact in R2.

Exercise 5.5.3. Let N be endowed with the co-finite topology.
Show that the set of even integers is compact in this topology. Is
it closed?

Exercise 5.5.4. Show that N endowed with the co-countable topol-
ogy is not compact.

Exercise 5.5.5. Find an example of two compact subspaces A and
B (in a non-Hausdorff space) such that A ∩B is not compact.

Exercise 5.5.6. Let T and T ′ be two topologies on the same set X
which are assumed to be compact and Hausdorff. Prove that T and T ′

are either equal or not comparable.

Exercise 5.5.7. Show that each compact metric space is separable.

Exercise 5.5.8. Show that the Cantor set is compact. Show also
that it is uncountable.

Exercise 5.5.9. Let X and Y be two separated topological and
compact spaces. Let Gf be the graph of f . Show that f is continuous
if and only if Gf is closed in X × Y .

Exercise 5.5.10. ([5]) Let f : R→ R be a function having a closed
graph. Show that if K is a compact set in R, then f−1(K) is closed in
R.

Exercise 5.5.11. Show that C([0, 1],R) (with respect to the supre-
mum metric) is not compact using open covers.

Exercise 5.5.12. (Hausdorff metric) Let (X, d) be a compact metric
space. Denote the collection of closed sets in (X, d) by Cl(X). Define
a function d on Cl(X)× Cl(X) by

dH(A,B) = max(sup
a∈A

d(a, B), sup
b∈B

d(b, A))

where d(x, C) = inf
c∈C

d(x, c).

Show that dH is a metric on Cl(X) (dH is called the Hausdorff
metric).
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Remark. It is important to consider closed sets in X which they
then become compact. If the compactness hypothesis is dropped, then
dH need not remain a metric anymore. For instance, the Hausdorff
"metric" applied to the sets {1} and (−∞, 1] is infinite, hence it is
necessary to have bounded sets. It is also necessary to have closed sets
(take A = [−1, 1] and B = (−1, 1)).

Exercise 5.5.13. We know that "a non-empty compact Hausdorff
space X without any isolated point is uncountable". Give an example
showing that the hypothesis Hausdorff cannot be dispensed with.

Exercise 5.5.14. (cf. Exercise 4.3.26) Show that every compact
Hausdorff space is normal.

Exercise 5.5.15. Show that local compactness is a topological prop-
erty.

Exercise 5.5.16. Let (X, d) be a compact metric space. Let f be
an isometry from X into X. Prove that f is onto (hint: show that
X ⊂ f(X)).

Exercise 5.5.17. Let X be a locally compact topological space.
Set X̃ = X ∪ {∞} where ∞ is something which does not belong to X.
Then X̃ is called the Alexandroff one-point compactification of
X. Then a topology can be defined on X̃ by declaring a set open iff it
is either open in X or it is of the form X̃ \K where K is compact in
X. This will be the topology associated with X̃ by default.

A known result then says that X is homeomorphic to X̃ \ {∞}.
(1) Prove that X̃ is compact.
(2) Verify that X is closed in X̃ iff it is compact.
(3) Deduce that if X is not compact, then it is dense in X̃.
(4) Show that if Y and Z are two compact spaces, then a home-

omorphism f : Y \ {y} → Z \ {z} (where y ∈ Y and z ∈ Z)
can be extended to a homeomorphism g : Y → Z by setting
g(y) = z.

(5) Show that in the usual topology, the Alexandroff one-point
compactification of (−1, 0] is [−1, 0] and that of R is homeo-
morphic to the unit circle in R2.

Exercise 5.5.18. Show that bounded subsets of Rn are totally
bounded.

Exercise 5.5.19. We first give the following definition:

Definition. Let X be a metric space and let A ⊂ X. Let U =
{Ui}i∈I be an open cover for A. A real number ε > 0 is said to a



74 5. COMPACT SPACES

Lebesgue number for U if for any x ∈ A, there is some set U (U ∋ x)
in U verifying B(x, ε) ⊂ U .

Prove that any open cover of a sequentially compact metric space
has a Lebesgue number.



CHAPTER 6

Connected Spaces

6.1. What You Need to Know

6.1.1. Connectedness.

Definition. A topological space X is said to be connected if the
only closed and open sets (that is, the only clopen sets) in X are ∅ and
X itself.

Examples.
(1) Evidently, every indiscrete topological space is connected.
(2) A discrete topological space X is never connected unless cardX =

1 (in which case the discrete and indiscrete spaces coincide!).

There exist equivalent definitions of connectedness. They are gath-
ered in the next theorem:

Theorem. Let X be a topological space. Then X is connected iff
one of the following occurs:

(1) Any continuous function from X onto the discrete space {0, 1}
is constant.

(2) X does not admit any open partition.

Remark. By an open partition, we mean a couple of non-empty
open subspaces A and B in X such that A ∩B = ∅ and A ∪B = X.

Remark. Notice that there is nothing special about the set {0, 1},
any {a, b} will do!

Before giving the characterization of connected subspaces of the
usual real line R, recall the following:

Definition. A non-void subset A of R is called an interval if:

∀x, y ∈ A, ∀z ∈ R : (x < z < y =⇒ z ∈ A).

Examples.
(1) Q is not an interval.
(2) (0, 1) ∪ {2} is not an interval.

75
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The following result characterizes connected subspaces of the usual
real line.

Theorem. Every interval is connected. Conversely, the only con-
nected subspaces of R are the intervals.

The next result is fundamental.

Theorem. Let X and Y be two topological spaces. Let f : X → Y
be continuous. If X is connected, then f(X) is connected too.

Corollary. Connectedness is a topological property.

Corollary. Let X and Y be two topological spaces. Let f : X →
Y be continuous. If X is connected, then Gf , i.e. the graph of f , is
connected.

Corollary. Let X be a topological space which is connected. If
f : X → R is continuous, then f(X) is an interval.

Remark. The previous corollary generalizes the well-known in-
termediate value theorem, where setting X = [a, b] takes us back to
it.

We finish this subsection with two results on unions of connected
spaces. The last of the two is also important for the ensuing subsection.

Proposition. If X and Y are two non-empty connected sets such
that X ∩ Y 6= ∅, then X ∪ Y is connected.

Remark. The condition X ∩ Y 6= ∅ in the preceding proposition
cannot be weakened to X∩Y 6= ∅. For a counterexample see Question
4 of Exercise 6.3.1.

Proposition. Let X be a topological space and let (Ai)i∈I be col-
lection of connected subspaces of X such that ∩i∈IAi 6= ∅. Then ∪i∈IAi

is connected.

6.1.2. Components.

Theorem. Let X be a topological space and let x ∈ X. Then there
exists a maximal or largest (with respect to "⊂") connected subspace of
X, denoted by Cx, containing x. Moreover, Cx is closed in X.

Definition. Let X be a topological space, and let x ∈ X. The
maximal, closed and connected subspace Cx containing x is called a
(connected) component of X.

Remark. We may easily define an equivalence relation on X as:
xRy ⇐⇒ y ∈ Cx. Hence, the components of X constitute a partition
of X.
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Example. R\{1} has two components: specifically (−∞, 1) and
(1,∞).

6.1.3. Path-connectedness.

Definition. Let X be a topological space. We say that X is path-
connected if for all x, y ∈ X, there exists a continuous function f :
[0, 1]→ X such that f(0) = x and f(1) = y.

This continuous function is usually called a path from x to y.

Remark. It must be remembered that [0, 1] in the previous defi-
nition is always equipped with its usual topology.

Here is a quite practical lemma

Lemma. Let X be a topological space in which f is a path joining
x and y, and g is a path joining y and z. Then the function

h(t) =

{
f(2t), 0 ≤ t ≤ 1

2
,

g(2t− 1), 1
2
≤ t ≤ 1,

defines a path joining x and z.

Examples.
(1) R, and in general, Rn (n ≥ 1) are path-connected in the stan-

dard topology.
(2) R∗ is not path-connected.

The notion of convexity gives more explicit examples of path-connected
sets:

Definition. Let X be a real vector space and let A ⊂ X. We say
that A is convex if:

∀x, y ∈ A, ∀t ∈ [0, 1] : (1− t)x+ ty ∈ A.

Examples.
(1) A (real) linear subspace is convex.
(2) R is convex.
(3) Intervals are convex.
(4) The closed unit ball is convex.

Thanks to the next result, the previous four examples are all path-
connected:

Theorem. Any convex set is path-connected.

The next result shows the relationship between connectedness and
path-connectedness
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Theorem. Every path-connected space is connected.

Remark. The converse of the previous theorem is not always true.
See Exercise 6.5.7.

Nonetheless, there are sufficient conditions making a connected
space path-connected (in usual Rn), one of them is openness. We have:

Theorem. Every connected open subset of Rn is path-connected.

6.2. True or False: Questions

Questions. Comment on the following questions/statements and
indicate those which are false and those which are true when this ap-
plies. Justify your answers.

(1) Let T and T ′ be two topologies on the same set X. Assume
that T ⊂ T ′. Then

(X, T ) is connected ⇐⇒ (X, T ′) is connected.

(2) A closed subspace of a connected space is connected.
(3) The boundary of a connected set is itself connected.
(4) If the closure of some set is connected, then this set has to be

connected. What about the converse?
(5) The union of connected sets is always connected.
(6) The intersection of connected sets is always connected.

(7) If a set A is connected, then so is its interior
◦
A.

(8) Let f : [−1, 1] → R be a continuous function such that
f(−1)f(1) < 0. Then there exists some α ∈ [−1, 1] such that
f(α) = 0.

(9) Every polynomial on R having an odd degree has at least one
real root.

(10) If a set A is path-connected, then so is A.
(11) In the usual topology, R is homeomorphic to R2.
(12) The preimage of a connected set by a continuous function is

connected.
(13) If X and Y are homeomorphic, then there is a one-to-one

correspondence between their components.
(14) The quotient of a connected (path-connected respectively) topo-

logical space is connected (path-connected respectively).
(15) Let X be a topological space. Let Cx be the component of

x ∈ X. Then

X is connected ⇐⇒ Cx = X.



6.3. EXERCISES WITH SOLUTIONS 79

(16) R∗ is not connected as it has two components (0,∞) and
(−∞, 0). But it is known from the lecture that the compo-
nents are closed whereas here they are not closed in R. Is
there anything wrong with this reasoning?

6.3. Exercises With Solutions

Exercise 6.3.1. Is A connected in the topological space T in the
following cases?

(1) A = {1, 2, 3, 4}, T = {∅, {1}, {2, 3}, {1, 2, 3}, A}};
(2) A is a subset of some set endowed with the discrete topology

(denoted by T );
(3) A = R and T the associated co-finite topology;
(4) A = B((0, 1), 1) ∪ B((0,−1), 1),
(5) A = Bc((0, 1), 1) ∪Bc((0,−1), 1);
(6) A = B((0, 1), 1) ∪ Bc((0,−1), 1);

(the last three sets in R2 with respect to the euclidian metric).

Exercise 6.3.2. Let X = Mn(R), the (vector) space of square
matrices of order n with real entries. Let A be the subset of X of
invertible matrices. Is A connected?

Exercise 6.3.3. Show that Q is not connected using different meth-
ods.

Exercise 6.3.4. In the induced usual topology, are the following
sets connected

(1) R \Q;
(2) { 1

n
: n ≥ 1};

(3) [0, 1) ∪ (1, 2);
(4) N?

Exercise 6.3.5. Show that [0, 2) is connected with respect to the
topology of Exercise 3.3.27.

Exercise 6.3.6. What are the components of
(1) A = C \ R;
(2) A = {(x, y) ∈ R2 : x 6= y};
(3) A = B((0, 1), 1)∪B((0,−1), 1), B = Bc((0, 1), 1)∪Bc((0,−1), 1)

in the usual R2?

Exercise 6.3.7. Let A be a connected set in a topological space X.
(1) If A ⊂ B ⊂ A, then show that B is connected.
(2) Deduce that if A is connected, then so is A.
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Exercise 6.3.8. Let R be endowed with the K-topology.
(1) Show that (−∞, 0) and (0,∞) inherit their usual topology as

subspaces of RK .
(2) Deduce that R is connected in RK .

Exercise 6.3.9. Show that there is no continuous function f : R→
R such that

f(Q) ⊂ R \Q and f(R \Q) ⊂ Q.

Exercise 6.3.10. Let N be endowed with the co-finite topology.
Show that N is not path-connected.

Remark. Do not say that since N is not an interval, it is not con-
nected and hence it cannot be path-connected as every path-connected
set is connected. This is a wrong reasoning for the simple fact that the
connected sets are intervals in R endowed with its usual topology!

Exercise 6.3.11. Using only the definition of a path-connected set,
show that R∗ is not path-connected.

Exercise 6.3.12.
(1) Show that every convex part is path-connected.
(2) Deduce that Rn and the closed and open balls on Rn are all

connected (n ≥ 1).

Exercise 6.3.13. Let n ≥ 1.
(1) Is Rn \ {0} path-connected?
(2) Let

Sn−1 = {x ∈ Rn : x2 = 1}.
Need Sn−1 be path-connected?

Exercise 6.3.14. Let T = S(OR2, 1) be the unit sphere in R2. Let
A be the annulus on R2, i.e. A = {(x, y) ∈ R2 : a2 ≤ x2 + y2 ≤ b2}
where 0 < a < b.

(1) Verify that the following functions are continuous f : [a, b] ×
T→ A and g : A→ [a, b]× T defined as

f(z, x, y) = (zx, zy) and g(x, y) =

(
√

x2 + y2,
(x, y)√
x2 + y2

)
.

Compute f ◦ g and g ◦ f . What can you deduce from this
question?

(2) Deduce from the previous equation that the annulus is a path-
connected part of R2.
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Exercise 6.3.15. Let X and Y be two topological spaces. Let
f : X → Y be a homeomorphism. Let a ∈ X.

(1) Show that f : X \ {a} → Y \ {f(a)} is a homeomorphism.
(2) Deduce that there cannot be a homeomorphism between R

and R2.

Exercise 6.3.16. Consider the letters X and S as subsets of R2.
Can we say that X and S are homeomorphic? What about E and W?

6.4. Tests

Test 46. Show that a topological space with one point is always
connected. What about a set with two points?

Test 47. Is R connected with respect to the lower limit topology
of R?

Test 48. Show that Rℓ is totally disconnected.

Test 49. Is R connected with respect to the co-countable topology?
What about Q?

Test 50. Let X be a topological space. Suppose that X contains a
connected dense subspace. Show that X is connected.

Test 51. What are the components of R with the respect to the
co-finite topology?

Test 52. In the usual topology, can [−1, 1] be homeomorphic to the
unit circle?

6.5. More Exercises

Exercise 6.5.1. Prove that connectedness is a topological property.

Exercise 6.5.2. Set
A = {R} ∪ {U ⊂ R : U c connected with respect to usual R}.

Is T a topology on R?

Exercise 6.5.3. Show that there does not exist any continuous func-
tion on the circle T into R. Deduce from this that T is not homeomor-
phic to any subspace of R and hence R2 and R are not homeomorphic.

Exercise 6.5.4. Let X be a connected space. Assume that cardX ≥
2. Show that if for each x ∈ X, {x} is closed, then cardX =∞.

Exercise 6.5.5. Using Exercise 5.5.17, give an alternative way of
proving that the unit circle is connected.



82 6. CONNECTED SPACES

Exercise 6.5.6. Is R connected with respect to the topology of
Exercise 5.3.13?

Exercise 6.5.7 (Important). In the euclidean metric, let

A =
{
(x, y) ∈ R2 : 0 < x ≤ 1, y = sin

(π
x

)}
.

(1) Show that A is connected.
(2) Prove that A is not path-connected.

Exercise 6.5.8. In the usual topology of R2, say whether M and N
are homeomorphic? What about B and V? or Y and T?

Exercise 6.5.9. Let
A = (R×Q) ∪ (Q×R).

Show that A is path-connected.

Exercise 6.5.10. How many components does a puzzle of 2000
pieces have?

Exercise 6.5.11. Prove that the Cantor set is totally disconnected.

Exercise 6.5.12. Let X be a topological space. We say that X is
locally connected at a point x ∈ X if for each neighborhood of U of
x, there exists a connected neighborhood V of x such that V ⊂ U .

(1) In the usual topology, are R, R∗ and Q locally connected?
(2) Show that the every open set in a locally connected set remains

locally connected.
(3) Prove that the components of a locally connected space are

open.
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Complete Metric Spaces

7.1. What You Need to Know

7.1.1. Completeness.

Definition. Let (X, d) be a metric space and let (xn) be a se-
quence in X. We say that (xn) is Cauchy if:

∀ε > 0, ∃N ∈ N, ∀n,m ∈ N : (n,m ≥ N =⇒ d(xn, xm) < ε).

Remark. Let (X, d) be a metric space and let A ⊂ X be equipped
with the induced metric, denoted by dA. Let (xn) be a sequence in A.
Then (xn) is Cauchy in (X, d) iff (xn) is Cauchy in (A, dA).

A convergent sequence is a metric space is Cauchy, but not vice
versa. In fact, we have

Definition. A metric space (X, d) is said to be complete if every
Cauchy sequence converges in (X, d), i.e. its limit belongs to X.

Examples.
(1) (Q, | · |) is not complete (see Exercise 7.3.1).
(2) (R, | · |) is complete (see Exercise 7.3.4).
(3) (C, | · |) is complete (see Exercise 7.3.5).
(4) ([0, 1), | · |) is not complete.
(5) Any discrete metric space is complete (see Exercise 7.3.2).

Remark. If (X, d) and (X, d′) are two metric spaces such that d
and d′ are equivalent, then it may be shown that (X, d) is complete iff
(X, d′) is complete.

If d and d′ are (only) topologically equivalent, then the completeness
of (X, d) need not imply that of (X, d′). For instance in R, consider
the usual metric d and the metric d′ of Exercise 2.3.26 (which are not
topologically equivalent). Then (R, d) is complete while (R, d′) is not
(see Test 54).

The next result illustrates the relationship between the notions of
closedness and completeness.

Theorem. Let (X, d) be a metric space and let A ⊂ X. Then:
83
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(1) If A is complete, then it is closed in X.
(2) If A is closed and X is complete, then A is complete.

Remark. Combining the two results in the preceding theorem, we
may state with ease that: In a complete metric space, a set is complete
if and only if it is closed.

The coming theorem gives a relationship between the concepts of
compactness and completeness.

Theorem. Let X be a metric space.
(1) If X is compact, then it is complete.
(2) If X is totally bounded and complete, then it is compact.

Remark. We may then easily show that if X is a complete metric
space, then A ⊂ X is compact iff A is closed and totally bounded.

The next theorem is very important.

Theorem. Let (X, d) and (Y, d′) be two metric spaces. Assume
that A ⊂ X is dense and that (Y, d′) is complete. Let f : (A, d) →
(Y, d′) be uniformly continuous on A. Then there exists a unique func-
tion g : (X, d) → (Y, d′) which is also uniformly continuous and such
that g(x) = f(x) for each x ∈ A.

Remark. The completeness of (Y, d) and the uniform continuity
of f may not merely be dropped. See the section "True or False" for
counterexamples and further discussion.

The next two theorems are also fundamental.

Theorem (Cantor). Let (X, d) be a metric space. Then (X, d) is
complete iff for each sequence (An) of non-empty and closed subsets of
X verifying:

(1) An+1 ⊂ An for all n;
(2) d(An)→ 0 as n goes to ∞;

we have
∞⋂

n=1

An 6= ∅.

Remark. In some textbooks, they refer to Cantor’s theorem as
the "principle of nested closed sets".

Theorem (Baire). Let (X, d) be a complete metric space. The
countable union of closed sets with empty interior is also of empty
interior.
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Remark. We may also say that a topological space is a Baire
space if the countable union of closed sets with empty interior is also
of empty interior.

Remark. Baire’s theorem has important applications in func-
tional analysis.

An equivalent version of Baire’s theorem is the following:

Theorem. Let (X, d) be a complete metric space. The countable
intersection of open dense sets is dense.

7.1.2. Fixed Point theorem.

Definition. Let (X, d) be a metric space. A function f : (X, d)→
(X, d) is called a contracting mapping (or a contraction) if:

∃k ∈ [0, 1) : d(f(x), f(y)) ≤ kd(x, y).

Proposition. A contraction is uniformly continuous, hence con-
tinuous.

Definition. Let X be a set and let f : X → X be a function.
We say that x is a fixed point of f if f(x) = x.

The next is a very interesting result in analysis:

Theorem (Banach). Let (X, d) be a complete metric space. Let
f : (X, d) → (X, d) be a contracting mapping. Then f has a unique
fixed point.

Remark. We have already met a somehow similar result for a
"strict contraction". See Exercise 5.3.27

7.2. True or False: Questions

Questions. Comment on the following questions/statements and
indicate those which are false and those which are true when this ap-
plies. Justify your answers.

(1) Let (X, d) be a metric space. It is known that (xn) is a Cauchy
sequence if

∀ε > 0, ∃N ∈ N, ∀n,m ∈ N (n,m ≥ N ⇒ d(xn, xm) < ε).

We can take ε ≥ 0 and d(xn, xm) ≤ ε in the previous definition.
(2) How do we show that a given metric space is complete?
(3) How do we show that a given metric space is not complete?
(4) If a given space is complete, then what is the best way to

exploit this hypothesis?
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(5) Why is it important to consider complete spaces?
(6) (0,∞) is not complete.
(7) In a complete metric space, the intersection of two dense sets

is never empty.
(8) The union of two non-complete sets can be complete.
(9) Let (X, d) be a metric space and let (xn) be a sequence in

(X, d). Then

(xn) is Cauchy iff it is bounded.

(10) Let (X, d) and (X, d′) be two metric spaces. Assume that d
and d′ are equivalent. Let (xn) be a sequence in X. Then is
true that (xn) is Cauchy with respect to d if and only if (xn)
is Cauchy with respect to d′?

(11) Let (X, d) and (X, d′) be two metric spaces. Assume that d
and d′ are not equivalent. Let (xn) be a sequence in X. Can
(xn) be Cauchy with respect to d but not so with respect to
d′ and vice versa?

(12) Let X = C([0, 1],R) endowed with the metric

d(f, g) =

∫ 1

0

|f(x)− g(x)|dx.

Let

fn(x) =





0, 0 ≤ x ≤ 1
2
− 1

n
nx+ (1− 1

2
n), 1

2
− 1

n
≤ x ≤ 1

2
1, 1

2
≤ x ≤ 1.

This sequence has as its pointwise limit the function

f(x) =

{
0, 0 ≤ x < 1

2
,

1, 1
2
≤ x ≤ 1.

Criticize the following reasoning: The sequence (fn) is a Cauchy
sequence of continuous functions. Since f is not continuous,
(X, d) is not complete.

(13) Keeping everything as in the previous question, say whether
the following reasoning is correct: The sequence (fn) is a
Cauchy sequence of continuous functions. Since f is not con-
tinuous and d(fn, f)→ 0, (X, d) is not complete.

(14) Cauchyness is a topological property.
(15) Cauchyness is conserved by uniform continuity.
(16) Completeness is preserved by uniform continuity.
(17) Completeness is a topological property.
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(18) Let X and Y be two metric spaces and let A ⊂ X be dense
in X. Let f : A→ Y be a continuous function. Then f has a
continuous extension f̃ : X → Y such that f̃|A = f .

(19) Let (X, d) be a metric space. State some properties that illus-
trate the analogy which exists between compact and complete
spaces.

7.3. Exercises With Solutions

Exercise 7.3.1. Among the following sets indicate those which are
complete (the metric is the usual one)

(1) Q;
(2) R \Q;
(3) Q ∩ [3, 4];
(4) (0,+∞);
(5) {n : n ≥ 1};
(6) {(−1)n : n ≥ 1};
(7) { 1

n
: n ∈ N} ∪ {0};

(8) {(x, y) ∈ R2 : x > 1, y ≥ 1
x−1
}?

Exercise 7.3.2. Show that a discrete metric space is always com-
plete.

Remark. Since every closed subset of a complete metric space is
itself complete, since by this exercise discrete metric spaces are com-
plete and since every subset of a discrete metric space is closed, we can
state with ease that all subsets are complete in a discrete metric space
(a propriety that characterizes discrete metric spaces).

Exercise 7.3.3 (Important). Let (X, d) be a metric space. Let
(xn) be a Cauchy sequence in X. Show that if (xn) has a subsequence
converging to x ∈ X, then (xn) converges to x ∈ X too.

Exercise 7.3.4. Show that (R, | · |R) is complete.

Exercise 7.3.5. Show that (C, | · |C) is complete.

Exercise 7.3.6.
(1) Show that every compact metric space is complete.
(2) Is the converse always true?
(3) Deduce from the first question another proof of the complete-

ness of usual R.
(4) Can we say that every complete space is locally compact and

vice versa?
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Exercise 7.3.7. Define the following metric on R

(x, y) 7→ d(x, y) =

∣∣∣∣
x

1 + |x| −
y

1 + |y|

∣∣∣∣ .

Show that (R, d) is not complete (hint: you may use the sequence
defined by xn = n, n ∈ N).

Exercise 7.3.8. Show that (N, d), the metric space defined in Ex-
ercise 2.5.11, is complete.

Exercise 7.3.9. Let

ℓ2 =

{
x = (xn)n, xn : N→ C :

∞∑

n=1

|xn|2 < +∞
}
.

Define a function d on ℓ2 × ℓ2 by

d(x, y) =

√√√√
∞∑

n=1

|xn − yn|2.

(1) Give some elements in ℓ2 and others not in it.
(2) Show that (ℓ2, d) is a complete metric space

Exercise 7.3.10. We endow R with following metric

d(x, y) = |ex − ey|.
Show that R is not complete with respect to d (hint: you may use the
sequence defined by xn = −n, n ∈ N).

Exercise 7.3.11 (Classic and Important). In (ℓ2, d) as defined in
Exercise 7.3.9, show that

A = {(xn)n ∈ ℓ2 : ∃N ∈ N∗, xn = 0, ∀n ≥ N}
is not complete.

Exercise 7.3.12. Let X = C([0, 1],R). We equip it with the metric
defined, for all f, g ∈ X, by

d(f, g) =

∫ 1

0

|f(x)− g(x)|dx.

Consider the sequence of continuous functions

fn(x) =





0, 0 ≤ x ≤ 1
2
− 1

n
nx+ (1− 1

2
n), 1

2
− 1

n
≤ x ≤ 1

2
1, 1

2
≤ x ≤ 1.

(1) Show that (fn) is a Cauchy sequence.
(2) Is (X, d) complete?
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Exercise 7.3.13. [classic and important] Let X = C([0, 1]). Show
that (X, d∞) is complete where d∞ is the supremum metric, i.e. the
metric defined for all f, g ∈ X by

d∞(f, g) = sup
x∈[0,1]

|f(x)− g(x)|

(hint: you need the fact that the uniform limit of a sequence of con-
tinuous functions is continuous. This should be known to the reader,
if not, then more details are to be found in the next chapter).

Exercise 7.3.14. Let X be the space of bounded real-valued func-
tions on [0, 1]. Endow X with the supremum metric which we denote
by d. Show that (X, d) is a complete metric space.

Exercise 7.3.15. Let X be the set of all polynomials (of any degree)
defined on [0, 1] and let d be the metric defined by

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|, f, g ∈ X.

(1) Show that the function x 7→ ex is not a polynomial.
(2) Using the sequence Pn(x) =

(
1 + x

n

)n, n ≥ 1, show that (X, d)
is not complete.

(3) Give another proof of the non-completeness of (X, d) using the
Weierstrass theorem.

Exercise 7.3.16. Let A = (0,∞). Let d be the usual metric and
for any x, y ∈ A, define the function (cf. Exercise 2.5.13)

d′(x, y) = | lnx− ln y|.
(1) Show that d′ is a metric on A.
(2) Why is (A, d) not complete?
(3) Show that (A, d′) is complete.
(4) Show that (A, d) is homeomorphic to (A, d′).
(5) What can you deduce from the previous question? (cf. Exer-

cise 2.5.13).

Exercise 7.3.17.
(1) Show that every differentiable function in [a, b] into [a, b], whose

derivative is bounded by some M < 1, is a contraction.
(2) Show, using the fixed point theorem, that the equation

x4 + 16x3 − 32x− 8 = 0

has exactly one root in [0, 1
2
].
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Exercise 7.3.18.
(1) Let X be a complete metric space. Let f be a mapping defined

on X into X. We assume that for some integer n ≥ 1, fn is a
contraction. Show then that f has a unique fixed point.

(2) • Show that x 7→ cos2 x is a contraction while x 7→ cosx is
not one.
• Give an approximate solution of the equation cosx = x.

Exercise 7.3.19. Let X = {x ∈ Q : x ≥ 1} in the usual metric.
Define a function on X into X by

f(x) =
x

2
+

1

x
.

(1) Show that

∀x, y ∈ X : |f(x)− f(y)| ≤ 1

2
|x− y|.

(2) Show that f does not have a fixed point, that is,
6 ∃x ∈ X : f(x) = x.

(3) Why does not the result of the previous question contradict
the fixed point theorem?

Exercise 7.3.20. (cf. Exercise 5.3.27) Define a function f in X =
[1,∞) (with the usual metric) into the same interval by

f(x) = x+
1

x
.

(1) Show that
∀x, y ≥ 1 (x 6= y) : |f(x)− f(y)| < |x− y|.

(2) Show that f does not have a fixed point, that is,
∀x ∈ X : f(x) 6= x.

(3) Why does the result of the previous question not contradict
the fixed point theorem? Say why it does not contradict the
result of Exercise 5.3.27 either.

Exercise 7.3.21. Let (X, d) and (X ′, d′) be two isometric metric
spaces. Show that (X, d) is complete if and only if (X ′, d′) is complete.

Exercise 7.3.22. Go back to Cantor’s theorem and give examples
showing that the hypotheses on the right hand side of the equivalence
may not merely be dropped.

Exercise 7.3.23. Let a, b ∈ R with a ≤ b. Show that [a, b] is
compact using total boundedness.
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Exercise 7.3.24.
(1) Show that R is not countable (hint: use Baire’s theorem).
(2) Deduce that R \Q is also uncountable.

Exercise 7.3.25. Let C be a non-empty closed and countable subset
of usual R. Show that C has at least one isolated point.

Exercise 7.3.26 (Important). Assume that (X, d) and (Y, d′) are
two metric spaces. Assume also that (X, d) is complete. Let A be
closed and let f : A→ Y be a continuous function satisfying:

d′(f(x), f(x′)) ≥ d(x, x′), ∀x, x′ ∈ A.

Prove that f(A) is closed (Y, d′).

7.4. Tests

Test 53. Let X be a metric space and let A ( X be dense in X.
Must A be complete?

Test 54. Show that R endowed with the "arctan metric" already
defined in Exercise 2.3.26 is not complete.

Test 55. Show that [0, 1) is not countable.

Test 56. Show that the Cantor set is uncountable.

7.5. More Exercises

Exercise 7.5.1. Set

xn = 1 +
1

2
+ · · ·+ 1

n
=

n∑

k=1

1

k
.

Show that (xn) is not Cauchy in R. Does the series
∑

n≥1

1

n
diverge?

Exercise 7.5.2. Is the Cantor set complete?

Exercise 7.5.3. Let (X, d) be a ultrametric space (see Exercise
2.3.20). Let (xn) be a sequence (xn) in X. Show that

(xn) is Cauchy ⇐⇒ lim
n→∞

d(xn, xn+1) = 0.

Exercise 7.5.4. For all (x, y) ∈ R2, define the metric d by

d(x, y) = |x3 − y3|.
(1) Show that R is complete with respect to d.
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(2) Do the previous question with the metric d defined by

d(x, y) =

∣∣∣∣
1

x
− 1

y

∣∣∣∣
and R∗ in lieu of R.

Exercise 7.5.5. Let X = C([−1, 1],R). We endow X with the
metric d defined for all f, g ∈ X by

d(f, g) =

(∫ 1

−1

|f(x)− g(x)|2dx.
) 1

2

and let

fn(x) =




−1, −1 ≤ x ≤ − 1

n
,

nx, − 1
n
≤ x ≤ 1

n
,

1, 1
n
≤ x ≤ 1.

(1) Show that (fn) is a Cauchy sequence in (X, d).
(2) Is (X, d) complete?

Exercise 7.5.6. We endow X = [0, 1) with the following metric

d(x, y) =

∣∣∣∣
1

1− x
− 1

1− y

∣∣∣∣ .

Is (X, d) complete?

Exercise 7.5.7. In (ℓ∞, d) where

ℓ∞ = {x = (xn), xn : N→ C, sup
n
|xn| <∞}

and
d(x, y) = sup

n∈N
|xn − yn|, ∀x, y ∈ A,

show that

A = {(xn)n ∈ ℓ∞ : ∃N ∈ N∗, xn = 0, ∀n ≥ N}
is not complete.

Exercise 7.5.8. Let f : (N, d) → (N, d) be a function defined for
all x ∈ N by f(x) = x + 1, where d is the metric defined in Exercise
2.5.11.

(1) Verify that (N, d) is complete.
(2) Without calculation, can f be a contraction? Why?

Exercise 7.5.9. Show that the image of a Cauchy sequence by a
uniform continuous function remains Cauchy.
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Exercise 7.5.10. Let f : R2 → R2 be defined by

f(x, y) = (
1

2
cos y,

1

2
sin x+ 1)

where R2 is equipped with the usual metric. Show that f has a unique
fixed point.

Exercise 7.5.11. Define f : R → R (usual R!) by f(x) = e−x.
Show that f is not a contraction yet it has a unique fixed point (hint:
consider f 2).

Exercise 7.5.12. Let (X1, d1) and (X2, d2) be two complete metric
spaces. Endow the product space X = X1 × X2 with the metric d′

defined by
d′(x, y) = max

1≤i≤2
di(x, y)

for all x, y ∈ X. Show that (X, d) is complete.

Exercise 7.5.13. Let (fn) the sequence defined in Exercise 4.3.27.
Is {fn : n ∈ N} totally bounded?

Exercise 7.5.14. Let (X, d) be a metric space. Recall the following
important result (see, for instance, [16]):

Theorem. (Hausdorff) There exist a complete metric space (X̃, d̃)
and an isometry f : X → X̃ such that f(X) is dense in X̃.

The space (X̃, d̃) is usually called a completion of (X, d).
(1) Let A ⊂ X. If X is complete, then what is the completion of

A?
(2) What is the completion of (−1, 1) and that of Q in usual R?
(3) Explain why the completion of the space of polynomials on

[0, 1] with respect to the supremum metric is the space of
continuous functions on [0, 1] with respect to the supremum
metric.





CHAPTER 8

Function Spaces

8.1. What You Need to Know

8.1.1. Types of Convergence.

Definition. Let (X, d) and (Y, d′) be two metric spaces. Let (fn)
be a sequence of functions defined on X into Y . We say that (fn)
converges pointwise (or simply) to f : X → Y if:

lim
n→∞

fn(x) = f(x) (in R).

Definition. Let X be a topological space and let (Y, d′) be a met-
ric space. Let (fn) be a sequence of functions defined on X into Y . We
say that (fn) converges uniformly to f : X → Y if:

∀ε > 0, ∃N ∈ N, ∀x ∈ X : (n ≥ N =⇒ d′(fn(x), f(x)) < ε).

Remark. If fn is real-valued, defined on A ⊂ R and converges
pointwise to f , then saying that (fn) converges to f uniformly amounts
to saying that

lim
n→∞

sup
x∈A
|fn(x)− f(x)| = 0.

Examples.
(1) Let fn(x) = xn where x ∈ [0, 1]. Then (fn) converges pointwise

to

f(x) =

{
0, 0 ≤ x < 1,
1, x = 1.

(2) The same sequence does not converge uniformly to f for:

lim
n→∞

sup
0≤x≤1

|fn(x)− f(x)| ≥ lim
n→∞

sup
0≤x<1

|xn − 0| = 1

and hence lim
n→∞

sup
0≤x≤1

|fn(x)− f(x)| 6= 0.

Here are some applications of uniform convergence. We content
ourselves to results of sequences of functions defined on a subset of R.

Theorem. Let (fn) be a sequence of real-valued functions defined
on [a, b]. Assume that (fn) converges uniformly to a function f . Then:

95
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(1) (fn) converges pointwise to f .
(2) If all (fn) are continuous, then f is continuous too.
(3) If all (fn) are Riemann-integrable, then f is Riemann-integrable

and

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.

An akin result on differentiability needs a little more care.

Theorem. If (fn) is a sequence of differentiable real-valued func-
tions defined on (a, b) and which converges pointwise to f , and if the
sequence of derivatives (f ′

n) converges uniformly to a function g on
(a, b), then f is differentiable and f ′ = g.

Pointwise convergence may imply uniform convergence under extra
hypotheses.

Theorem (Dini). Let (fn) be an increasing sequence of real-valued
continuous functions defined on (the compact!) [a, b]. Assume that (fn)
converges pointwise to a continuous function f . Then (fn) converges
uniformly to f .

Remark. By (fn) increasing, we mean increasing with respect to
n.

Remark. The same conclusions of Dini’s theorem hold:
(1) if "increasing" is replaced by "decreasing";
(2) or if [a, b] is replaced by another compact set.

Definition. Let X be a topological space and let (Y, d) be a metric
space. Let (fn) be a sequence of functions from X into (Y, d). We say
that (fn) converges uniformly on compacta (or compactly) to
f : X → (Y, d) if:

∀A compact ⊂ X, ∀ε > 0, ∃N ∈ N : (n ≥ N =⇒ d(fn(x), f(x)) < ε)

for all x ∈ A.

Remark. The "N" in the foregoing definition depends on both A
and ε.

Theorem. Let X be a topological space and let (Y, d) be a metric
space. Let (fn) be a sequence of functions from X into (Y, d).

(1) If (fn) converges uniformly to f , then (fn) converges on com-
pacta to f .

(2) Let X be compact. If (fn) converges on compacta to f , then
(fn) converges uniformly to f .
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8.1.2. Weierstrass Approximation Theorem. The Weierstrass
theorem has a wide range of applications in different areas of mathe-
matics.

Theorem (Weierstrass). The subspace of real-valued polynomials
defined on [a, b] is dense in the space of real-valued continuous functions
defined on [a, b], with respect to the supremum metric.

Remark. In other words, the Weierstrass theorem tells us that
any real-valued continuous function (on [a, b]) may be approximated
uniformly by a sequence of real-valued polynomials (on [a, b]).

Remark. There exist many generalizations of Weierstrass theo-
rem. The most famous one is the Stone-Weierstrass theorem. For the
reader’s convenience we shall state here, but without further use in this
book. But first we need to look at two notions:

Definition. Let X be a compact space equipped with the uniform
metric. The subset A ⊂ C(X,R) is called separating if

∀x, y ∈ X, x 6= y, ∃f ∈ A : f(x) 6= f(y).

Definition. A vector subspace A of C(X,R) is a subalgebra if
for all f, g ∈ A: fg (the pointwise product) remains in A.

Theorem (Stone-Weierstrass). Let X be a compact space equipped
with the uniform metric. Then every separating subalgebra of C(X,R)
which contains the constant functions is dense in C(X,R).

8.1.3. Arzelà-Ascoli Theorem. The epilogue of this chapter is
devoted to the Arzelà-Ascoli theorem. But first we have the following
definition:

Definition. A subset A ⊂ C[0, 1] is said to be equicontinuous
at a point a if:

∀ε > 0, ∃α > 0, ∀f ∈ A, ∀x ∈ [0, 1] : (|x−a| < α =⇒ |f(x)−f(a)| < ε).

A subset A ⊂ C[0, 1] is equicontinuous if it is equicontinuous at
each point of [0, 1].

Examples.
(1) A finite subset of C[0, 1] is equicontinuous.
(2) The set of real-valued functions f defined on [0, 1] and satisfy-

ing the Hölder condition:

∃k, α > 0, ∀x, y ∈ [0, 1] : |f(x)− f(y)| ≤ k|x− y|α

is equicontinuous.
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In an infinite dimensional space, compact spaces are rare. For in-
stance, the closed unit ball in C[0, 1] is not compact with respect to
the supremum metric (see Exercise 5.3.20 or Exercise 5.5.11). The
following theorem characterizes compact subsets of C[0, 1].

Theorem (Arzelà-Ascoli). Let A ⊂ C[0, 1] be closed and bounded.
Then A is compact iff it is equicontinuous.

Remark. Of course, an alternative way of stating the previous
result is to say: A bounded A ⊂ C[0, 1] is relatively compact iff it is
equicontinuous.

Remark. The Arzelà-Ascoli theorem is tremendously important
in mathematics: It has applications in Ordinary Differential Equations,
Distribution Theory and Holomorphic Functions, among others.

8.2. True or False: Questions

Questions. Comment on the following questions/statements and
indicate those which are false and those which are true when this ap-
plies. Justify your answers.

(1) Let (fn) be a monotonic sequence of continuous real-valued
functions on R. If (fn) converges pointwise to f and f is
continuous, then it converges uniformly to f .

(2) Let (fn) be a sequence of continuous real-valued functions hav-
ing f as its pointwise limit. If each function fn is increasing,
then so will be f .

(3) Let (fn) be a sequence of bounded real-valued functions. Then
its pointwise limit f is bounded. What about the uniform
limit?

(4) Let (fn) be a sequence of continuous real-valued functions that
converges pointwise to f on [0, 1). If (fn) converges uniformly
on [0, a] for each 0 < a < 1, then the convergence is uniform
on [0, 1).

(5) Let (fn) be a sequence of continuous real-valued functions that
converges pointwise to f on (0, 1]. If f is continuous, then the
convergence becomes uniform.

(6) Let (fn) be a sequence of continuous real-valued functions de-
fined on [a, b] which converges pointwise to f . Then

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx

(
=

∫ b

a

f(x)dx

)
.
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(7) Let (fn) be a sequence of continuous and differentiable real-
valued functions that converges pointwise to f . Then

lim
n→∞

f ′
n(x) = f ′(x).

8.3. Exercises With Solutions

Exercise 8.3.1. Let (fn) be the sequence of real-valued functions
defined by fn(x) =

sinnx√
n

for all x ∈ [0, 1].
(1) What is the pointwise limit of (fn)?
(2) Does (fn) converge uniformly to the pointwise limit? Why?

Exercise 8.3.2. Let (fn) be the sequence of real-valued functions
defined by fn(x) =

enx√
n

for all x ∈ [−1, 0].
(1) Show that (fn) converges pointwise to some function f .
(2) Show that the convergence is also uniform.
(3) Study the uniform convergence of (f ′

n).

Exercise 8.3.3. Let (Pn) be a sequence of polynomials (on [−1, 1])
defined by {

P0 = 0,
Pn+1(x) = Pn(x) +

1
2
(x2 − P 2

n(x)), ∀n ≥ 0.

Show that (Pn) converges uniformly to f(x) = |x|.
Exercise 8.3.4. Let (xn) be a sequence of functions defined from

[0, 1
2
) into R; denote by (fn). Investigate the convergence of (fn):
(1) pointwise;
(2) uniformly;
(3) compactly.

The same questions for (gn) defined from R into R by: gn(x) =
n+1
n
x.

Exercise 8.3.5. Let (X, d) and (Y, d′) be two metric spaces and let
(fn) be a sequence of equicontinuous functions from X into Y . Set

V = {x ∈ X : (fn(x)) is Cauchy in Y }.
Show that V is closed in Y .

Exercise 8.3.6. Let k be a continuous real-valued map on [0, 1]×
[0, 1]. Define a (linear) map K for all f ∈ C([0, 1]) by

Kf(x) =

∫ 1

0

k(x, y)f(y)dy

(K is usual called an integral operator with kernel k). Let (fn) be
bounded.
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(1) Show that (Kfn) is equicontinuous.
(2) Using the Arzelà-Ascoli theorem, deduce that (Kfn) is rela-

tively compact in C([0, 1]) (we then say that K is a compact
operator).

Exercise 8.3.7. Let f : [a, b] → R be a continuous function. The
moments of f are the numbers

m(f) =

∫ b

a

xnf(x)dx, for all n = 1, 2, 3, · · ·

Show that if all the m(f) vanish, then so will do f (hint: Use the
Weierstrass approximation theorem).

Exercise 8.3.8. Endow C([0, 1],R) with the supremum distance.
Show that C([0, 1],R) is separable (hint: show that the set of polyno-
mials with rational coefficients is dense in C([0, 1],R)).

8.4. Tests

Test 57. What is the pointwise limit (denoted by f) of the sequence
of functions (fn) defined by

fn(x) = 1 + x+ · · ·+ xn

on (−1, 1)? Does (fn) converge uniformly to f?

Test 58. Let (fn) be a sequence of real-valued functions defined on
[0, 1] by

fn(x) = (x(1 − x))n + x.

Find the pointwise limit and study the uniform convergence of (fn).

Test 59. Let (Pn) be a polynomial sequence that converges uni-
formly to f . Is f continuous?

Test 60. Need a finite union of equicontinuous sets be equicontin-
uous?

8.5. More Exercises

Exercise 8.5.1. Define a sequence of functions (fn) as follows

fn(x) = f

(
x+

1

n2

)

where f : R→ R is a continuous function.
(1) Verify that (fn) converges pointwise to f .
(2) Show that the convergence is also uniform.
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(3) Deduce the value of lim
n→∞

∫ 1

0

f

(
x+

1

n2

)
dx.

Exercise 8.5.2. The same questions as those of Exercise 8.3.4 for
(fn) defined from R into R by:

fn(x) =

{
1
n

√
n2 − x2, |x| < n,
0, otherwise.

Exercise 8.5.3. Let (X, d) and (Y, d′) be two metric spaces and let
(fn) be a sequence of functions on X into Y assumed to be equicontin-
uous at a ∈ X. Let (xn) be a sequence in X that converges to a. Show
that if (fn(a)) converges to b, then so does (fn(xn)).

Exercise 8.5.4. Let f be a uniformly continuous real-valued func-
tion on R. Let a ∈ R and set fa(x) = f(x−a). Show that {fa : a ∈ R}
is equicontinuous on R.

Exercise 8.5.5.
(1) Let X be a metric space and let (fn) be a sequence in C(X).

Show that if (fn) is an equicontinuous family at a point a,
then for all sequence (xn) converging to a, (fn(x) − fn(xn))
converges to 0.

(2) What about the converse? (hint: consider fn(x) = sinnx and
xn = a+ π

2n
).

Exercise 8.5.6. Let fn(x) = sin(
√
4(nπ)2 + x) be defined for all

x ≥ 0.
(1) What is the pointwise limit of (fn)?
(2) Show that (fn) is equicontinuous.
(3) Show that (fn) is not relatively compact in C([0,∞),R) equipped

with the supremum metric.
(4) Why does not the result of the previous question contradict

the Arzelà-Ascoli theorem?
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CHAPTER 1

General Notions: Sets, Functions et al

1.2. Solutions to Exercises

Solution 1.2.1.
(1) We have

y ∈ f(
⋃

i∈I
Ai)⇐⇒∃x ∈

⋃

i∈I
Ai : y = f(x)

⇐⇒∃i ∈ I, x ∈ Ai and y = f(x)

⇐⇒∃i ∈ I : y ∈ f(Ai)

⇐⇒y ∈ f(
⋃

i∈I
Ai).

(2) We have
⋂

i∈I
Ai ⊂ Aj , ∀j ∈ I =⇒ f(

⋂

i∈I
Ai) ⊂ f(Aj), ∀j ∈ I.

Thus
f(
⋂

i∈I
Ai) ⊂

⋂

i∈I
f(Ai).

Remark. Observe that Equality does not hold even for
finite intersections. For instance, take the real-valued function
f defined on R by f(x) = x2. Then consider for example
A = (−∞, 0] and B = [0,∞) and one can see easily that

f(A ∩B) = f({0}) = {0} 6= [0,∞) = f(A) ∩ f(B),

i.e. the equality does not hold.

(3) We have

x ∈ f−1(
⋃

i∈I
Bi)⇐⇒ f(x) ∈

⋃

i∈I
Bi ⇐⇒ ∃i ∈ I, f(x) ∈ Bi

⇐⇒ ∃i ∈ I, x ∈ f−1(Bi)⇐⇒ x ∈
⋃

i∈I
f−1(Bi).

(4) The same proof as in the previous question.
105
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(5) We have

x ∈ f−1(Bc)⇐⇒ f(x) ∈ Bc ⇐⇒ f(x) 6∈ B ⇐⇒ x 6∈ f−1(B)

⇐⇒ x ∈ [f−1(B)]c.

(6) We have

x ∈ (g ◦ f)−1(A)⇐⇒ g(f(x)) ∈ A⇐⇒ f(x) ∈ g−1(A)

⇐⇒ x ∈ f−1(g−1(A)).

(7) We have

y ∈ f(f−1(A)) =⇒ ∃x ∈ f−1(A) : y = f(x) =⇒ y = f(x) ∈ A.

(8) A similar method to that of the previous question works.

Solution 1.2.2. Let x ∈ A∩f−1(U). Then x ∈ A and x ∈ f−1(U)
or f(x) ∈ U . Since x ∈ A, we get fA(x) ∈ U , i.e. x ∈ f−1

A (U).
Conversely, let x ∈ f−1

A (U) which, by definition, means that x ∈ A
and fA(x) ∈ U . Hence x ∈ A and f(x) ∈ U . Thus x ∈ A and
x ∈ f−1(U) or x ∈ A ∩ f−1(U).

Solution 1.2.3.
(1) We need only show that f is one-to-one. Let (n,m), (n′, m′) ∈

N × N such that f(n,m) = f(n′, m′), i.e. 2n3m = 2n
′
3m

′ . We
need to show that (n,m) = (n′, m′).

Suppose first that n 6= n′, then 2n3m = 2n
′
3m

′ implies
3m = 2n

′−n3m
′ and if n < n′, then this is a contradiction as

2n
′−n3m

′ is even while 3m is odd. If n > n′, then one considers
2n−n′

3m = 3m
′ and the same contradiction will be encountered.

Hence this forces us to have n = n′ and thus 3m = 3m
′ . We

can use a similar method to show that m = m′ or we can just
take the logarithm to obtain m = m′. Thus f is one-to-one
and hence N×N is countable.

(2) Since A and B are countable, there are surjections f : N→ A
and g : N→ B. Hence the map h : N×N→ A×B defined, for
all (n,m) ∈ N × N by h(n,m) = (f(n); g(m)) is a surjection.
This leads to the countability of A×B since N×N is countable.

Solution 1.2.4. Let f :
⋃

n≥0

Qn+1 → Q[X] be the map defined by

f(a0, a1, · · · , an) = anx
n + · · ·+ a1x+ a0.

By construction, f is onto. Since
⋃

n≥0

Qn+1 is countable (why?), so is

Q[X].
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Solution 1.2.5. One way of proving that X is uncountable is
to show that all countable subsets of X are proper, i.e. whenever a
subset of X is countable, it will be strictly contained in X. Let A ⊂ X
be countable. Then there is some sequence of functions (fn) (whose
image consists of zeroes and ones) such that A = {fn : n ∈ N}. Define
f : N→ {0, 1} by

f(n) = 1− fn(n), ∀n ∈ N.

Now, if fn(n) = 1, then f(n) = 0; and if fn(n) = 0, then f(n) = 1.
Hence f ∈ A. However, f 6∈ A since if it were, then we would have

f(n) = 1− fn(n) = fn(n),

which is absurd.

Solution 1.2.6. The method of proofs is standard and it mainly
uses the Archimedes theorem.

(1) Obviously 0 ∈
(−1

n
, 1
n

)
for all n ≥ 1 and hence

{0} ⊂
⋂

n∈N

(−1
n

,
1

n

)
.

Let x 6= 0. There exists N such that |x| > 1
N

> 0 (why?).
Thus x 6∈

(−1
N
, 1
N

)
and x is not in the intersection. This proves

that
⋂

n∈N

(−1
n

,
1

n

)
⊂ {0}, establishing the equality.

(2) We always have
⋃

n∈N
[−n, n] ⊂ R. Now let x ∈ R. Again by

the Archimedes theorem we know that there exists n ∈ N such
that |x| ≤ n. Hence x ∈

⋃

n∈N
[−n, n]. Thus,

⋃

n∈N
[−n, n] = R.

(3) To be shown as the preceding question.

Solution 1.2.7. The reader may try to find the following results
and must try to prove them as done in the foregoing exercise. The
answers are

(1)
⋂

n∈N
An = {1} and

⋃

n∈N
An = N.

(2)
⋂

n∈N
An = (−1, 1) and

⋃

n∈N
An = R.
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(3)
⋂

n∈N
An = [0, 1] and

⋃

n∈N
An = (−1, 2).

(4)
⋂

n∈N
An = {0} and

⋃

n∈N
An = [0, 1).

(5)
⋂

n∈N
An = [0, 1) and

⋃

n∈N
An = (−1, 1).

Solution 1.2.8. Let a, b ≥ 0 and let p, q > 1. If a = 0 or b = 0,
then it is evident that Young’s inequality is verified. So, assume that
a, b > 0 and let f : R+ → R be the function defined by

f(x) =
xp

p
+

1

q
− x.

It can easily be established that f(x) ≥ 0 for all x ≥ 0. In particular,
for x = ab

1
1−p we have

ab
1

1−p ≤ (ab
1

1−p )p

p
+

1

q
=

apb
p

1−p

p
+

1

q

and hence

ab
1

1−p bq ≤ apb
p

1−p bq

p
+

bq

q
.

But 1
p
+ 1

q
= 1 implies that

b
1

1−p bq = b and b
p

1−p bq = 1.

In the end, we obtain

ab ≤ ap

p
+

bq

q
,

completing the proof.

Solution 1.2.9. The sequence (xn)n is strictly increasing and the
sequence (yn)n is strictly decreasing and it is well-known that

lim
n→∞

xn = lim
n→∞

yn = e

and we have xn < e < yn. Now, assume that e = a
b

where a ∈ N and
b ∈ N. Since xn < e < yn for all n, taking n = b gives us

xb < e =
a

b
< yb, i.e. xb < e =

a

b
< xb +

1

b!b
.

Hence we are led to

b!bxb < b!a < b!bxb + 1.

But b!bxb is an integer which we denote by p. Hence we have p < b!a <
p+1 (where p ∈ N) which is impossible since b!a ∈ N. Thus e ∈ R \Q.
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Remark. In fact, e is not even an algebraic number (the the
interested reader may consult any standard book in number theory).

Solution 1.2.10. Let x, y ∈ R. We may assume WLOG that
x < y. We are required to find an r ∈ Q such that x < r < y. Set
a = y−x > 0. By the Archimedean property, for some p ∈ N, pa > 1 or
1
p
< a. Set q = [px] + 1 where [·] denotes the greatest integer function.

Then q − 1 ≤ px < q. Hence

x <
q

p
≤ x+

1

p
< x+ a = y

and the proof will be complete by taking r = q
p
.

Solution 1.2.11. To prove the inequality, we first note that
∀x ∈ [0, 1] : |f(x)| ≤ sup

0≤x≤1
|f(x)|

and hence
∀x ∈ [0, 1] : |f(x)||g(x)| ≤ sup

0≤x≤1
|f(x)||g(x)|.

Integrating with respect to x on [0, 1] and taking into account that the
final value of sup

0≤x≤1
|f(x)| is a number.

∫ 1

0

|f(x)g(x)|dx =

∫ 1

0

|f(x)||g(x)|dx ≤
∫ 1

0

sup
0≤x≤1

|f(x)||g(x)|dx

= sup
0≤x≤1

|f(x)|
∫ 1

0

|g(x)|dx.





CHAPTER 2

Metric Spaces

2.2. True or False: Answers

Answers.
(1) Yes, an instance of that is the discrete metric (see Exercise

2.3.5).
(2) The answer is yes. For a proof, see Test 1.
(3) In topology, especially for beginners, this is something to avoid

absolutely. We always have to emphasize with respect to which
metric space we are working. Knowing this, we may consider
this question as false or badly formulated. The given set is not
open in R endowed with the usual metric. But with respect
to the discrete metric, it becomes open as every subset is open
in this metric space (see Exercise 2.3.5 below).

(4) No! It is not open, but certainly not because it is closed! It is
not open for

∀r > 0, (−r, r) 6⊂ {0}.
(5) The answer is yes! This may come as a surprise to some of

the readers but they have to be prepared to more "surprises"
(interesting though) in Topology. We always remind the stu-
dents that not every thing true in the classical R, C, Rn,...etc
will be true in an arbitrary metric or topological space.

Let us go back to our question. We give two counterexam-
ples for the sake of diversity of examples.
(a) Let R be endowed with the discrete metric (see Exercise

2.3.5 below). Then

B

(
0,

2

3

)
= {0} ⊆ B

(
0,

1

2

)
= {0}

(this also shows that two balls of the same center with
different radii may well be identical!).

(b) Let N be endowed with the induced standard metric of R.
Then

Bc(3, 2) = {n ∈ N : |n− 3| ≤ 2} = {1, 2, 3, 4, 5}
111
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and

Bc(0, 4) = {n ∈ N : |n| ≤ 4} = {1, 2, 3, 4} ( Bc(3, 2)

(6) The answer is no in general. We will show in Exercise 2.3.3
that

d(x, y) =

∣∣∣∣
1

x
− 1

y

∣∣∣∣
defines a metric on R∗. The given set, i.e. (0, 1) is not bounded
with respect to this metric since

∣∣∣ 1x − 1
y

∣∣∣→ +∞ as x, y → 0+.

Remark. With respect to this metric, N or more gener-
ally, [1,∞) (which are obviously not bounded in usual R) are
bounded sets!

(7) The answer is no. In (R, | · |) (R endowed with the usual
metric), consider

A = [−1, 1], B = [1, 2] and C = [2, 4].

Then

d(A,C) = 1 > d(A,B) + d(B,C) = 0.

(8) The proof is easy and we shall prove only one implication.
The other implication, being very akin, is left to the interested
reader. Let U be an open set in (X, d). Then, for each x ∈ U ,
we can find some r > 0 such that B(x, r) ⊂ U . Since d and
d′ are equivalent, there are some α, β > 0 such that for all
x, y ∈ X one has

αd′(x, y) ≤ d(x, y) ≤ βd′(x, y).

Then if B′(x, r′) is the open ball in (X, d′), where r′ = r
β
, and

if y ∈ B′(x, r′), then

d(x, y) ≤ βd′(x, y) < β
r

β
= r,

implying that y ∈ B(x, r) ⊂ U and hence B′(x, r′) ⊂ U .
HenceU is open in (X ′, d′).

(9) The answer is yes. Let (X, d) be a metric space. Let Bc(x, r)
be the closed ball of radius r > 0 and center x. We need only
prove that the complement of Bc(x, r) is open in (X, d). We
note that

Bc(x, r)
c = {y ∈ X : d(x, y) > r}.



2.3. SOLUTIONS TO EXERCISES 113

Take s = d(x, y) − r > 0. Let z ∈ B(x, s), i.e. d(x, z) < s =
d(x, y)− r and hence

r < d(x, y)− d(x, z) ≤ d(x, z) + d(z, y)− d(x, z) = d(z, y),

i.e. B(x, s) ⊂ Bc
c(x, r) proving the openness of Bc

c(x, r) or the
closedness of Bc(x, r).

The converse is not true in general. Consider the same idea
for a counterexample as the one in Exercise 2.3.17, where it is
also proved that every open ball in a metric space is an open
set.

(10) We recall that, in a metric space (X, d), the sphere of center
x and radius r > 0 is given by

S(x, r) = {y ∈ X : d(x, y) = r}
which can be written as

S(x, r) = Bc(x, r) ∩ [B(x, r)]c,

i.e. as a finite intersection of closed sets and hence S(x, r) is
closed (see Exercise 2.5.6).

(11) The answer is yes and this happens for example in a ultramet-
ric space (see Exercise 2.3.20).

2.3. Solutions to Exercises

Solution 2.3.1. We need only show the triangle inequality for x,
y and z not all distinct. If x = z, then d(x, z) = 0 and hence

0 = d(x, z) ≤ d(x, y) + d(y, z).

If x = y, then
d(x, z) = d(y, z) = d(x, y) + d(y, z),

i.e. we have equality in this case and so we will have in the case y = z.
The proof is over.

Remark. This result may be helpful for proving a given function
is a metric especially when there are different cases to look at. See for
instance the proof for the discrete metric below.

Solution 2.3.2. Let x, y, z ∈ X. We have
d(x, z) ≤ d(x, y) + d(y, z) and hence d(x, z)− d(y, z) ≤ d(x, y).

Inverting the roles of x and y yields
d(y, z)− d(x, z) ≤ d(y, x) = d(x, y).

Thus
|d(x, z)− d(y, z)| ≤ d(x, y).



114 2. METRIC SPACES

Solution 2.3.3.
(1) No, d is not a metric. For example, 1 6= −1 but d(1,−1) = 0.
(2) Yes, d is a metric on R. Let us show that. First, we note that

the range of d is R+. Let us check the remaining properties of
a metric.
(a) Let x, y ∈ R. Then

d(x, y) = 0⇔ |x3 − y3| = 0⇔ x3 = y3 ⇔ x = y.

(b) Let x, y ∈ R. Then

d(x, y) = |x3 − y3| = |y3 − x3| = d(y, x).

(c) Let x, y, z ∈ R. Then

d(x, z) = |x3 − z3| = |x3 − y3 + y3 − z3| ≤ |x3 − y3|+ |y3 − z3|
and hence

d(x, z) ≤ d(x, y) + d(y, z).

(3) No, since d never vanishes.
(4) Yes, d is indeed a metric. Let us show this.

(a) Let x, y ∈ R∗. We have

x = y ⇐⇒ 1

x
=

1

y
⇐⇒

∣∣∣∣
1

x
− 1

y

∣∣∣∣ = 0⇐⇒ d(x, y) = 0.

(b) Let x, y ∈ R∗. We obviously have

d(x, y) = d(y, x).

(c) Let x, y, z ∈ R∗. We have

d(x, z) =

∣∣∣∣
1

x
− 1

z

∣∣∣∣ =
∣∣∣∣
1

x
− 1

y
+

1

y
− 1

z

∣∣∣∣ ≤
∣∣∣∣
1

x
− 1

y

∣∣∣∣ +
∣∣∣∣
1

y
− 1

z

∣∣∣∣
and so

d(x, z) ≤ d(x, y) + d(y, z).

(5) No, since d(1, 1) = 2 6= 0.

Solution 2.3.4. The open ball of center x and radius r > 0 in
the usual metric of R is given by

B(x, r) = {y ∈ R : |x− y| < r} = (x− r, x+ r).

So if (x− r, x+ r) = (0, 1), then
{

x− r = 0,
x+ r = 1

and whence

{
x = 1

2
,

r = 1
2
.
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Solution 2.3.5.
(1) Clearly ∀x, y ∈ X, d(x, y) ≥ 0. Also, the first two properties

of a metric are evidently satisfied.
Now, let us show the triangle inequality. If x = z, then

d(x, z) = 0 and hence

d(x, z) ≤ d(x, y) + d(y, z).

If x 6= z, then either x 6= y or y 6= z (otherwise we will have
x = y = z) and hence

1 = d(x, z) ≤ d(x, y) + d(y, z) = 1 or 2.

(2) We show that

B(x, r) = {x} if r ≤ 1 and B(x, r) = X if r > 1.

We have

B(x, r) = {y ∈ X : d(x, y) < r ≤ 1} ⊂ {y ∈ X : d(x, y) < 1} = {x}
since d(x, y) is worth 1 or 0. On the other hand, it is plain
that {x} ⊂ B(x, r), hence the equality holds. Since

d(x, y) ≤ 1 < r, ∀x, y ∈ X,

we see that B(x, r) = X.
Similarly, we can prove that

Bc(x, r) = {x} for r < 1 and Bc(x, r) = X for r ≥ 1.

(3) If r 6= 1 (remember that r > 0), then obviously S(x, r) = ∅.
If, however, r = 1, then

S(x, 1) = {y ∈ X : d(x, y) = 1} = X \ {x}.
(4) The way of proving ∅ and X are open is the same as in Exercise

2.3.15 below. Now, let U be any subset of X. Let x ∈ U . Then

B

(
x,

1

2

)
= {x} ⊂ U,

proving the openness of U .
(5) If V is a subset of X, then so is its complement V c. Hence V c

is open and thus V is closed.
(6) Denote the usual metric on R by | · |. To show d is not

equivalent to | · |, we can equivalently show that the func-
tion (x, y) 7→ d(x,y)

|x−y| is not bounded on R2. If it were, then it
would have been so for y = 0 and x = e−n. But

d(e−n, 0)

|e−n| =
1

e−n
= en →∞ as n→∞.
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Thus the two metrics are not equivalent.

Solution 2.3.6. We first note that d′ is a positive and well-defined
function on X ×X since d is a metric (the fact that d is a metric will
be used a few times and it will be clear to the reader without further
notice). Now we verify the other axioms.

(1) Let x, y ∈ X.
(a) If x = y, then d(x, y) = 0. Hence d′(x, y) =

√
d(x, y) = 0.

(b) If d′(x, y) = 0, then
√

d(x, y) = 0 or d(x, y) = 0. Thus
x = y.

(2) Let x, y ∈ X. We obviously have

d′(x, y) =
√

d(x, y) =
√
d(y, x) = d′(y, x).

(3) Let x, y, z ∈ X. Since d(x, z) ≤ d(x, y) + d(y, z) (as d is
a metric), since

√· is increasing on R+ and since
√
a+ b ≤√

a+
√
b (for all a, b ≥ 0), one can write

d′(x, z) =
√

d(x, z) ≤
√

d(x, y) + d(y, z) ≤
√
d(x, y) +

√
d(y, z)

and hence

d′(x, z) ≤ d′(x, y) + d′(y, z).

Solution 2.3.7.
(1) Let x, y ∈ N, then obviously d(x, y) = 0⇔ x = y.
(2) Also, for all x, y ∈ N, d(x, y) = d(y, x).
(3) Lastly, let x, y, z ∈ N. Then

3 +
x+ z

xz
= 3 +

1

x
+

1

z
≤ 3 +

1

x
+

1

y
+ 3 +

1

y
+

1

z

and hence

d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ N.

Solution 2.3.8. First, observe that for all x, y ∈ Rn, d(x, y) ≥ 0.
Let us show now the axioms of a metric.

(1) If x = y, then |xk − yk| = 0 (for all k = 1, · · · , n) and hence
d(x, y) = 0. Conversely, let x, y ∈ Rn. We have

d(x, y) = 0⇒ |xk−yk| = 0, ∀k ∈ {1, · · · , n} ⇒ xk = yk, ∀k ∈ {1, · · · , n},
i.e. x = y.

(2) Let x, y ∈ Rn. We have

d(x, y) =
n∑

k=1

|xk − yk| =
n∑

k=1

|yk − xk| = d(y, x).
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(3) Let x, y, z ∈ Rn. Since

|xk − zk| ≤ |xk − yk|+ |yk − zk|, ∀k ∈ {1, · · · , n},

summing in k yields

d(x, z) ≤ d(x, y) + d(y, z).

Solution 2.3.9.
(1) Set for any 1 ≤ k ≤ n,

Ak =
ak

(
∑n

k=1 a
p
k)

1
p

and Bk =
bk

(
∑n

k=1 b
q
k)

1
q

.

Applying Young’s inequality (see Exercise 1.2.8) to Ak and Bk

gives us AkBk ≤ Ap
k

p
+

Bq
k

q
, i.e.

ak

(
∑n

k=1 a
p
k)

1
p

bk

(
∑n

k=1 b
q
k)

1
q

≤ 1

p

apk∑n
k=1 a

p
k

+
1

q

bqk∑n
k=1 b

q
k

.

Summing in k yields
∑n

k=1 akbk

(
∑n

k=1 a
p
k)

1
p (
∑n

k=1 b
q
k)

1
q

≤ 1

p
+

1

q
= 1

and the desired result will then follows easily.
(2) To prove the Minkowski inequality, we will use the Hölder’s

inequality twice. We have

n∑

k=1

(ak + bk)
p =

n∑

k=1

(ak + bk)
p−1(ak + bk)

=

n∑

k=1

(ak + bk)
p−1ak +

n∑

k=1

(ak + bk)
p−1bk

≤
(

n∑

k=1

(ak + bk)
(p−1)q

) 1
q
(

n∑

k=1

apk

) 1
p

+

(
n∑

k=1

(ak + bk)
(p−1)q

) 1
q
(

n∑

k=1

bpk

) 1
p

.
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But 1
p
+ 1

q
= 1⇒ (p− 1)q = p and so

n∑

k=1

(ak + bk)
p ≤

(
n∑

k=1

(ak + bk)
p

) 1
q
(

n∑

k=1

apk

) 1
p

+

(
n∑

k=1

(ak + bk)
p

) 1
q
(

n∑

k=1

bpk

) 1
p

=

(
n∑

k=1

(ak + bk)
p

) 1
q



(

n∑

k=1

bpk

) 1
p

+

(
n∑

k=1

apk

) 1
p


 .

Hence (and since 1
p
= 1− 1

q
)

(
n∑

k=1

(ak + bk)
p

)1− 1
q

=

(
n∑

k=1

(ak + bk)
p

) 1
p

≤
(

n∑

k=1

bpk

) 1
p

+

(
n∑

k=1

apk

) 1
p

and the proof is over.
(3) (a) We first prove that d∞ is a metric and this does not require

the previous questions.
(i) Let x, y ∈ Rn. If x = y, then obviously d∞(x, y) =

0.
Now, if d∞(x, y) = 0, then for all 1 ≤ k ≤ n : |xk−
yk| = 0 leading to x = y.

(ii) We evidently have for all x, y ∈ Rn

d∞(x, y) = d∞(y, x)

(iii) Let x, y, z ∈ Rn. Then for all 1 ≤ k ≤ n, we have

|xk − zk| ≤ |xk − yk|+ |yk − zk| ≤ d∞(x, y) + d∞(y, z)

and hence

d∞(x, z) ≤ d∞(x, y) + d∞(y, z).

Now we show that each dp is a metric. Let p ≥ 1.
(i) Let x, y ∈ Rn. Then if dp(x, y) = 0, one will have

n∑

k=1

|xk − yk|p = 0⇒ |xk − yk|p = 0, ∀k = 1, · · · , n⇒ x = y.

The other implication is obvious.
(ii) The second axiom is verified as for all x, y ∈ Rn

dp(x, y) = dp(y, x).
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(iii) The triangle inequality is a mere consequence of
Minkowski inequality. Setting and reporting xk −
yk = ak and yk − zk = bk (for all k = 1, · · · , n) into
Minkowski inequality give us the desired triangle
inequality.

(b) First we show the equivalence of the metrics. We have for
all 1 ≤ k ≤ n,

|xk − yk|p ≤
n∑

k=1

|xk − yk|p = dpp(x, y).

Hence, taking the pth root (without changing the sign of
the inequality which is legitimate as the function x 7→ xa,
for a > 0, is increasing on R∗

+) and taking the max over
k gives

d∞(x, y) ≤ dp(x, y)

and we are half-way through. We also have for all 1 ≤
k ≤ n,
|xk − yk|p ≤ max

1≤k≤n
(|xk − yk|p) = dp∞(x, y)

and summing in k and the taking the pth root yield

dp(x, y) ≤ n
1
pd∞(x, y),

demonstrating the equivalence of the metrics.
To prove the last desired limit, we note that since for all
p ≥ 1,

d∞(x, y) ≤ dp(x, y) ≤ n
1
pd∞(x, y),

taking the limit as p → ∞ and observing that n
1
p → 1,

we easily obtain
lim
p→∞

dp(x, y) = d∞(x, y).

Solution 2.3.10.
(1) (a) Let us show that δ is in effect a metric on X.

(i) Let x, y ∈ X. We have
δ(x, y) = 0⇐⇒ min(1, d(x, y)) = 0⇐⇒ d(x, y) = 0⇐⇒ x = y

since d is a distance.
(ii) Let x, y ∈ X. It is plain that δ(x, y) = δ(y, x).
(iii) Let x, y, z ∈ X.

(A) If d(x, y) ≤ 1 and d(y, z) ≤ 1, then
δ(x, z) ≤ d(x, z) ≤ d(x, y) + d(y, z) = δ(x, y) + δ(y, z).
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(B) If d(x, y) > 1, then

δ(x, z) ≤ 1 = δ(x, y) ≤ δ(x, y) + δ(y, z).

(C) The same arguments apply if d(y, z) > 1.
(b) Now we show that ρ is a metric on X.

(i) The first property of a metric is trivial.
(ii) The second property is also trivial.
(iii) Now, let x, y, z ∈ R. Since d(x, z) ≤ d(x, y)+d(y, z)

and using the hint, we easily see that

ρ(x, z) =
d(x, z)

1 + d(x, z)
≤ d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)
≤ d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)
.

Thus ρ is a metric on X.
(2) The set X is bounded (even if X is R, say) with respect to

both metrics since the given metrics are bounded as

∀x, y ∈ X : δ(x, y) ≤ 1 and ρ(x, y) ≤ 1.

Remark. By doing some arithmetic one can prove the triangle
inequality for ρ directly without calling on the hint (the reader should
try it).

Solution 2.3.11. To show that d is a metric, we first need to
check that the series involved in the definition of d converges. For any
n, one always have

1

2n
× dn(xn, yn)

1 + dn(xn, yn)
≤ 1

2n
= un.

Since
∞∑

n=1

un = 1 < +∞, d(x, y) <∞.

Now the previous exercise can be used to show the properties of a
metric for d and we leave the details to the reader.

Solution 2.3.12.
(1) Since f and g are continuous, so is |f−g| and hence d(f, g) is a

well-defined quantity and so is d′(f, g) as |f − g| is continuous
on the closed and bounded [0, 1]. Observe that both d and d′

have R+ as their range.
First, we show that d is a metric on X.

(a) Let f, g ∈ X. We have

f = g =⇒ d(f, g) = 0 (this is obvious) .
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Now since |f − g| is a continuous and positive function,
we have∫ 1

0

|f(x)− g(x)|dx = 0 =⇒ |f(x)− g(x)| = 0, ∀x ∈ [0, 1]⇐⇒ f = g.

(b) It is plain that for all f and g in X one has d(f, g) =
d(g, f).

(c) Let us show now the triangle inequality. Let f, g, h ∈ X.
We have for all x ∈ [0, 1]

|f(x)−h(x)| = |f(x)−g(x)+g(x)−h(x)| ≤ |f(x)−g(x)|+|g(x)−h(x)|.
Hence∫ 1

0

|f(x)− h(x)|dx ≤
∫ 1

0

|f(x)− g(x)|dx+

∫ 1

0

|g(x)− h(x)|dx,

i.e. d(f, h) ≤ d(f, g) + d(g, h).
Now we prove that d′ is a metric on X too.

(a) If f = g, then obviously d′(f, g), being the supremum
of the nil function, must vanish as well. Conversely, if
d′(f, g) = 0, then for all x ∈ [0, 1] we have

0 ≤ |f(x)− g(x)| ≤ sup
x∈[0,1]

|f(x)− g(x)| = d′(f, g) = 0.

Thus f = g.
(b) For all f, g ∈ X, we have

d′(f, g) = sup
x∈[0,1]

|f(x)− g(x)| = sup
x∈[0,1]

|g(x)− f(x)| = d′(g, f).

(c) Let f, g, h ∈ X. Then we have for all x ∈ [0, 1]

|f(x)− h(x)| ≤ |f(x)− g(x)|+ |g(x)− h(x)| ≤ d′(f, g) + d′(g, h).

Thus

d′(f, h) ≤ d′(f, g) + d′(g, h).

(2) We recall that d and d′ are said to be equivalent if

∃a, b > 0, ∀f, g ∈ X : ad′(f, g) ≤ d(f, g) ≤ bd′(f, g).

We show that the LHS inequality does not hold (the RHS one
does hold, cf Exercise 1.2.11) and in order to simplify the proof
a bit we may take g = 0. Now take f(x) = xn, defined on [0, 1],
for a given n in N. Then d(f, 0) = 1

n+1
and d′(f, 0) = 1. If d

were equivalent to d′ we would have

∃a > 0, ∀n ∈ N : a ≤ 1

n+ 1
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which would imply that N is bounded, something impossible,
i.e. we reached a contradiction. Thus d and d′ are not equiv-
alent.

(3) No, d is no longer a metric in this case. For if one takes

f(x) =

{
0, x ∈ [0, 1),
2, x = 1.

and g is the zero function, then f 6= g and yet

d(f, g) =

∫ 1

0

|f(x)− 0|dx = 0.

Solution 2.3.13. The answer is no. The function d does verify
the second and third property of a metric and one implication of the
first one (i.e. f = g ⇒ d(f, g) = 0). However,

d(f ′, g′) = 0 6=⇒ f = g.

For instance take any f ∈ X and g(x) = f(x) + 1. Then f 6= g but
d(f, g) = 0.

Solution 2.3.14.
(1) The answer is no. On simple instance is to take R equipped

with the discrete metric (see Exercise 2.3.5). Take r = 2 and
s = 3 and x = 0 and y = −1. Then we know that B(0, 2) =
B(−1, 3) = R and of course r 6= s and x 6= y.

(2) The result is true for example in R endowed with its standard
metric.

Solution 2.3.15.
(1) First, we show that X is open. Let x ∈ X. Then for some

(and in this case all) r > 0

B(x, r) ⊂ X.

Thus X is open in (X, d). The openness of ∅ follows from the
observation that if x ∈ ∅ (x does not exist!), then for some
(and here any) r > 0

B(x, r) = ∅ ⊂ ∅

(2) Let {Ui}i∈I be an arbitrary family of open sets in (X, d). We
have to show that their union remains open. To this end, let
x ∈

⋃

i∈I
Ui. Then there is some j ∈ I such that x ∈ Uj. But,
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Uj is open and hence it contains an open ball, B(x, r) (r > 0)
say. Hence

B(x, r) ⊂ Uj ⊂
⋃

i∈I
Ui.

Thus the arbitrary union of open sets is open.
(3) We only prove it for two open sets. The proof for a finite

intersection follows easily by induction. Let U and V be two
open sets in X. Let x ∈ U ∩ V . Hence x ∈ U and x ∈ V .
Then

∃r > 0, B(x, r) ⊂ U and ∃s > 0, B(x, s) ⊂ V

Taking a = min(r, s) leads to

B(x, a) ⊂ U ∩ V,

showing the openness of U ∩ V .
The last result does not extend to infinite intersections.

For instance, all the intervals (− 1
n
, 1
n
) are open (for all n ∈ N),

however,
⋂

n∈N

(
−1

n
,
1

n

)
= {0}

which is not open.

Solution 2.3.16. Assume that a set U is written as a union of
open balls. Then, obviously U is open since every open ball is an open
set and the arbitrary union of open sets is open (see the foregoing
exercise!).

Conversely, suppose U is open. By definition of an open set in a
metric space, for every x in U we can always find r > 0 for which
B(x, r) ⊂ U . Whence

U =
⋃

x∈U
{x} ⊂

⋃

x∈U
B(x, r) ⊂ U, i.e. U =

⋃

x∈U
B(x, r).

Solution 2.3.17. Let (X, d) be a metric space and let B(X, r) be
an open ball with center x ∈ X and radius r > 0. Let y ∈ B(x, r) (so
d(x, y) < r). We must show that B(x, r) contains another open ball
centered at y. Let s = r − d(x, y) > 0. Then it may be easily showed
that

B(y, s) ⊂ B(x, r),

completing the proof.
There are many counterexamples for the converse. For instance, in

a discrete metric space X (for convenience choose X such that cardX ≥
3), open balls are only X or singletons (nothing else). On the other
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hand, it is known that any subset is open, so {x, y}, where x, y ∈ X,
is open too but as observed just above, it is not an open ball.

Solution 2.3.18. None of the given intervals is open in R. For
instance [a, b) is not open in R since a ∈ [a, b) and

∀r > 0, B(a, r) = (a− r, a+ r) 6⊂ [a, b).

Solution 2.3.19.
(1) Straightforward verification for the first two properties. As for

the triangle inequality, let x, y, z ∈ R2. Then we have

δ(x, z) = d(x, 0) + d(z, 0)

≤ d(x, 0) + d(y, 0) + d(y, 0) + d(z, 0)

= δ(x, y) + δ(y, z).

(2) Let a 6= 0. We have

B(a, r) = {x ∈ R2 : d(x, 0) + d(a, 0) < r}
if x 6= a. Choosing r < d(a, 0), e.g. r = 1

3
d(a, 0) (which

is legitimate since a 6= 0), we see that d(x, 0) + d(a, 0) < r
cannot be realized and hence we are left with δ(x, a) = 0, i.e.
B(a, 1

3
d(a, 0)) = {a}.

(3) If {0} were open in (R2, δ), then there would exist a positive
r such that B(0, r) ⊂ {0}. But

B(0, r) = {(x, y) ∈ R2 : δ((x, y), 0) < r} = {(x, y) ∈ R2 : x2+y2 < r2}
cannot be a subset of {0} for every r > 0. Thus {0} is not
open in (R2, δ).

(4) In R2 \ {0} every singleton is open. Hence every set is open
since it can be written as a union (even arbitrary, see Exercise
2.3.16) of singletons. Thus every set in R2 \ {0} is closed too.
Accordingly, every subset of R2 \ {0} is clopen and hence δ
coincides with the discrete metric on R2 \ {0}.

Solution 2.3.20.
(1) The only property to prove is the triangle inequality. We may

assume WLOG that d(x, y) < d(y, z). Then

d(x, z) ≤ max(d(x, y), d(y, z)) = d(y, z) ≤ d(x, y) + d(y, z).

(2) Assume d(x, y) 6= d(y, z) or we could just assume that d(x, y) <
d(y, z) (couldn’t we?). We can write by hypothesis

( d(x, y) <) d(y, z) ≤ max(d(x, y), d(x, z))
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and a fortiori
max(d(x, y), d(x, z)) = d(x, z), i.e. d(y, z) ≤ d(x, z).

The "ultrametricity" hypothesis also gives us
d(x, z) ≤ max(d(x, y), d(y, z)) = d(y, z)

and so d(x, z) = d(y, z).
Geometrically, this means that in a ultrametric space every

triangle is isosceles.
(3) Let B(x, r) be the open ball of center x and of radius r > 0.

Let y ∈ B(x, r) (hence d(x, y) < r). We need to show that
B(x, r) = B(y, r). Let z ∈ B(x, r), i.e. d(x, z) < r. Hence
d(y, z) ≤ max(d(x, y), d(x, z)) < r ⇒ z ∈ B(y, r).

The other inclusion can be dealt with similarly.
(4) Well, every closed ball is a closed set in any metric space. We

show that every closed ball is open too. Let Bc(x, r) be a
closed ball of center x and of radius r > 0. Let y ∈ Bc(x, r),
i.e. d(x, y) ≤ r. We are done if we show that this closed ball
contains the open ball B(y, r). Let z ∈ B(y, r). Then

d(x, z) ≤ max(d(x, y), d(y, z)) ≤ r

and thus z ∈ Bc(x, r).
We leave to the reader to show that every open ball is

closed.

Solution 2.3.21. First, note that the definition which was recalled
can be re-written as follows: f is continuous atx iff

∀ε > 0, ∃δ > 0, ∀y ∈ X : (d(x, y) < δ ⇒ d′(f(x), f(y)) < ε).

Let us go back now to the proof. Assume that f is continuous and
let U be an open set in X ′. We ought to show that f−1(U) is open
in X. Let x be in f−1(U), i.e. f(x) ∈ U . But U is open and hence
there exists some ε > 0, B(f(x), ε) ⊂ U . Since f is continuous, the
hypothesis implies that

f(B(x, δ)) ⊂ B(f(x), ε) ⊂ U which leads to B(x, δ) ⊂ f−1(U),

proving the openness of f−1(U).
Conversely, let us show that f is continuous at x ∈ X (assuming

that the preimage by f of every open set in X ′ is open in X). Let ε > 0.
Then it is clear that B(f(x), ε) is open in X ′. Then by hypothesis,
f−1(B(f(x), ε)) is also an open set but in X. This guarantees the
existence of a strictly positive δ such that

B(x, δ) ⊂ f−1(B(f(x), ε))
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or
f(B(x, δ)) ⊂ B(f(x), ε),

establishing the continuity of f .

Solution 2.3.22.
(1) Let f : (X, d)→ (R, |·|) be a function such that f(x) = d(x, a).

Then f is continuous on X (it is in fact uniformly continuous)
because for any x, y ∈ X

|f(x)− f(y)| = |d(x, a)− d(y, a)| ≤ d(x, y) (by Exercise 2.3.2).

(2) Let x, y be in X. If b ∈ B, then

d(x,B) ≤ d(x, b) ≤ d(x, y) + d(y, b).

Passing to the infimum over B we obtain

d(x,B) ≤ d(x, y) + d(y, B).

Inverting the roles of x and y yields

d(y, B) ≤ d(y, x) + d(x,B) = d(x, y) + d(x,B)

and hence

|d(x,B)− d(y, B)| ≤ d(x, y),

from which we easily establish the uniform continuity of g.

Solution 2.3.23.
(1) Recall that f is uniformly continuous on R+ iff

∀ε > 0, ∃α > 0, ∀x, y ∈ R+ (|x− y| < α⇒ d(f(x), f(y)) < ε).

Let ε > 0. Since f is the identity mapping, we can write

d(f(x), f(y)) = d(x, y) = |√x−√y|.
It is well-known that

∀x, y ≥ 0 : |√x−√y| ≤
√
|x− y|.

So it becomes clear that in order to establish the uniform con-
tinuity of f , it suffices to take α = ε2.

(2) We could say that the function g : R+ → R+ (both spaces
equipped with the usual metric), defined for all x ≥ 0, by
f(x) =

√
x is uniformly continuous on R+.

Solution 2.3.24. The needed tools to answer these questions are
the density of both Q and R \Q in R.
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(1) Consider

f(x) =

{
x− 1, x ∈ Q,
x+ 1, x ∈ R−Q.

Then f is not continuous at any point of R. To show this, let
x0 ∈ R. Then

∃(xn) ∈ Q, (yn) ∈ R \Q : xn → x0 and yn → x0.

If f were continuous at x0, then would have

f(xn) = xn − 1→ x0 − 1 = x0 + 1← yn + 1 = f(yn)

and obviously no such x0 would satisfy that equation. Hence
f is discontinuous on the whole of R.

(2) Consider

f(x) =

{
0, x ∈ Q,
x, x ∈ R−Q.

Then f is only continuous at one point, that is at x0 = 0. The
proof is very similar to the previous one.

(3) Consider

f(x) =

{
x2, x ∈ Q,

2− x, x ∈ R−Q.

Then f is only continuous at two points, namely 1 and−2. The
proof is also left to the reader for its resemblance to Answer 1.

Solution 2.3.25. >From Exercise 2.3.22 we know that f is con-
tinuous. Now we have

B(a, r) ={x ∈ X : d(x, a) < r} = {x ∈ X : f(x) < r}
={x ∈ X : f(x) ∈ (−∞, r)}.

Hence
B(a, r) = f−1((−∞, r)).

Since ((−∞, r) is open in R and f is continuous on X, then B(a, r) =
f−1((−∞, r)) is open in X.

Solution 2.3.26.
(1) The proof that δ is indeed a metric is left to the reader.

The metric δ is bounded and hence (R, δ) is bounded since

∀x, y ∈ R : δ(x, y) = | arctanx− arctan y| < π.
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(2) The range of the "arctan" function is (−π
2
, π
2
). This observa-

tion leads to

B(0, 2) = B(0, 4) = B(1, 4) = R.
Thus, two balls with different radii (and the same center) may
coincide with respect to this metric. Also, two balls with the
same radius (and different centers) may also be equal!

(3) The two metrics cannot be equivalent. Assume they were, then
we would have for some β > 0 and all x, y ∈ R:

β|x− y| ≤ | arctanx− arctan y| < π.

This would imply then that (usual) R is bounded! This is
impossible.

(4) Yes. This can be easily seen from the fact that the identities

id : (R, δ)→ (R, d) and id : (R, d)→ (R, δ)
are both continuous for the functions arctan and tan are both
continuous in usual R.

Solution 2.3.27.
(1) It is clear that for all x, y ∈ X

ρ(x, y) ≤ d(x, y).

On the other hand, the ratio ρ
d

is not a bounded function
on X2, i.e. there is no positive constant a such that for all
x, y ρ(x, y) ≥ d(x, y). Therefore, d and ρ are not equivalent
metrics.

(2) Let us show that d and ρ are topologically equivalent. Denote
an open ball in (X, d) by Bd and an open ball in (X, ρ) by Bρ.
Let U be an open set in (X, d). Let x ∈ U . Then ∃r > 0 such
that Bd(x, r) ⊂ U . But

d(x, y)

1 + d(x, y)
<

r

1 + r
⇒ rd(x, y) + d(x, y) < rd(x, y) + r ⇒ d(x, y) < r

(for each x, y ∈ X and r > 0). Hence

Bρ

(
x,

r

1 + r

)
⊂ Bd(x, r) ⊂ U,

proving the openness of U in (X, ρ).
Conversely, let U be an open set in (X, ρ). Let x ∈ U .

Then ∃r > 0 such that Bρ(x, r) ⊂ U . But, if r < 1, then

d(x, y) <
r

1− r
⇒ d(x, y)

1 + d(x, y)
= ρ(x, y) < r
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(for all x, y). Hence

Bd

(
x,

r

1− r

)
⊂ Bρ(x, r) ⊂ (f−1)−1(U) = U

and if r ≥ 1, then for all x, y ∈ X

d(x, y)

1 + d(x, y)
≤ 1 ≤ r.

Hence Bρ(x, r) = X which forces us to have X = U . Thus, in
either case U is open in (X, d). The proof is complete.

2.4. Hints/Answers to Tests

Solution 1. Let x, y ∈ X. We have
0 = d(x, x) ≤ d(x, y) + d(y, x) = d(x, y) + d(x, y) = 2d(x, y)

where we have used the three properties of a metric...

Solution 2. Straightforward calculations based on known prop-
erties of the Logarithm function...

Solution 3. Proceed as in Exercise 2.3.12. Also use the Cauchy-
Schwarz inequality...

Solution 4. It is obvious that d is positive. The first two proper-
ties are evidently verified. For the triangle inequality, there is a finite
number of cases that must be checked...

Solution 5. The second and the third properties use the fact that
d is a metric but they do not use the injectivity of f ...To prove the first
property, utilize the injectivity of f ...

Solution 6. The discrete metric space is a ultrametric space
whereas the usual metric on R is not...





CHAPTER 3

Topological Spaces

3.2. True or False: Answers

Answers.

(1) The answer is yes. We may define at least two topologies on
X, namely the discrete and the indiscrete ones.

Observe that if cardX = 1, then these topologies mani-
festly coincide.

(2) If we come to show that the intersection of two elements of
T is in T , then a proof by induction will allow us to deduce
that the finite intersection of elements in T is in T too. This
is probably known to most of the readers, but we wanted to
remind the students that the proof by induction is used here for
finite intersections and it cannot be used for infinite countable
unions or intersections.

(3) False! For example, define on X = {a, b, c, d}

T = {∅, {a}, X} and T ′ = {∅, {b, d}, X}.

Then it can easily be established that T and T ′ are two topolo-
gies on X. However,

T ∪ T ′ = {∅, {a}, {b, d}, X}

does not define a topology on X.
(4) True! In fact, a more general result holds. Namely, if {Ti}i∈I

is an arbitrary collection of topologies on the same set X,
then so is their intersection. Let us prove it. Since Ti are all
topologies for i ∈ I, they must all contain ∅ and hence so
must do their intersection. The same reasoning applies for X.
Let A,B ∈

⋂

i∈I
Ti. Then

∀i ∈ I : A,B ∈ Ti and thus for all i, A ∩B ∈ Ti.

131
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Therefore, A∩B ∈
⋂

i∈I
Ti. Finally, let Aj ∈

⋂

i∈I
Ti where j ∈ J .

Then all Aj belongs to each Ti. Since Ti are all topologies, it
follows that

⋃

j∈J
Aj ∈ Ti, for all i ∈ I. The proof is complete.

(5) The answer is yes and both mappings are "increasing" with
respect to "⊂". For the known properties state that

A ⊂ B =⇒
{

A ⊂ B,
◦
A ⊂

◦
B.

(6) The answer is yes if and only if A = X (as X is open). And
the answer is no and will always be so if A 6= X, i.e. A ( X

as
◦
A ⊂ A ( X.

(7) The answer is no! Give R the usual topology and take A = Q.
Then

◦
A =

◦
R = R 6= ∅.

Remember that a set A such that
◦
A = ∅ is said to be nowhere

dense.
(8) The answer is yes if and only if A = ∅ (as ∅ is closed). And

the answer is no and will ever be so if A 6= ∅ for the simple
reason that by definition of the closure of a set, we have A ⊃ A.

(9) Absolutely not! The two terminologies are different from one
another and are totally independent of each other.

(10) The answer is no. We give two counterexamples. Define a
topology T on X = {a, b, c} by T = {∅, {b}, X}. Then X
is evidently not Hausdorff in T . Now take A = {b} which
is Hausdorff while {b} = X is not. Another example (very
similar in core though) is to take A = {a} and the topology of
Exercise 3.3.25.

(11) True. To see this, assume that X is a Hausdorff space and let
A ⊂ X. Now, let x, y ∈ A with x 6= y. By the Hausdorffness
of X, there are two open sets U and V containing x and y
respectively such that U ∩ V = ∅. The proof is now complete
as x ∈ A ∩ U , y ∈ A ∩ V and

(A ∩ U) ∩ (A ∩ V ) = A ∩ (U ∩ V ) = A ∩∅ = ∅.

(12) The answer is yes. We provide a proof. Let x, y ∈ X be two
distinct points in X. Since T is Hausdorff,

∃U ∈ V(x), ∃V ∈ V(x) : U ∩ V = ∅.



3.2. TRUE OR FALSE: ANSWERS 133

But, any open set in T is open in T ′ and hence T ′ is Hausdorff
too.

(13) The answer is no! See Exercise 3.3.25.
(14) Yes and the indiscrete topological space is a good example. For

if A is a nonvoid subset of a set X endowed with the indiscrete
topology, then the smallest closed set containing A is X, i.e.
A = X.

(15) The answer is no. Endow X = R with the usual topology.
Let Y = (0, 2] be a topological subspace of X. Let A = (1, 2].
Then

◦
A

Y

= (1, 2] and
◦
A

X

= (1, 2)

and so
◦
A

Y

= (1, 2] 6= Y ∩
◦
A

X

= (1, 2).

(16) The answer is no. Apart from some obvious sets such as a
finite set say, it is not clear how one can introduce such a defi-
nition in an arbitrary topological space. In metric spaces, this
is possible thanks to balls which, even if they are subsets of
an arbitrary set, their definition depends on a positive num-
ber and hence one can impose some constraint on a set to be
bounded. If the topological space is also given a structure of
a vector space (more known as topological vector spaces), then
one can introduce a definition of a bounded set. This will not
be discussed in this book.

(17) Firstly, this is a purely algebraic question but it is of interest
especially in the product topology.

The answer is no! There are many counterexamples. Here
is one: in R×R, take

A = [0,∞) and B = [0,∞)

Then

(A×B)c 6= Ac × Bc! check it out!

What is true is the following

(A×B)c = {(x, y) ∈ X×Y : x 6∈ A or y 6∈ Y } = (Ac×Y )∪ (X×Bc).

(18) The answer is no! Take X = Y = R both endowed with the
usual topology. Then U = [−1, 1) is neither closed nor open
in X and yet U ×∅ = ∅ which is closed and open in X × Y .

(19) The answer is yes! In euclidian R2, let B((0, 0), 1) be the open
ball (hence open) with center (0, 0) and radius 1. Assume that
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this open ball could be written as

B((0, 0), 1) = U × V.

Then (0.8, 0) ∈ B((0, 0), 1) giving 0.8 ∈ U and (0, 0.7) ∈
B((0, 0), 1) giving 0.7 ∈ V . However, (0.8, 0.7) 6∈ B((0, 0), 1).

There are many more examples such as: {(x, y) ∈ R2 : xy >
2} or {(x, y) ∈ R2 : x+ y < 1}.

(20) The answer is no! First we recall that the exterior of A is the
interior of the complement of A. As a counterexample, take
A = Q with respect to the usual topology of R. Then

◦
Q ∪

◦︷ ︸︸ ︷
R \Q = ∅ ∪∅ = ∅ 6= X.

(21) The answer is no! In usual X = R, take A = Q. Then
◦
Q = ∅ 6=

◦
Q =

◦
R = R.

(22) The answer is no! In usual X = R, take A = Q. Then

Q = R 6=
◦
Q = ∅ = ∅.

(23) The answer is no! Let A = N in the usual topology of R. Then
A is closed (why?) but A′ = ∅. We show this last result. Let
x be any real number. Remember that

x ∈ N′ ⇐⇒ ∀ε > 0, (x− ε, x+ ε) ∩ N− {x} 6= ∅.

A quick observation tells us that the intersection intervening
in the previous statement need not be non-empty for all ε.

The analogous question for open sets is true (see Exercise
3.3.8).

(24) False! Consider a non empty set X with the indiscrete topol-
ogy. Let A = {a} where a ∈ X. The only non-empty set is X
and hence

x ∈ A′ ⇐⇒ X ∩ A− {x} 6= ∅.

We clearly see that all points but a verifies the last equivalence
and hence A′ = {a}c which is not closed.

Remark. In a metric space, every derived set is closed.

(25) The answer is yes. We provide simple examples with details
to be seen below in some exercises. The topology here is the
usual one.
(a) Let A = { 1

n
: n ≥ 1}. Then A′ = {0} and hence A∩A′ =

∅.
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(b) For instance, take A = {0}. Then A′ = ∅. Thus A′ ( A.
(c) If A = (0, 1), then A′ = [0, 1] and hence A ⊂ A′.
(d) If A = R, then A′ = R and so A = A′.

(26) Only the implication "⇒" holds. Let us show that. Let x ∈ A′.
This means that

∀U ∈ V(x) : U ∩A− {x} 6= ∅.

Since A ⊂ B, we immediately get that A − {x} ⊂ B − {x}.
Hence

∅ 6= U ∩ A− {x} ⊂ U ∩B − {x}
yielding U ∩ B − {x} 6= ∅ or x ∈ B′.

The other implication is false in general. One possible ex-
ample is to take A = (0, 1) and B = [0, 1]. Then

A ⊂ B but A′ = B′.

(27) The answer is no! In usual R, let A = Q. Then

Fr(Q) = Fr(R) = R \
◦
R = ∅ 6= Fr(Q) = Q \

◦
Q = R \∅ = R.

(28) False! In usual R, take A = Q. Then

Fr(
◦
Q) = ∅ 6= Fr(Q) = R.

What always holds is: Fr(
◦
A) ⊂ Fr(A). The proof is a mere

consequence of
◦
A ⊂ A.

(29) False! In usual R, take A = [0, 1] and B = [1, 2]. Then

Fr(A ∪B) = Fr([0, 2]) = {0, 2} 6= Fr([0, 1]) ∪ Fr([1, 2]) = {0, 1, 2}.
Even for disjoint A and B, the assertion has a negative answer.
However, if A and B are disjoint, then Fr(A ∪ B) = Fr(A) ∪
Fr(B).

What always holds is: Fr(A∪B) ⊂ Fr(A)∪Fr(B). Here is
a simple proof

Fr(A ∪B) =(A ∪ B) \ (
◦︷ ︸︸ ︷

A ∪ B) = (A ∪ B) ∩ (

◦︷ ︸︸ ︷
A ∪B)c

=(A ∪B) ∩ (

◦︷ ︸︸ ︷
A ∪B)c

⊂(A ∪B) ∩ (
◦
A ∪

◦
B)c

⊂Fr(A) ∪ Fr(B).
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(30) The answer is again no! For in the usual topology of R, Q
verifies

Q ⊂ FrQ = R.
(31) The answer is yes and this a simple consequence of the defini-

tion of the frontier, namely

Fr(A) = A \
◦
A = A ∩ (

◦
A)c ⊂ A.

(32) The answer is no! As the last but one answer, take A = Q and
B = R. Then A ⊂ B whilst

FrA = R 6⊂ FrB = ∅.

Remark. The hypothesis A ⊂ B does not imply FrB ⊂
FrA either. In the usual topology of R, take A = Q+ and
B = Q. Then

A ⊂ B but FrA = R+ 6⊃ FrB = R.

(33) None of the assertions holds! Let X be a non-empty set en-
dowed with the discrete metric. Let r = 1 and let x ∈ X.
Then we know from Exercise 2.3.5 that S(x, 1) = X \ {x}.
Now since every set is simultaneously open and closed in a
discrete metric space, we have

Fr(B(x, 1)) = ∅ and Fr(Bc(x, 1)) = ∅

and thus

Fr(B(x, r)) 6= S(x, r) and Fr(Bc(x, r)) 6= S(x, r).

(34) A common definition of a neighborhood is: U is said to be
a neighborhood of a (a ∈ X and X is a topological space) if
there is an open set V containing a such that V ⊂ U . If X is a
metric space, then we may change V by an open ball centered
at a.

According to this definition, (−1, 1] is a neighborhood of
0 since 0 ∈ (−1, 1) ⊂ (−1, 1] and (−1, 1) is an open set in R.
(−2, 2) is also a neighborhood of 0. The other sets are not for:
(a) (0, 2] does not even contain 0;
(b) [−1, 0] cannot contain an open set which contain 0;
(c) [0, 1] cannot contain an open set which contain 0.

But, according to the definition of this book (and considered
by others such as [10] or [11]), only (−2, 2) is a neighborhood
of 0.
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(35) First, T ⊂ T ′ is usually referred to T ′ being finer than T
or T being coarser than T ′. In other words, the "finer" is
the "fatter". Sometimes, the terms "stronger" and "weaker"
instead of "finer" and "coarser" respectively and so are the
terms "larger" and "smaller". The last two couples of terms
are probably more meaningful than the first couple of terms.
In any case, the reader should check the terminology used in
each book. As for ours, we use the "finer-coarser" terminology.

Going back to the question. The first statement is true and
it is in fact the definition of T ′ being finer than T . The second
statement is false. Saying that T ′ is finer that T can also be
interpreted using closed sets and in the same way, that is, if
every closed set in T is closed in T ′, then we also say that T ′

is finer than T . The reason is simple, if V is closed in T , then
V c is open in T . Now if V c is open in T ′ too, then V is closed
in T ′.

(36) False! For a counterexample see Exercise 3.3.38.

3.3. Solutions to Exercises

Solution 3.3.1.
• Possible topologies on X: The only possible topology here is
T = {∅, {1}}.
• Possible Topologies on Y : There are four possible topologies

in this case. They are

T1 = {∅, {1}}; T2 = {∅, {1}, Y }; T2 = {∅, {2}, Y } and T4 = P(Y ).

Solution 3.3.2.
(1) Obviously X and ∅ are both in T and the reader may easily

check that finite intersections of elements of T is again in T and
that the arbitrary union (finite in this exercise) of elements of
T is in T too.

(2) The closed sets in this case are easy. They are the complements
of the open sets, i.e. the complements of the elements of T .
Hence they are

X, {b, c, d, e}, {a, b, e}, {b, e}, {a}, ∅.

(3) The closure of {a} is the smallest closed set containing {a}
(which is also the intersection of all closed sets containing {a}).
Hence {a} = {a} (or here simply since {a} is closed!). In a
similar way we find that {b} = {b, e}.
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The interior of {a} is the biggest open set contained in {a}.

Hence
◦︷︸︸︷
{a} = {a} (or just because {a} is open). Similarly

◦︷︸︸︷
{b} = ∅. Hence

Fr({a}) = {a} \
◦︷︸︸︷
{a} = ∅

and

Fr({b}) = {b} \
◦︷︸︸︷
{b} = {b, e}.

(4) The smallest closed set containing {a, b} is X. Thus {a, b} =
X, i.e. {a, b} is dense in X.

(5) A neighborhood of c is any open set containing c (remember
that this is the definition adopted in this book). Hence

V(c) = {{c, d}, {a, c, d}, {b, c, d, e}, X}.
Also,

V(d) = {{c, d}, {a, c, d}, {b, c, d, e}, X}.
(6) No T is not Hausdorff since

∃c, d ∈ X (c 6= d), ∀(U, V ) ∈ V(c)× V(d) : U ∩ V 6= ∅.

Solution 3.3.3.
(1) ∅ ∈ T (by definition) while N ∈ T for n = 1. The other axioms

of a topological are the matter of easy unions and intersections
and hence left to the reader (for the arbitrary union one has
just to justify the existence of inf{np : p ∈ N}).

(2) No, the given set is not open (why?).
(3) The only two open sets containing 2 are {1, 2, 3, · · · } and
{2, 3, 4, · · · }. Hence

V(2) = {{1, 2, 3, · · · }, {2, 3, 4, · · · }}.
Similarly

V(3) = {{1, 2, 3, · · · }, {2, 3, 4, · · · }, {3, 4, 5 · · · }}.
(4) No, T is not Hausdorff. The previous question provides us

with a counterexample (doesn’t it?).
(5) The closed sets are of the form {1, 2, 3, · · · , p} where p ∈ N.
(6) The interior of {4} is the biggest open set contained in it, that

is the empty set! The smallest closed set containing {4}, i.e.
its closure, is {1, 2, 3, 4}.
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The interior and the closure of {2, 4, 6, 8, · · · } are respec-
tively ∅ and N.

(7) We claim that a set A is dense in N iff it is infinite. We first
note that if A is finite, then it cannot be dense as it is closed
in this case and so we have proved the implication "⇒". Now,
if A is infinite, then the smallest closed superset is N and thus
we have proved the implication "⇒".

Solution 3.3.4. In order to show that T is the discrete topology,
it suffices to check that every subset of X is open in T . Let A be a
subset of X. Then A can always be written as a union (finite in this
case) of those singletons. We have

{a, b} = {a} ∪ {b}, {a, c} = {a} ∪ {c}, ......, {a, b, c} = {a} ∪ {b} ∪ {c}.
Thus, any subset is open (and closed).

Remark. The previous proof applies to show that any topological
space in which singletons are open (hence/or closed) is a discrete space.

Solution 3.3.5. Recall that by definition, the interior of a set A
is the largest open set contained in A (which may be taken to be the
union of all open sets contained in A).

Similarly, the closure of a set A is the smallest closed set contain-
ing A (which may be taken to be the intersection of all closed sets
containing A).

We note that if U is an open set contained in A, then U c := V is
a closed set containing Ac. These remarks allow us to easily give the
solution to this exercise and we have for open sets U

(
◦
A)c =

(⋃

U⊂A

U

)c

=
⋂

U⊂A

U c =
⋂

Ac⊂V

V = Ac.

The other property can be easily established by replacing A by Ac.

Solution 3.3.6. Well, the right-to-left implication is trivial (is it
not?). To show the other implication, assume that A ∩ U 6= ∅. Then
there is some x in both U and A. Hence for any open set V containing
x, V ∩ A 6= ∅. In particular, taking V = U (which is legitimate as U
is open and it contains x) gives A ∩ U 6= ∅.

Another (simpler) proof goes as follows. If A∩U = ∅, then A ⊂ U c.
But U c is closed and hence A ⊂ U c or A ∩ U = ∅.

Solution 3.3.7.
(1) Let us find the closure of Q in R. We know that Q ⊂ R and

hence Q ⊂ R = R. Let us show that R ⊂ Q. Let x ∈ R. By
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definition

x ∈ Q⇐⇒ ∀ε > 0, (x− ε, x+ ε) ∩Q 6= ∅.

But, any interval contains always rational numbers and hence
∀ε > 0, (x−ε, x+ε)∩Q 6= ∅. Hence R ⊂ Q and thus Q = R.
In a very similar way (with an obvious change) one can show
that R \Q = R.

We now show that (0, 1] = [0, 1]. To see this, we observe
that 0 belongs to (0, 1] as

∀ε > 0, (−ε, ε) ∩ (0, 1] 6= ∅.

Any other point x 6∈ [0, 1], i.e. x < 0 or x > 1, does not lie in
(0, 1] since we can easily find a small enough ε > 0 such that
(x− ε, x+ ε) ∩ (0, 1] = ∅. Thus (0, 1] = [0, 1].

We can show as before that (2, 3] = [2, 3]. Besides since {1}
is closed in R (because its complement in R, being (−∞, 1) ∪
(1,+∞), is open since it is a union of open sets), one has
{1} = {1}. Hence

{1} ∪ (2, 3] = {1} ∪ (2, 3] = {1} ∪ [2, 3]

(2) The interiors of Q and R \ Q are both empty for a similar
reason. We know that

x ∈
◦
Q⇐⇒ ∃r > 0 : (x− r, x+ r) ⊂ Q.

But, since an interval contains irrational numbers,

∀r > 0 : (x− r, x+ r) 6⊂ Q.

Thus
◦
Q = ∅. Also, since an interval contains rational num-

bers, we obtain
◦︷ ︸︸ ︷

R \Q = ∅.

Let us find now
◦︷ ︸︸ ︷

(0, 1]. First, we note that 1 6∈
◦︷ ︸︸ ︷

(0, 1] since
if it were, we would have for some r > 0, (1− r, 1 + r) ∈ (0, 1]
which is obviously not the case for any r > 0. Now, any x in
(0, 1) is interior to (0, 1]. Let x ∈ (0, 1), then we can always
find 0 < r < min(x, 1 − x) such that (1 − r, 1 + r) ∈ (0, 1].

Finally, if x 6∈ (0, 1], then x 6∈
◦︷ ︸︸ ︷

(0, 1]. Therefore,
◦︷ ︸︸ ︷

(0, 1] = (0, 1).
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(3) The answer is no for both cases. We give counterexamples.

Consider An =
(
− 1

n
, 1
n

)
, n ≥ 1. Then

◦
An =

(
− 1

n
, 1
n

)
. Hence

(⋂

n≥1

An

)◦

=

◦︷︸︸︷
{0} = ∅ 6=

⋂

n≥1

◦
An = {0}.

For the other equality, consider An =
[
1
n
, 1
]
, n ≥ 1. Then

⋃

n≥1

An = (0, 1] = [0, 1] 6=
⋃

n≥1

An = (0, 1].

(4) Yes R is separated. To see this take any two real numbers
x and y such that x 6= y. We need to find two disjoint open
neighborhoods of x and y. We may assume WLOG that x > y.
Take the following open intervals

U =

(
x+ y

2
,+∞

)
and V =

(
−∞,

x+ y

2

)
.

Then x ∈ U and y ∈ V but U ∩ V = ∅. Thus R is Hausdorff.

Solution 3.3.8. Let a be a point in A. Since A is open,

∃r > 0, B(a, r) ⊂ A.

We need to show that a is also a limit point of A, i.e. a ∈ A′, i.e.

∀ε > 0, B(a, ε) ∩ A \ {a} 6= ∅.

Let ε > 0. Choose a point b such that d(a, b) = 1
3
min(r, ε). Then

b ∈ B(a, ε) and also b ∈ B(a, r) ⊂ A. Since a 6= b, b ∈ A \ {a}. Thus
B(a, ε) ∩ A \ {a} is non-empty. The solution is complete.

Solution 3.3.9.

(1) First,
◦
A = ∅. One way of seeing this is the following

A ⊂ Q =⇒
◦
A ⊂

◦
Q = ∅ =⇒

◦
A = ∅.

All points of A are isolated. For instance 1 is an isolated point.
For we can easily choose an r > 0 (for instance r = 1

3
) such

that
(1− r, 1 + r) ∩A \ {1} = ∅.

The only limit point is 0. By the Archimedes theorem, for
all ε > 0 there exists n ∈ N such that 1

n
< ε. Hence

∀ε > 0 : (−ε, ε) ∩ A \ {0} 6= ∅.
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(2) Since 0 is the only limit point, we have

A = A ∪ A′ =

{
1

n
: n ≥ 1

}
∪ {0}.

Thus A is not closed and since
◦
A = ∅, Fr(A) = A.

(3) We need to verify that
◦
A = ∅. If x were a point in

◦
A, then

there would exist an r > 0 such that (x− r, x+ r) ⊂ A which
obviously does not hold.

Solution 3.3.10. In the usual topology of R, the following set

A = (0, 1) ∪ (1, 2] ∪ {3}
will do as the reader can easily check that

◦
A = (0, 1) ∪ (1, 2),

A = [0, 1] ∪ [1, 2] ∪ {3} = [0, 2] ∪ {3},
◦
A = (0, 2),

and
◦
A = [0, 1] ∪ [1, 2] = [0, 2],

i.e. the five sets are mutually different.

Solution 3.3.11. We show that A′ = ∅. Since X is discrete, {x}
is an open neighborhood of x ∈ X. So

∃U = {x} ∈ V(x), U ∩A− {x} = ∅,

i.e. A′ = ∅.

Solution 3.3.12.
(1) First, since A is a non-empty and bounded set of R, both inf A

and supA exist. We know that

a = inf A⇐⇒
{
∀x ∈ A : x ≥ a,
∀ε > 0, ∃xε ∈ A : a ≤ xε < a+ ε.

Hence xε ∈ [a, a+ ε) ⊂ (a− ε, a+ ε). We also know that in R

a ∈ A⇐⇒ ∀ε > 0, (a− ε, a+ ε) ∩A 6= ∅.

So let ε > 0. Then there exists xε ∈ A such that xε ∈ (a −
ε, a+ ε) and therefore (a− ε, a+ ε) ∩A 6= ∅. Thus a ∈ A.

The proof for supA can be dealt with similarly.
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(2) The answer is no! Take A = (0, 1) in the discrete topology of
R, say. Then A is closed, i.e. A = A. However,

inf A = 0 6∈ A = (0, 1) and supA = 1 6∈ A = (0, 1).

(3) No! In usual R, let A = {0}. Then
◦
A = ∅ and hence

supA = inf A = 0 6∈
◦
A.

Solution 3.3.13.
(1) First, we justify the existence of supA. Since A is bounded

above, for some m,M A ⊂ (m,M ] (M being real and m any
number small than M and it may even be −∞). Depending
on m, we then have A ⊂ (m,M ] or A ⊂ [m,M ]. So, in either
case, A is bounded above. Since it is also non empty (why?),
supA exists. Obviously, we have

A ⊂ A =⇒ supA ≤ supA.

Let us prove the other inequality. Let M = supA and let
x > M . Setting r = x−M

2
(then r > 0), we claim that

A ∩ (x− r, x+ r) = ∅.

To see this, assume there is some a in A such that a ∈ (x −
r, x+ r). Hence a > x− r > M and then a would bigger than
M = supA, a clear contradiction. Thus x 6∈ A and hence M
is an upper bound for A. This certainly leads to

supA ≤M = supA,

completing the proof.
(2) The main point is that the existence of supA does not im-

ply any more that of supA in another topological space (be-
sides what does "bounded" mean in an arbitrary topological
space?).

In R equipped with the indiscrete topology, take A = [0, 1].
Then supA = 1. Since A is dense in R, supA = +∞ (or it
does not exist as some prefer to say).

(3) First, and on the contrary to the "closure case", sup
◦
A may

not even exist even if supA exists and in the usual topology
setting! For example, take A = {1}. Then

◦
A = ∅ and so

sup
◦
A = −∞ 6= supA = 1.
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Now assume sup
◦
A exists. Then it need not be equal to supA.

In usual R, let A = (−1, 1) ∪ {2}. Then

supA = 2 6= sup
◦
A = sup(−1, 1) = 1.

Remark. We say a few words about sup∅ = −∞. It is known
that if A is a bounded subset, then inf A ≤ supA iff A is non-empty.
So, since ∅ ⊂ R, every element of R is an upper bound for ∅ and the
least upper bound is then −∞. Similarly, every element of R is a lower
bounded for ∅ and biggest among them is "+∞", i.e. inf ∅ = +∞.
This, thankfully, agrees with what we recalled above, that is, A is
empty iff supA < inf A.

Solution 3.3.14.
(1) To show the inclusion B(x, r) ⊂ Bc(x, r), we can show equiv-

alently that (Bc(x, r))
c ⊂ (B(x, r))c. Let y ∈ (Bc(x, r))

c, i.e.
d(x, y) > r. We need to find some open ball (containing y)
which does not intersect B(x, r). Set s = d(x, y) − r > 0.
Hence B(y, s) ∩ B(x, r) = ∅ (to show this take z in B(y, s) ∩
B(x, r) and find a contradiction). This means that y 6∈ B(x, r),
i.e. y ∈ (B(x, r))c.

(2) Let X = [−1, 0] ∪ [1, 2] considered as a metric subspace (the
associated metric being the standard one). We have

B(1, 1) = {x ∈ X : |x− 1| < 1} = ([−1, 0] ∪ [1, 2]) ∩ (0, 2) = [1, 2).

Hence B(1, 1) = [1, 2) = [1, 2] while

Bc(1, 1) = {x ∈ X : |x−1| ≤ 1} = ([−1, 0]∪[1, 2])∩[0, 2] = {0}∪[1, 2].
Thus Bc(1, 1) 6⊂ B(1, 1).

We give another example. Let X be a set with cardX ≥ 2
(why?). Let us associate with X the discrete metric. Let
x ∈ X. We know that B(x, 1) = {x} and since every subset in
a discrete metric space is closed (and open!), we get B(x, 1) =

{x} = {x}. This on the one hand, and on the other hand

Bc(x, 1) = {y ∈ X : d(x, y) ≤ 1} = X 6⊂ B(x, 1).

Remark. There are cases where B(x, r) = Bc(x, r) holds in metric
spaces. For instance, this is true in R2 endowed with the euclidian
metric (or just R with the standard metric).

However, in the setting of normed vector spaces (not considered in
this book), we always have B(x, r) = Bc(x, r).
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Solution 3.3.15. Since ∅, Y ∈ T , f−1(∅) = ∅ and f−1(Y ) = X,
we conclude that ∅, X ∈ T ′.

Now, let Vi be in T ′ for all i ∈ I. Then for some Ui in T , Vi =
f−1(Ui). Hence

⋃

i∈I
Vi =

⋃

i∈I
f−1(Ui) = f−1(

⋃

i∈I
Ui)

belongs to T ′ because
⋃

i∈I
Ui ∈ T .

In the end, let V1 and V2 be in T ′. So there are U1 and U2 in T such
that f−1(U1) = V1 and f−1(U2) = V2. Whence

V1 ∩ V2 = f−1(U1) ∩ f−1(U2) = f−1(U1 ∩ U2) ∈ T ′

as U1 ∩ U2 ∈ T . The proof is complete.

Solution 3.3.16. The proof is essentially very similar to the one
just before. First, ∅ and A both belongs to TA as

∅ = A ∩∅ and A = A ∩X.

Second, let {Vi}i∈I be a collection in TA. Then Ui may be written as
Vi = A ∩ Ui for some Vi and hence⋃

i∈I
Vi =

⋃

i∈I
(A ∩ Ui) = A ∩ (

⋃

i∈I
Ui) ∈ TA

since
⋃

i∈I
Ui ∈ T .

Finally, let V1 and V2 be in TA. Then there are U1 and U2 such that
V1 = A ∩ U1 and V2 = A ∩ U2. Therefore,

V1 ∩ V2 = (A ∩ U1) ∩ (A ∩ U2) = A ∩ (U1 ∩ U2)

is in TA as U1 ∩ U2 ∈ T .

Solution 3.3.17.
(1) Yes the set {3} is open in A = [0, 1) ∪ {3}. To show this we

need to write it as an intersection of A and an open set in R.
One possible choice is the following

{3} = ([0, 1) ∪ {3}) ∩ (2, 5).

(2) The answer is again yes as one can do the following
[0, 1) = [0, 1] ∩ (−1, 1)︸ ︷︷ ︸

open in R

and (0, 1) = [0, 1] ∩ (0, 1)︸ ︷︷ ︸
open in R

.

(3) Yes indeed. Write

{n} = N ∩ (n− 1, n+ 1).
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(4) Both [0, 1] and (2, 3) are open since

[0, 1] = A ∩ (−1, 2) and (2, 3) = A ∩ (2, 3).

We can deduce that [0, 1] and (2, 3) are also closed (in A!) too.
This is simply because the complement of [0, 1] in A is (2, 3)
and vice versa.

(5) The closure of
(
0, 1

2

)
in R is

[
0, 1

2

]
. Hence the closure of

(
0, 1

2

)

in A is
(
0,

1

2

)A

=

[
0,

1

2

]
∩ A =

(
0,

1

2

]
.

(6) Let us denote the subspace topology on A by TA. It is defined
as

TA = {A ∩ U : U ∈ T}.
Hence we can find TA explicitly and we have

TA = {∅, {c, d}, A}.
We observe that the smallest closed set containing {b, d} is A.
So {b, d}A = A (i.e. {b, d} is dense in A). We can also obtain
the same result using the relativity of closures as follows

{b, d}A = {b, d}X ∩ A = {b, c, d, e} ∩ {b, c, d} = {b, c, d} = A.

Solution 3.3.18.
(1) Yes X is clopen in A. Since [

√
2, π] is closed in R, X is closed

in A. Also, since
√
2, π 6∈ Q, one can write

X = A ∩ [
√
2, π] = A ∩ (

√
2, π).

As (
√
2, π) is open in R, then X is open in A, establishing the

"clopenness" of X in A.
(2) Yes Y is clopen in B. Since [0, 2] is closed in R, so is Y in B.

Now since 0, 2 6∈ R \Q, we can write

Y = B ∩ [0, 2] = B ∩ (0, 2),

meaning that Y is open in Y as well.
(3) Yes Z is clopen in A. This is easily seen from

Z = A ∩ [
√
2, π) = A ∩ (

√
2, π) = A ∩ [

√
2, π].

(4) Z ′ is not clopen, more precisely, it is neither closed nor open.
For example, if it were open we would have: for all x ∈ Z ′,
there is some r > 0 such that B(x, r) (the open ball in B) is
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contained in Z ′. In particular, for x =
√
2 there corresponds

an r > 0 such that

B(
√
2, r) = {y ∈ B : |

√
2− y| < r} = B ∩ (

√
2− r,

√
2 + r) ⊂ Z ′,

which does not hold as

∀r > 0 : B ∩ (
√
2− r,

√
2 + r) 6⊂ Z ′.

Solution 3.3.19. Since [0, 1]∩Q ⊂ [0, 1], then [0, 1] ∩Q ⊂ [0, 1] =
[0, 1]. Now let x ∈ [0, 1], then obviously

∀ε > 0 : [0, 1] ∩Q ∩ (x− ε, x+ ε) 6= ∅.

Thus x ∈ [0, 1] ∩Q.

Solution 3.3.20.
(1) The elements of X are real numbers in [0, 1] whose digits are

constituted of the numbers 3 and/or 5.
(2) The following observation

X ∩ (0.35, 0.53) = ∅ (why?)

shows that X cannot be dense in [0, 1].

Solution 3.3.21. We give three ways of answering this question.
(1) Since X is not Hausdorff, it cannot be metrizable.
(2) This is somehow similar to the previous method. Let B(x, r)

be the open ball of center x and radius r = d(x,y)
3

> 0 (x 6=
y). It is an open set in X. However, B(x, r) contains x, i.e.
B(x, r) 6= ∅ and B(x, r) does not contain y, i.e. B(x, r) 6= X.
Thus B(x, r) is another open set in X. This clearly leads to a
contradiction. Therefore, X is not metrizable.

(3) If there is a metric that induces the topology of X, then X
and ∅ are not the only closed sets in X since every finite set is
closed in a metric space. Accordingly, X cannot be metrizable.

Solution 3.3.22.
(1) Let us show that T is in effect a topology on R. First ∅ belongs

to T by definition while R belongs to T since its complement
is finite (it is the empty set!).

Let U and V be two elements of T , i.e. U c and V c are both
finite (we assume both U and V are not empty, otherwise this
is obvious). We need to show that U ∩ V belongs to T , i.e.
(U ∩ V )c is finite. But (U ∩ V )c = U c ∪ V c and it is finite.
Hence U ∩ V does belong to T .
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Now let {Ui}i∈I be an arbitrary collection of elements of
T . If Ui = ∅ for all i ∈ I, then their union is the empty set
and hence it belongs to T . If at least one of these elements is
not empty, call it Uj (hence U c

j is finite), then we can write

(⋃

i∈I
Ui

)c

=
⋂

i∈I
U c
i ⊂ U c

j

and hence

(⋃

i∈I
Ui

)c

is finite. This finishes the answer.

(2) Obviously ∅ and R are closed. The only other closed sets are
the finite ones. For if A is finite, then it is closed as Ac is
open because its complement (which is A) is finite. And if A
is closed, then Ac is open and hence (Ac)c = A is finite.

(3) Every finite subset is closed in standard R. There are many
infinite subsets which are closed in the standard R (for example
every interval of the type [a, b]). Thus the standard topology
has more closed sets, so it is finer than T .

(4) It is not Hausdorff since if it were, then for any x, y ∈ R
such that x 6= y there would exist two open neighborhoods
U ∈ V(x) and V ∈ V(y) (belonging to T ) such that U∩V = ∅.
Hence U c ∪ V c = ∅c = R which contradicts the finiteness of
both U c and V c.

(5) No, since a metrizable space has to be Hausdorff.
(6) (a) If A is finite, then it is closed (see Question 2) and hence

A = A.
As for

◦
A we will show that it equals the empty set. Let B

be an open set contained in A. Then Ac is contained in Bc

and since Bc is finite, so is Ac and hence R = A∪Ac would
have to be finite! which is impossible. Hence

◦
A = ∅.

(b) If A is infinite, two cases must be looked at.

(i) If Ac is finite, then A is open and hence
◦
A = A. Also

since Ac is finite, then from the previous question
Ac has an empty interior and thus Exercise 3.3.5
yields

(
A
)c

= (
◦
Ac) = ∅ =⇒ A = R,

i.e. A is dense in R in this case.
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(ii) Now the case Ac infinite. If B ⊂ A where B is open,
then Ac ⊂ Bc which is impossible since Bc is finite,
leading to

◦
A = ∅.

Now, since the only closed set which can contain
the infinite set A is X, we deduce immediately that
A = X.

(7) Yes, R is separable since Q is a countable subset of R which
satisfies the hypotheses of Question (5-b-i).

(8) If X is finite, then T becomes the discrete topology for a simple
reason. That is, since X is finite, any subset A of X will have a
finite complement. Hence every subset is open and thus every
subset is closed too.

Solution 3.3.23. No, T is not a topology on R. Assume it is and
take the two sets U = (−∞, 0) and V = (0,∞). They are both open
in T since their complements are infinite. However,

(U ∪ V )c = U c ∩ V c = {0} is finite and hence U ∪ V 6∈ T.

Thus S is a not a topological space.

Solution 3.3.24.
(1) Yes T is indeed a topology on X. For a change and also to

facilitate the proof we will prove that T is a topology using
closed sets and hence we need to show that ∅ and X are
elements of T (which is obvious here), that the finite union of
closed sets and the arbitrary intersection of closed sets are all
in T . If we want a set to be closed in T , then it has to be
countable. We are done as we know that the finite union and
the arbitrary intersection of countable sets remain countable.

(2) No. If it were, X which is uncountable, would be a union of
two countable sets!! (cf. Exercise 3.3.22).

(3) Remember that the closed sets are the countable ones (to-
gether with X and ∅). Now if A is a closed set different from
X, then it is countable and so will any subset of A be.

(4) Let {Un}n be a countable family of open sets in T . To show
∞⋂

n=1

Un is open, i.e.

( ∞⋂

n=1

Un

)c

is closed, i.e. countable. But

( ∞⋂

n=1

Un

)c

=
∞⋃

n=1

U c
n

which is countable as a countable union of countable sets.
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This result may fail to hold in usual R as shown by the
classical example Un = (− 1

n
, 1
n
), n ∈ N.

(5) The proof is very similar to that of the non-Hausdorffness of
the space. Assume U1 ∩ U2 ∩ · · · ∩ Un = ∅ where the Ui

(i = 1, 2, · · · , n) are all open. Then U c
1 ∪ U c

2 ∪ · · · ∪ U c
n = R

which is impossible since the left hand side is countable while
the right hand side is not. Thus the finite intersection of open
sets is non-empty.

This result is not true in usual R in general. Consider for
instance (0, 1) and (2, 3).

(6) No! Since Q is countable, it is closed. Thus Q = Q 6= R.
We claim that every uncountable set is dense in R: To

see this, let A be an uncountable subset of R. Then A is not
closed. Besides, A cannot be a subset of any closed set apart
from X (why?). Thus A is dense in R equipped with this
topology and hence so are the two given sets.

(7) Any countable set will make the topology T discrete. For if X
is countable, {x} (x ∈ X) will be clopen as {x} and X − {x}
are both closed since they are both countable.

Solution 3.3.25.
(1) It is a routine by now and it is left to the interested reader.
(2) No T is not Hausdorff. Let x, y ∈ X such that x 6= y (x or y

may be worth a). Let U and V be two open sets containing x
and y respectively. Then they contain a too so that

{a} ⊂ U ∩ V, i.e. U ∩ V 6= ∅.

Consequently, X cannot be Hausdorff.
(3) Remember that

x ∈ {a}′ ⇐⇒ ∀U ∈ V(x) : U ∩ {a} − {x} 6= ∅.

Since U contains a, we see immediately that only a does not
belong to {a}′ and hence {a}′ = X − {a}.

(4) Let U 6= ∅ be an open set in T . Then a ∈ U and hence

{a} ⊂ U ⇒ {a}′ ⊂ U ′ ⇔ X − {a} ⊂ U ′ ⊂ X.

Two cases are to be discussed:
(a) If U ′ = X, then U = U ′ ∪ U = X ∪ U = X.
(b) If U ′ = X − {a}, then U = U ′ ∪ U = X − {a} ∪ U = X

as a ∈ U .
Thus in either case open sets are dense in X.

(5) As for {a}′, we find that A′ = X − {a} for any set A that
contains a.
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(6) Yes X is separable for {a} is a countable (finite!) subset of X
that is dense by the last but one question because {a} is open
in T .

Now, X − {a} is not separable. Assume it were and let
A ⊂ X − {a}. Then A would be dense. But a 6∈ A and
a 6∈ A′ = X − {a} and hence a 6∈ A. Thus A = A ∪ A′ would
have to be equal to X −{a}, a clear contradiction. Therefore,
X − {a} is not separable.

(7) Let A be a proper subset of X. We have to show that
◦
A = ∅.

Since A is closed, a 6∈ A. The biggest open set contained in A

must contain {a}. Thus
◦
A = ∅.

(8) The induced topology, as the interested reader may verify, is
the discrete one and it is of course Hausdorff.

Solution 3.3.26.
(1) Let us show that T is a topology on [−a, a]. First ∅ ∈ T since
{0} 6⊂ ∅ and X = [−a, a] ∈ T since (−a, a) ⊂ X = [−a, a].

Now let U and V be both in T and hence ({0} 6⊂ U or
(−a, a) ⊂ U) and ({0} 6⊂ V or (−a, a) ⊂ V ). In all possible
cases we will have U ∩ V ∈ T .

Finally, let {Ui}i∈I be an arbitrary collection of elements
of T . If {0} 6⊂ Ui for all i ∈ I, then {0} 6⊂

⋃

i∈I
Ui and hence

⋃

i∈I
Ui ∈ T . If at least one Uj does not contain {0}, then it will

contain (−a, a) and hence (−a, a) ⊂ Uj ⊂
⋃

i∈I
Ui and this also

means that
⋃

i∈I
Ui ∈ T .

(2) The closed sets in this topology are {a}, {−a}, {−a, a}, ∅, [−a, a]
and any subset of [−a, a] containing 0.

(3) The set A = {a
3
} is not closed, but from the previous question,

{0, a
3
} is a closed set and it is clearly the smallest set which

contains A. Thus

A =
{
0,

a

3

}
.

(4) Let B be any subset of (−a, a) ⊂ X. Let us show that 0 is a
limit point for B, i.e. 0 ∈ B′. We recall that

0 ∈ B′ ⇐⇒ ∀U ∈ V(0) : U ∩ B − {0} 6= ∅.
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Since U is an open neighborhood of 0, we must have (−a, a) ⊂
U . Whence

U ∩B − {0} 6= ∅,

as required.

Solution 3.3.27.
(1) First, ∅ ∈ T since ∃a = 0 ∈ [0, 2] such that ∅ = [0, 0) and

X ∈ T since ∃a = 2 ∈ [0, 2] such that X = [0, 2). Now let
[0, ai)i∈I be an arbitrary collection of elements in T . Then

⋃

i∈I
[0, ai) = [0, a) where a = sup

i∈I
ai ∈ [0, 2].

This means that
⋃

i∈I
[0, ai) ∈ T . Lastly, let [0, a) and [0, b) be

two elements of T where 0 ≤ a ≤ 2 and 0 ≤ b ≤ 2. Then one
has

[0, a) ∩ [0, b) = [0, c) where c = min(a, b) ∈ [0, 2]

and so [0, a) ∩ [0, b) ∈ T .
(2) One example among many is the following: Take Un =

[
0, 2

n

)

for n ≥ 1. It belongs to T for all n ≥ 1. However,
∞⋂

n=1

[
0,

2

n

)
= {0}

which cannot be an element of T as it cannot be written in
the form [0, a) for any a ∈ [0, 2].

(3) This topology cannot be separated as any two open sets will
both contain zero and hence their intersection will never be
empty.

(4) The closed sets are of the form [b, 2) where 0 ≤ b ≤ 2 (why?).
(5) There is somehow a technical way of answering this question

but there is a more direct way of answering it. The closure of
A =

[
1, 3

2

]
is by definition the smallest closed set containing

A. But we have just seen that closed sets in X are of the form
[b, 2) where 0 ≤ b ≤ 2. Therefore the closure of A is [1, 2).

The interior of A, i.e. the largest open set contained in A,
is empty as open sets are of the form [0, a) where 0 ≤ a ≤ 2
and none of them can be contained in A.

(6) Let B = Q ∩ [0, 2). It is obviously countable. Besides, its
closure, the smallest set containing it, is of the form [b, 2) where
0 ≤ b ≤ 2. Hence

Q ∩ [0, 2) = [0, 2),

proving the density of B in (X, T ). Thus X is separable.
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Solution 3.3.28.
(1) Let x ∈ X. We only show that {x} ⊂ {x} or equivalently
{x}c ⊂ {x}c. Let y ∈ {x}c, i.e. y 6∈ {x} or y 6= x. Since T is
Hausdorff,

∃(U, V ) ∈ V(x)× V(y) : U ∩ V = ∅.

This gives us U ∩ {x} = ∅. Thus y 6∈ {x}, i.e. y ∈ {x}c.
(2) The result is no longer true if T is not assumed to be Hausdorff.

Consider the topology T , on the set X = {1, 2, 3}, defined by

T = {∅, {2}, {1, 2}, {2, 3}, X}.
It is plain that {2} is not closed as {2}c = {1, 3} is not open.
On can also check that T is not Hausdorff.

(3) Well, an example of that is the co-finite topology (Exercise
3.3.22) in which all finite sets, and in particular singletons, are
closed.

(4) Let Ux be an open set containing x. We need to establish that⋂

x∈X
Ux = {x}. Since for all x ∈ X, x ∈ Ux, we immediately see

that {x} ⊂
⋂

x∈X
Ux.

Conversely, let y ∈
⋂

x∈X
Ux with y 6= x. Since X is Haus-

dorff, for some open set U containing x and for some open set
V containing y we have U ∩ V = ∅. But y is in all open sets
which contain x and hence U ∩V 6= ∅ which is a contradiction
and so y = x. The proof is complete.

(5) Let X be R equipped with the co-finite topology. That X is
not Hausdorff was already established in Exercise 3.3.22. We
show that the intersection of all open sets containing x is {x}
itself. We only show

⋂

x∈U
U ⊂ {x} where U is open in X and

contains x. Let y ∈
⋂

x∈U
U and assume y 6= x. Then for all

U ∈ X, we have y ∈ U . Hence R − {y}, being an open set
(why?) that contains x, would have to contain y too which is
absurd! Thus y = x and this completes the proof.

Solution 3.3.29.
(1) R is obviously a union of elements of B. An intersection of

two elements of B is again an element of B for it is either the
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empty set or an interval of the same type as the elements of
B. Therefore, B is a base for R.

(2) Rℓ is strictly finer than R. We have to show that any open
set in R is an open set in Rℓ or in terms of bases, any basis
element in R, i.e. an open interval, can be written as a union
of members of the basis of Rℓ. This is illustrated in

∀a, b ∈ R, (a, b) =
⋃

n∈N

[
a +

1

n
, b

)
.

To finish the proof, we need to exhibit an open set in Rℓ which
is not one in R. One choice is [0, 1) and the proof is complete.

(3) First, from the previous question all open sets in R are open
in Rℓ. The same thing for closed sets. There are many other
sets that are open and/or closed in Rℓ. For example,

(−∞, b) =
⋃

n∈N
[−n, b), [a,∞) =

⋃

n∈N
[a, n)

are open. They are also closed as

(−∞, b)c = [b,∞) and [a,∞)c = (−∞, a)

are open. Also [a, b) is open and it is also closed as

[a, b)c = (−∞, a) ∪ [b,∞)

is open.
There are of course non-clopen sets. For instance, [a, b] is

closed but not open (why?), and (a,∞) is open and not closed.
Finally, there are sets which are neither open nor closed like
(a, b] (prove it!).

(4) Yes, Rℓ is separated since Rℓ is finer than R. This was dis-
cussed and proved in the section "True or False" of this chap-
ter.

We propose another method to show that Rℓ is not Haus-
dorff. Let x 6= y be two distinct reals. Take x < y for example.
Then it is clear that [x, y) is an open set in Rℓ containing x
and [y, y+1) is an open set in Rℓ containing y. Besides, these
two sets obey

[x, y) ∩ [y, y + 1) = ∅,

completing the proof.
(5) Yes, Rℓ is separable. To see that, first note that Q is dense in

R (this is independent of topology!). To prove the density of
Q in Rℓ, note that unions of intervals of the form [a, b) always
intersect Q.
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Solution 3.3.30.
(1) RK is finer than R since its basis contains the basis of R. It is

strictly finer since R −K is open in RK (it is a union of sets
of the form (a, b) − K) but it is not open in R for K is not
closed.

(2) As in the previous exercise, RK is Hausdorff as it is finer than
R.

(3) No. The two topologies are not comparable and it is better to
use bases elements.
(a) RK 6⊂ Rℓ: For (−1, 1)−K is open in RK (clear!) but not

in Rℓ.
(b) Rℓ 6⊂ RK : For [−1, 0) is in Rℓ but not in RK .

(4) Yes, K is closed in RK for its complement is R−K, hence it
can be written as

⋃

a,b∈R
([a, b)−K) which is open.

(5) We claim that K ′ = ∅. Any point in K is not a limit point
for K (why?).

If x 6∈ K, then U = R−K is an open set containing x and
verifying U ∩K − {x} = ∅. Thus K ′ = ∅.

Solution 3.3.31.
(1) Let x ∈ R. Then there are always a, b ∈ Q such that x ∈ (a, b)

(why?). Now, let (a, b) and (c, d) be in B (a, b, c and d are
tacitely assumed to be rationals!). If x is in the intersection of
these sets, then (a, b) ∩ (c, d) is an interval of the same type.
This proves that B is a basis.

Now, we prove B actually generates the usual topology of
R. Let U be an open set in R. Let x ∈ U . Then

∃y, z ∈ R : x ∈ (y, z) ∈ U.

By the density of Q in R,

∃a, b ∈ Q, a ∈ (y, x) and b ∈ (x, z)

leading to

x ∈ (a, b) ⊂ U (a, b ∈ Q).

The proof is over.
(2) For any x real, there are rationals a and b verifying a ≤ a <

x < b. Now, if the intersection of two basis elements of B′ is
not empty, then it is necessarily of their form. Thus B′ is a
basis. Now, we have to show that RB′ 6= Rℓ. It is clear that
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[π, 4) ∈ Rℓ. If [π, 4) were in RB′, then there would be some
rationals a and b such that

π ∈ [a, b) ⊂ [π, 4).

It then becomes clear that no rational a would satisfy that
condition. Therefore, B′ does not generate the lower limit
topology on R.

Solution 3.3.32. Remember that in usual R,

d(A) = sup
x,y∈A

|x− y|

where A ⊂ R. We then easily find that

d((0, 1) ∩Q) = d((0, 1) ∩ R \Q) = 1.

Solution 3.3.33.
(1) The set {d(x, a) : a ∈ A} is obviously non-empty. It is also

bounded from below as

d(x, a) ≥ 0, ∀a ∈ A.

Thus d(x,A) exists.
(2) Let ε > 0 and let B(x, ε) be the open ball of center x and

radius ε. We then have

x ∈ A⇐⇒ ∀ε > 0, B(x, ε) ∩A 6= ∅
⇐⇒ ∀ε > 0, ∃aε ∈ A : d(x, a) < ε

⇐⇒ ∀ε > 0, ∃aε ∈ A : 0 ≤ d(x, a) < ε+ 0

⇐⇒ d(x,A) = 0

by the greatest lower bound property.
Let a ∈ X. We have to show that {a} is closed. We have

{a} = {x ∈ X : d(x, a) = 0} = {a},
i.e. {a} is closed.

Remark. This is a particular case and another proof of
the result of Exercise 3.3.28 since every metric space is Haus-
dorff.

(3) Since A ⊂ A, we have

d(x,A) ≥ d(x,A).

Now for all a ∈ A and for all b ∈ A,

d(x,A) ≤ d(x, a) ≤ d(x, b) + d(b, a).
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Hence
d(x,A) ≤ d(x, b) + d(b, A).

But, d(b, A) = 0 as b ∈ A and so

d(x,A) ≤ d(x, b), ∀b ∈ A.

Taking the inf again over b ∈ A gives

d(x,A) ≤ d(x,A)

leading to the wanted equality.

Remark. The result of Question 3 can be interpreted as follows:
A point in the closure of A is not very far from A.

Solution 3.3.34.
(1) First, note that A×B ⊂ A× B. But A× B is closed (why?)

and hence A×B ⊂ A×B.
Now we prove the other inclusion. Let (x, y) ∈ A×B. Then

x ∈ A and y ∈ B. Hence any neighborhood of x intersect
A and so does any neighborhood of y with B. Let Ω be a
neighborhood of (x, y). Then Ω is a union of elements of the
form U × V where U is open in X and contains x, V is open
in Y and contains y. We have

(U × V ) ∩ (A× B) = (U ∩A)× (V ∩B) 6= ∅

as x ∈ A and y ∈ B. Thus Ω too intersects A×B which leads
to (x, y) ∈ A× B.

(2) There different methods to prove this property. The one we

use here is based on the known property Ac = (
◦
A)c and on the

previous question. We have

(

◦︷ ︸︸ ︷
A×B)c =(A× B)c = (Ac × Y ) ∪ (X × Bc)

=Ac × Y ∪X × Bc

=(Ac × Y ) ∪ (X × Bc)

=(Ac × Y ) ∪ (X × Bc)

=((
◦
A)c × Y ) ∪ (X × (

◦
B)c)

=(
◦
A×

◦
B)c.

Thus
◦︷ ︸︸ ︷

A× B =
◦
A×

◦
B.
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Solution 3.3.35. Using a proof by induction, it suffices to prove
this result for two spaces. Let X and Y be two separable spaces, i.e.
there are two countable subsets A and B of X and Y respectively such
that

A = X and B = Y.

Now, obviously A× B is countable. It is also dense in X × Y since

A× B = A× B = X × Y.

The solution is complete.

Solution 3.3.36.
(1) A has an empty interior since no open ball can be contained

in A (why?). Its closure is given by

A = A ∪ {(0, y) : −1 ≤ y ≤ 1}.
This comes from the fact any open ball centered at (0, y) with
−1 ≤ y ≤ 1 intersects A.

(2) The interior of B is void. For no open ball can be contained in
A regardless of its radius. Also B is closed. There are different
ways of seeing this:
(a) Let (x, y) 6∈ A. Then there is always some r > 0 such that

B((x, y), r) does not intersect B and hence (x, y) 6∈ B.
The proof is over.

(b) Alternatively and anticipating a result on continuity (to
be seen in the next chapter) the given set B is the graph
of the function x 7→ x which is continuous on usual R and
the graph of a continuous function is closed.

(c) Also, B is the diagonal of R and it is closed since usual R
is Hausdorff (cf Exercise 4.3.31).

(3) The answer becomes obvious once we write C = C1×C2 where

C1 = (−2, 2) and C2 = (−3, 3).
Hence

◦
C =

◦︷ ︸︸ ︷
C1 × C2 =

◦
C1 ×

◦
C2 = (−2, 2)× (−3, 3) = C.

Similarly

C = C1 × C2 = [−2, 2]× [−3, 3].
(4) Since {(1, 1)} is a singleton in usual R2, we immediately get

◦
D =

◦︷ ︸︸ ︷
{(1, 1)} × C =

◦︷ ︸︸ ︷
{(1, 1)} ×

◦
C = ∅×

◦
C = ∅.
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Finally,

D = {(1, 1)} × C = {(1, 1)} × [−2, 2]× [−3, 3].

Solution 3.3.37. Let ϕ : X → X/R be the quotient map. Let

T = {A ∈ X/R : ϕ−1(A) is open in X}.

Let us show that T is a topology in X/R.
(1) ∅, X/R ∈ T as: ϕ−1(∅) = ∅ and ϕ−1(X/R) = X.
(2) Let A,B ∈ T . Then

ϕ−1(A ∩B) = ϕ−1(A) ∩ ϕ−1(B)

is open in X so that A ∩ B ∈ T .
(3) Let (Ai)i∈I be a collection of elements in T . Then

ϕ−1(
⋃

i∈I
Ai) =

⋃

i∈I
ϕ−1(Ai)

is open in X and so ∪i∈IAi ∈ T .

Solution 3.3.38.
(1) Left to the reader!
(2) Denote the quotient map by p, i.e. the map p : R → R/Q.

Let [s] and [r] be two elements of R/Q. Let U ∈ V([s]) and
V ∈ V([r]). By definition, p−1(U) and p−1(V ) are two open
sets in R. Hence

∃q, q′ ∈ Q : q ∈ p−1(U), q′ ∈ p−1(U) (why?)

Thus [q] ∈ U and [q′] ∈ V . But [q] = [q′] since q − q′ ∈ Q.
Therefore, U ∩V is never empty and consequently R/Q is not
Hausdorff.

(3) Let U be any non-empty set in R/Q. We must show that
U = R/Q. Denote the quotient map by p. Then p−1(U) is
open in R. Now, the map t 7→ t+α is continuous for each real
α. Whence the set {t ∈ R : t + α ∈ p−1(U)} is open in R.
Thus it must necessarily intersect Q and so

∃q ∈ Q : q + α ∈ p−1(U).

But p(α) = p(q + α) (why?). This implies that p(α) ∈ U , i.e.
α ∈ p−1(U) and hence p−1(U) = R. Therefore, U = R/Q.
The proof is complete.
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3.4. Hints/Answers to Tests

Solution 7.
(1) We can write (can’t we?) A =

⋃

x∈A
Ux...

(2) It reminds us of the definition of an open set in a metric space
with Ux playing the role of an open ball...

Solution 8. Yes! why?...

Solution 9. No! Consider e.g. {π}...
Solution 10. No! (why?)...

Solution 11. No T is not a topology on X. While ∅ and X both
belongs to T (why?), the union of two elements in T need not remain
in T (consider A4 and A3 for example)...

Solution 12. There are nine topologies having four open sets.
Find them directly or just apply Exercise 3.5.1.

Solution 13. Construct such a set using sets similar to { 1
n
: n ∈

N} which we know it has 0 as its unique limit point. What is left to
do should be clear to the reader by now...

Solution 14.
(1) In the discrete topology, A′ = ∅. {x} is an open set containing

x...
(2) In the co-finite topology, A′ = X if A is infinite and A′ = ∅

if A is finite. The reason is that if A is infinite, then X − {a}
is open and contains x where a ∈ X...and if A is a singleton,
consisted of the element a say, then X − {a} is always open
and does not intersect A and similar arguments work for A
consisted of a finite number of elements...

Solution 15. No. Why?...

Solution 16. Let T be the usual topology on R and let T ′ be
the co-countable topology on R. Then T is stronger than T ′ for it has
more closed sets as there are closed sets which are uncountable...

Solution 17. The answer is no as every proper subset in this
topology is closed...

Solution 18.
(1) The empty set corresponds to the case a = 0. The rest is

obvious too...
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(2) Closed sets are of the form (−∞,−a] ∪ [a,+∞). For [−1, 2],
the smallest closed superset is R and the largest open subset
is (−1, 1).

(3) The closure and the interior of {0} are given by R and ∅
respectively.

As for {1} they are given by R\(−1, 1) and ∅ respectively.

Solution 19. It inherits the discrete topology. Every singleton
{x} (x ∈ A) is open in A as it can be written as A ∩ {x, a}...

Solution 20. Yes, if this set is clopen. Otherwise, this cannot
occur as the frontier of a set is always closed (is it not?).

Solution 21. Yes (why?)...

Solution 22. Well, it is a routine so do it!...





CHAPTER 4

Continuity and Convergence

4.2. True or False: Answers

Answers.
(1) No, this is not always the case if the topologies endowing the

domain and the "arrival" sets are different. See Exercise 4.3.1.
If, however, the identity mapping is between two identical
spaces endowed with the same topologies, then it is contin-
uous.

(2) It is asked whether each continuous function is open? Such
is not the case. As a counterexample, let f : R → R defined
by f(x) = 0 (R endowed with its standard topology). Then
f is continuous but for some (and here any!) open U in R,
f(U) = {0} is not open in R.

(3) The left-to-right implication is correct and for a proof see Ex-
ercise 4.3.19. As for the backward implication, it is not true.
For a counterexample, take the function

f(x) =

{
1, x ∈ Q,
0, x 6∈ Q.

Then f is not continuous whilst fQ is continuous (both in the
usual topology).

(4) In general, only the right-to-left implication is verified. To see
this, let U be an open set containing x. Since (xn) converges
to x, for any open set containing x, and in particular for U ,

∃N ∈ N, ∀n ∈ N (n ≥ N =⇒ xn ∈ U)

and hence A ∩ U 6= ∅ or x ∈ A.
The other implication may fail to hold. In R equipped with

the co-countable topology, let A = [0, 2]. Then A = R (cf.
Exercise 3.3.24). Now, the only convergent sequences in this
space are the eventually constant ones (see Exercise 4.3.14).
Hence

∀xn ∈ [0, 2], xn 6−→ −1 and yet − 1 ∈ A.

163
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If, however, we are dealing with metric spaces only, then
the equivalence always always holds and it is a very useful
result to use.

Let us then show the left-to-right implication in metric
spaces. Let X be endowed with a metric d and let x ∈ A.
Then

∀ε > 0 : B(x, ε) ∩A 6= ∅
and hence

∀n ∈ N : B

(
x,

1

n

)
∩ A 6= ∅.

Choosing an xn in this intersection gives us for all n, d(xn, x) <
1
n

(and xn ∈ A). Therefore, (xn) converges to x in (X, d).
(5) This statement as it stands is something to avoid imperatively

in topology. One has to be more precise about the space in
which the convergence is to be established. For instance, in
the usual topology of R, this sequence converges to zero while
in other spaces (or/and topologies) it can have different limits
(see Exercise 4.3.12).

(6) The reasoning has a problem with the passage 1
n
6∈ U implying

1
n
∈ U c. This is wrong since 1

n
not being in U means that

( 1
n
) 6⊂ U and this does not imply necessarily that ( 1

n
) ⊂ U c.

For one correct proof see Exercise 4.3.12.
(7) First, A is closed as its complement, being an arbitrary union

of open sets, is open!
Second, the known result says that a set is closed in a

metric space, if whenever a sequence in this set converges,
then it must have a limit inside that set. In our case, that
result cannot be applied as (xn) does not even converge!

(8) A priori, the reader might think something is wrong but in
fact everything is fine and nothing contradicts the continuity
of f . First, f is in effect continuous and this only requires
basic one variable analysis. Second, [0, 1] is well closed in R
and its preimage, given by

f−1([0, 1]) =
{
x ∈ R∗

+ : ln x ∈ (0, 1)
}
= (1, e],

is not closed in R but it is closed in the subspace topology of
R∗! (the topology which should be used here).

(9) The answer is no! For counterexamples, see Exercise 4.3.13.
(10) Only the left-to-right implication is true. In other words, the

uniqueness of the limit of a sequence does not characterize
the Hausdorffness property. We give a proof. Assume a given
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sequence (xn) in a separated space X has two different limits,
x and y say. Since X is Hausdorff,

∃U ∈ V(x), ∃V ∈ V(y) : U ∩ V = ∅.

Since (xn) converges to a, for all open sets containing x and
in particular for U

∃N1 ∈ N, ∀n ∈ N : (n ≥ N1 ⇒ xn ∈ U).

Similarly,

∃N2 ∈ N, ∀n ∈ N : (n ≥ N2 ⇒ xn ∈ V ).

So, for n ≥ max(N1, N2), xn ∈ U ∩ V which contradicts the
fact that U and V are disjoint! Thus the limit is unique.

As for the other implication we present a counterexample.
Consider X = R equipped with the co-countable topology.
Then the only convergent sequences are the eventually con-
stant ones (see Exercise 4.3.14). Let (xn) be a sequence in X
which converges to two different limits, x and y (x 6= y), say.
Then

∃N1 ∈ N, ∀n ≥ N1 : xn = a and ∃N2 ∈ N, ∀n ≥ N2 : xn = b.

Hence for n ≥ max(N1, N2) we would have xn = a = b which
contradicts the hypothesis a 6= b. Thus the limit is unique.
However, we already know from Exercise 3.3.24 that X is not
Hausdorff.

(11) The answer is yes but some comments have to be given. First,
an open set U in R is written as

U =
⋃

i∈I
(ai, bi).

Then

f−1(U) = f−1

(⋃

i∈I
(ai, bi)

)
=
⋃

i∈I
f−1(ai, bi).

Since the arbitrary union of open sets is open, it suffices to
have f−1(ai, bi) open which is the hypothesis.

We also observe that this is true since {(ai, bi)}i∈I is a basis
in R. Hence if Bi is some basis in some topological space X
and f : Y → X is a function (Y is a topological space), then it
is sufficient to check the openness of f−1(Bi) in Y to establish
the continuity of f . This will occur from time to time in the
sequel.
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(12) Two topological spaces (X and Y say) are said to be homeo-
morphic if there is a homeomorphism f : X → Y (or obviously
f : Y → X). Thus it becomes apparent that it is quite easy
to show that two spaces are homeomorphic since it suffices for
that purpose to exhibit one homeomorphism between the two
spaces.

However, if one wants to show that two spaces X and Y
are not homeomorphic, then one sees immediately that it is
not an easy matter as one will have to show that there is
no homoeomorphism between the two spaces. An advanced
topology course, namely algebraic topology, is a powerful tool
for proving that two spaces are not homeomorphic. This is
not discussed in this book. However, in Chapters 5 and 6,
some criteria will be used to prove that some spaces are not
homeomorphic.

(13) Since f is continuous, we have f(A) ⊂ f(A). Since A is dense
in X, we have A = X. Then

f(X) = f(A) ⊂ f(A).

Hence, the closure of f(A) in f(X), given by f(X) ∩ f(A), is
equal to f(X). Thus f(A) is dense in f(X).

(14) True! To see this, let f : X → Y be a homeomorphism be-
tween two topological spaces where X is separable. Let us
show that Y is separable. Since X is separable, there exists a
countable subset A such that A = X. By the previous answer
f(A) is dense in f(X) = Y . But

f(A) = {f(x) : x ∈ A}
is obviously countable. The proof is over.

(15) The answer is again no. One has to distinguish between an al-
gebraic notion and a topological one. The bijectivity is purely
algebraic whilst the continuity is topological. There are many
counterexamples which the reader will see below.

(16) No! Consider f(x) = x from X = R (endowed with the usual
topology) onto Y = R (endowed with the discrete topology).
Then f is bijective. It is also open and closed because every
subset of Y is open and closed. It is, however, not continuous
since {2} is open in Y but its preimage (itself in this case) is
not open in X.

(17) The answer is yes. First, the known result states that f is
continuous iff f(A) ⊂ f(A). Since f is already bijective, it
only remains to check that f−1 is continuous iff f(A) ⊃ f(A).
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Let B ⊂ Y = f(X), then for some A ⊂ X: f(A) = B and
hence A = f−1(B). Then

f(A) ⊃ f(A)⇔ f
(
f−1(B)

)
⊃ B ⇔ f−1(B) ⊃ f−1(B),

that is, if and only if f−1 is continuous.
(18) The answer is no! We give a counterexample. Let Y = R

endowed with the usual topology and let X = R be endowed
with the discrete topology. Let f : X → Y defined for all
x ∈ R by f(x) = x. Then f is a bijection. Then f is continuous
as for every open U set in Y , f−1(U) is open in X. However,
its inverse, i.e. f−1 : Y → X is not continuous (why?).

The reader must not think this is solely true with different
topologies or that this cannot occur in the usual topology. For
instance, let f : X = [0, 1) ∪ {3} → Y = [0, 1] be defined for
all x ∈ X by

f(x) =

{
x, 0 ≤ x < 1,
1, x = 3

and both X and Y are endowed with the induced usual topol-
ogy of R. Details are left to the reader.

(19) The answer is yes. To see this let f : X → Y be a function
with the listed properties. We have to show that f−1 : Y → X
is continuous, i.e. for every open set U in X, (f−1)−1(U) is
open in Y . But since f is bijective, we have

(f−1)−1(U) = f(U)

which is open by the openness of f . Thus f−1 is continuous
and hence f is a homeomorphism.

(20) The answer is yes. For a proof see Exercise 4.3.6.
(21) False! Let f : (0, 1) → {1} be the constant function (both

sets with respect to the usual topology). Then from classical
analysis, f is continuous. Then 0 is a limit point for (0, 1)
while f(0) = 1 is not a limit point for {1}.

(22) False! Only the left-to-right implication holds. For a proof
and for a counterexample to the other implication, see Exercise
4.3.33.

The right-to-left implication holds if X and Y are Banach
spaces and if f is linear. This implication with the quoted
hypotheses (and a fortiori, the whole equivalence) is a very
important result in functional analysis called the "Closed
Graph Theorem".

See Exercise 5.5.9 for another result.
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4.3. Solutions to Exercises

Solution 4.3.1.
(1) (a) If cardX ≥ 2, then the given function is not continuous.

For if U is an open (different from ∅ and X) set in Y ,
then f−1(U) = U is not open in X as the only open sets
in X are ∅ and X.

(b) Now if cardX = 1, then f is obviously continuous as the
discrete and indiscrete topologies coincide in this case.

(2) No f is not continuous. For example, {0} is open in Y but its
preimage {1} is not open in X.

(3) Let U = (0, 1) be an open in Y . Then

f−1(U) = {x ∈ R : x2 ∈ (0, 1)} = (−1, 0) ∪ (0, 1)

which is not open in X as it is not of the form ∅ or R or
(a,+∞).

(4) The function f in this case is continuous since for any open set
U in Y , f−1(U) is open since it is a subset of X. This means
that if X = [0, 3], say, is given the discrete topology, then a
function like

x 7→ f(x) =




−1, 0 ≤ x < 1,
0, 1 ≤ x < 2,
2, 2 ≤ x < 3,

will be continuous. This type of functions (i.e., those defined
on a discrete topology) will have little interest in practise, but
it is quite enlightening as a source of counterexamples.

(5) Let f(x) = b for all x ∈ X. Let U be open in Y . We have

f−1(U) = {x ∈ X : f(x) ∈ U} = {x ∈ X : b ∈ U} = ∅ or X

depending on whether b 6∈ U or b ∈ U . Anyway, in either case
f−1(U) is open in X and hence f is continuous.

(6) Take f : A → X, where A ⊂ X, such that f(x) = x for all
x ∈ A. For any open U in X, f−1(U) = U ∩ A which is open
in A (in the subspace topology). Thus f is continuous.

Solution 4.3.2. Remember that a function f : X → Y (X and
Y being two topological spaces) is continuous at x ∈ X if

∀U ∈ V(f(x)), f−1(U) ∈ V(x).
(1) f is not continuous at a for

∃U = {a, b} ∈ V(a) and f−1(U) = {a, c} 6∈ V(a).
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(2) f is continuous at b because for any open set containing f(b) =
c (in this case there is only one, namely X), f−1(X) = X is
an open set that contains b!

(3) f is not continuous at c since

∃U = {b} ∈ V(f(c)) = V(b) and f−1(U) = {c} 6∈ V(b)
as {c} is not open in X.

Solution 4.3.3. Assume that f−1(
◦
U) ⊂

◦︷ ︸︸ ︷
f−1(U) holds for all U

in Y . We must show that f is continuous. Let V be an open set in Y .
Then V =

◦
V and hence by hypothesis we obtain

◦︷ ︸︸ ︷
f−1(V ) ⊂ f−1(V ) = f−1(

◦
V ) ⊂

◦︷ ︸︸ ︷
f−1(V ).

Therefore,

◦︷ ︸︸ ︷
f−1(V ) = f−1(V ), proving that f−1(V ) is open or that f is

continuous.
Conversely, suppose f is continuous and let U ⊂ Y . Since

◦
U is

open, obviously so will be f−1(
◦
U). Besides,

◦
U ⊂ U and thus

f−1(
◦
U) =

◦︷ ︸︸ ︷
f−1(

◦
U) ⊂

◦︷ ︸︸ ︷
f−1(U).

The proof is complete.

Solution 4.3.4. First, we note that f is obviously a bijection.
The function f : T ′ → T is continuous. To see this, take any nonvoid
(the case of an empty set trivially holds) open set U in T , then U c

is finite and hence it is countable, i.e. U ∈ T ′. But f−1(U) = U .
Thus f is continuous. Since a countable set is not necessarily finite,
we deduce that f−1 : T → T ′ is not continuous. Therefore, f is not a
homeomorphism.

Solution 4.3.5.
(1) The bijectivity of f is evident. Let us show that f is continu-

ous. Since d and d′ are topologically equivalent (see Exercise
2.3.27), f is a homeomorphism.

(2) If X = R and d = | · | the usual metric, then (R, d) is un-
bounded and (R, d′) is bounded and yet these two spaces are
homeomorphic.

Solution 4.3.6. Let f be a homeomorphism between two topo-
logical spaces X and Y . Assume that X is Hausdorff, and let us show
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that Y is in its turn Hausdorff. Let y, y′ ∈ Y be such that y 6= y′. By
the bijectivity of f , there exist unique x, x′ ∈ X such that y = f(x)
and f(y′) = x′. By the bijectivity of f−1, say, we see that x and x′

must be different. By the Hausdorffness of X, we get
∃(U, U ′) ∈ V(x)× V(x′) : U ∩ U ′ = ∅.

Since f is open (and since U and U ′ are open), f(U) and f(U ′) are also
open. They obviously contain y and y′ respectively. But f is injective
and hence

f(U) ∩ f(U ′) = f(U ∩ U ′) = ∅,

proving that f(U) and f(U ′) are disjoint. On that account, Y is Haus-
dorff.

Solution 4.3.7.
(1) (a) Let (a, b) and (c, d) be any two intervals in R. Define a

function f : (a, b)→ (c, d) defined by

f(x) = c+ (d− c)
x− a

b− a

for each x ∈ (a, b). Then it is clear that f is continuous
and bijective. Its inverse, f−1 : (c, d)→ (a, b) given by

f−1(x) = a + (b− a)
x− c

d− c

for each x ∈ (c, d), is obviously continuous too. Thus f is
a homeomorphism and hence (a, b) and (c, d) are homeo-
morphic.

Remark. Needless to recall that this is in the usual
topology and that in other topologies these two intervals
may not be homeomorphic.

(b) We leave it to the reader to check that R is homeomorphic
to (−1, 1) via the homeomorphism

f(x) =
x

1 + |x| , x ∈ R.

Since the "homeomorphism relation" is transitive, then
R is homeomorphic to any open interval by the previous
question.

(2) The answer is yes! Remember that R = R ∪ {−∞,+∞}. For
a possible homeomorphism consider

f(x) =





x
1+|x| , x ∈ R,
−1, x = −∞,
1, x =∞.
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Solution 4.3.8. This is easy. We have A = f−1({a}). Since {a}
is closed in R, so is A since it is the preimage of a closed set under a
continuous function.

Solution 4.3.9.
(1) The function (x, y) 7→ f(x, y) = xy defined on R2 since it is

a polynomial. Now A is closed as it is the inverse image of a
closed set, that is {1}, by a continuous function.

(2) As before, the function (x, y) 7→ f(x, y) = x2 + y2 defined on
R2 is continuous since it is a polynomial. Hence

A = {(x, y) ∈ R2 : x2 + y2 ≤ 1} = f−1([0, 1])

is closed for [0, 1] is closed in R.
(3) First, this space has an algebraic dimension equal to n2. The

"function determinant" defined in X = Mn(R) and taking
values in R is a polynomial of degree n2 and hence it is con-
tinuous. The remaining part of the answer is a routine.

Solution 4.3.10.
(1) The set A is closed since A = f−1((−∞, a]), f is continuous

and (−∞, a] is closed in R.
(2) The converse is not always true. Consider the discontinuous

function (at x = 0)

f(x) =

{
0, x ≤ 0
2, x > 0

.

Now we show that for any a, the resulting set A will always
be closed. We have
(a) a < 0⇒ A = ∅, i.e. A is closed in R.
(b) 0 ≤ a < 2⇒ A = (−∞, 0], i.e. A is closed in R.
(c) a ≥ 2⇒ A = R, i.e. A is closed in R.

Solution 4.3.11. The left-to-right implication is evident. Let us
prove the right-to-left implication. Since {(a, b) : a, b ∈ R} is a basis
for usual R, it suffices to prove that the inverse image of (a, b) via f is
open. We have

(a, b) = (−∞, b) ∩ (a,∞)

and hence

f−1((a, b)) = f−1((−∞, b) ∩ (a,∞)) = f−1((−∞, b)) ∩ f−1((a,∞))

which is open by our assumptions. Thus f is continuous.
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Solution 4.3.12.
(1) Obviously, in the usual R, the sequence

(
1
n

)
n≥1

converges to
0.

(2) We have already proved that this topology is not Hausdorff
(see Exercise 3.3.22) and hence if this sequence is convergent,
it need not have a unique limit.

The sequence
(
1
n

)
n≥1

converges to every element of R. To
see this, let U be an open set containing x, where x ∈ R.
Hence U c must be finite. Since

1

n
∈ R = U ∪ U c,

we see that 1
n

must be in U , for all, but finitely many, n ∈ N.
This proves the convergence of the sequence.

(3) On the contrary of the previous topology, this same sequence
does not converge to any point in R. To illustrate this, let
us show that 1

n
does not converge to a ∈ R for any a. The

question amounts to finding a U ∈ V(a) such that

∀N ∈ N, ∃n (n ≥ N ∧ 1

n
/∈ U).

It suffices to take U = {a} ∈ V(a) (which is of course open in
this topology) and then

∀N ∈ N, ∃n = N (n ≥ N ∧ 1

n
/∈ {a}).

Remark. In fact, the only convergent sequences in a dis-
crete topological (or metric) space are the constant ones.

(4) In the indiscrete topology, all sequences (and in particular
ours) converge to every point in R. For R is the only non-
empty open set. Thus it will contain any sequence.

Solution 4.3.13.
(1) Let x ∈ R. Since U = (x − 1, x + 1) − K is a neighborhood

of x and since 1
n
6∈ U for all n, we immediately deduce that

1
n
6→ x.
On the contrary, − 1

n
does converge to 0 in RK since any

neighborhood of zero will contain infinitely many points of (xn)
by the Archimedean property.

(2) −K is not closed because − 1
n
∈ −K but − 1

n
→ 0, in RK , and

0 6∈ K.
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(3) We leave it to you to show that (xn) converges to 0.
No, (xn) cannot have another limit as Rℓ is Hausdorff (see

Exercise 3.3.29).
(4) No, f is not continuous as K is closed in RK while its preimage

f−1(K) = −K is not closed in RK .
(5) No, f is not continuous since [0,∞) is open in Rℓ and it is not

the case for its preimage f−1([0,∞)) = (−∞, 0] is not open in
Rℓ (cf. Exercise 3.3.29).

Solution 4.3.14.
(1) Let (xn) be a convergent sequence to some x. Then

∀U ∈ V(x), ∃N ∈ N, ∀n (n ≥ N ⇒ xn ∈ U).

In particular, for U = X \ {xn : xn 6= x} (which is open and
contains x). Thus there exists some N0 such that for all n :

n ≥ N0 ⇒ xn ∈ X \ {xn : xn 6= x}.
Therefore, xn = x for all n ≥ N0.

(2) (a) 1 ∈ [2, 3]′ since every open set containing 1 intersects [2, 3]
(why?).

(b) Since (xn) takes its values in [2, 3] and since (xn), if it
converges, is eventually a constant, we deduce directly
that xn 6→ 1.

(c) The conclusion is: there are sets having a limit point to
which no sequence in this set need to converge.

Solution 4.3.15.
(1) A simple application of Exercise 2.5.2 gives, for all n

0 ≤ |d(xn, yn)− d(x, y)| ≤ d(xn, x) + d(yn, y).

Passing to the limit, as n tends to infinity, finishes the proof.
(2) The previous result means that the function d, defined on X×

X, is a continuous function (something already known from
the metric spaces chapter!).

Solution 4.3.16.
(1) Let us prove this. Assume f is continuous and let xn → x.

We have to prove that f(xn)→ f(x) in Y . Let U be an open
neighborhood of f(x). Then x is in f−1(V ) which is open by
the continuity of f . Thus, f−1(U) contains all but finitely
many terms of (xn). Accordingly, U contains all but finitely
many terms of f(xn). This means that f(xn) → f(x) in Y ,
establishing the sequential continuity of f .
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(2) Let f : X → Y , where X is R equipped with the co-countable
topology and Y is the usual R, be defined by f(x) = x. Then
the only convergent sequences in X are the eventually constant
ones (see Exercise 4.3.14). These sequences also converge in
usual R and hence

xn → x in X ⇒ xn → x in Y or f(xn)→ f(x).

This means that f is sequentially continuous. However, it
is not continuous for U = (−1, 1) is open in Y and it is not
the case for its preimage in X.

(3) Thanks to Question 1, we only prove f is sequentially contin-
uous implies that f is continuous. Assume f : X → Y (X and
Y being two metric spaces) is sequentially continuous and we
show that f is continuous and it is better here to use closed
sets (why?). Let V be a closed set in Y . We need to establish
the closedness of f−1(V ) in X. Let xn ∈ f−1(V ) be converg-
ing to x ∈ X. Then f(xn) is in V for all n and the sequential
continuity hypothesis implies that f(xn) → f(x). But V is
closed and so f(x) ∈ V or x ∈ f−1(V ). The proof is complete.

Solution 4.3.17. It is known that an open set U in R is of the
form

U =
⋃

i∈I
(ai, bi), ai, bi ∈ R.

We have to show that f(U) is open. But since

f(U) = f(
⋃

i∈I
(ai, bi)) =

⋃

i∈I
f((ai, bi)),

we need only show that f((ai, bi)) are open for every i. WLOG we may
assume that f is increasing. Now, since f is continuous and increasing,
we have

f((ai, bi)) = (f(ai), f(bi)), ∀i ∈ I

which are all open and hence so is their union. Thus f(U) is open, i.e.
f is an open map.

Solution 4.3.18. Let C be a closed set in R. We need to show
that P (C) is closed. Let (yn) ⊂ P (C) be a converging sequence to
y. Hence, there is (xn) ⊂ C such that P (xn) = yn. This implies that
(P (xn) = yn) is bounded. But since a polynomial has an infinite limit
only at ±∞, we get that (xn) is also bounded in R. A standard result
from the course of calculus (namely the Bolzano-Weierstrass property)
tells us that we can extract from (xn) a convergent subsequence (xn(k)).
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Call x its limit. Whence, x ∈ C as C is closed. By the continuity of P
(it is a polynomial!), we obtain

y ←− yn(k) = P (xn(k)) −→ P (x).

Since we are in a Hausdorff space, the limit is unique and hence y =
P (x) ∈ P (C), i.e. P (C) is closed which means that P is a closed
mapping. The solution is over.

Solution 4.3.19. Call the restriction of f to A, fA. Let U be
an open set in Y . Then f−1

A (U) = A ∩ f−1(U) is open in A (in the
subspace topology) as f−1(U) is open in X by the continuity of f .

Solution 4.3.20. None of the sets considered in this exercise is
closed.

(1) To show that A = (0, 1] is not closed in R, it suffices to find a
convergent sequence (xn)n in A having a limit not belonging
to A. Take xn = 1

n
which obviously lies in A. Its limit in R is

0 and it is not in A. Hence A is not closed.
(2) The same arguments (and even the same sequence) apply to

show that B is also not closed.
(3) C is not closed. To see that we need a convergent sequence

(xn, yn)n in C having a limit outside C. One choice among
many is to take

(xn, yn) =

(√
n

1 + n
, 0

)
∈ C as

n

1 + n
+ 0 < 1, ∀n ∈ N.

Then, its limit is (1, 0) 6∈ C since 12 + 02 ≮ 1.
(4) The same method again. The reader may easily show that D is

not closed (consider for instance the sequence
(√

1 + 1
n
, 0
)
n
).

Solution 4.3.21. First we show that A is not closed. Since
(xn, yn) = (n+1

n
, n
n+1

) ∈ A (n ≥ 1) with limit (1, 1) not in A, we easily
conclude that A is not closed.

To show that A is not open, we show instead (and equivalently)
that R2 \ A is not closed. Obviously

(
2n+ 1

n
,
n− 2

2n

)
6∈ A, i.e.

(
2n + 1

n
,
n− 2

2n

)
∈ R2 \ A.

However,
(
2n+1
n

, n−2
2n

)
→ (2, 1

2
) ∈ A, i.e. (2, 1

2
) 6∈ R2 \ A. Therefore

R2 \ A is not closed, i.e. A is not open.

Solution 4.3.22. A similar idea to the second part of the previous
solution may be applied to prove that A is not open. We show that
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R \A is not closed. Consider the sequence (1+ 1
p
)p≥1. It certainly does

not belong to A and hence it belongs to R \A. Its limit in R is 1 ∈ A,
i.e. 1 6∈ R \ A. Thus R \ A is not closed.

Solution 4.3.23.
(1) There are different methods to answer this question. We give

the following one (the reader may try to give a different proof).
Let (xn)n ∈ A such that xn → x in X. We need to show that
x ∈ A, i.e. f(x) = g(x). Since (xn)n ∈ A, f(xn) = g(xn). But
f and g are both continuous. Hence

f(x)←− f(xn) = g(xn) −→ g(x).

Since Y is Hausdorff (why?), the limit is unique and thus
f(x) = g(x), i.e. x ∈ A.

(2) The set B is such that B = X. Assume that f and g coincide
on B and let us show that this forces them to coincide on all
of X. Let x ∈ X. Then there exists a sequence (xn)n in B
such that xn → x (in X). Hence one has f(xn) = g(xn) and
since f and g are continuous,

f(x)←− f(xn) = g(xn) −→ g(x).

Thus f and g coincide everywhere.

Remark. There is a tempting but completely false proof of the
first question. We write A as (f − g)−1({0}), then we say that A is
closed as it is equal to the inverse image of {0} by a continuous function
which is f − g. There are some false arguments here mainly algebraic
ones, e.g. who knows whether 0 is in Y ? is “ − ” defined in Y ? (in
fact the function f − g may make no sense at all). Of course if Y = R,
then this wrong proof becomes a true and nice one.

Solution 4.3.24. If f were continuous at (0, 0), then we would
have for any (xn, yn) converging to (0, 0), f(xn, yn) → f(0, 0). But
( 1
n
, 1
n
)→ (0, 0) and f( 1

n
, 1
n
) = 1

2
6→ 0 which means that f is discontinu-

ous at (0, 0) (taking ( 1
n
, 0) → (0, 0) shows that the limit at (0, 0) does

not even exist).

Solution 4.3.25.
(1) Assume that f : X → Y is a continuous, one-to-one mapping

and that Y is Hausdorff. Let us show that X is Hausdorff. Let
x, y ∈ X such that x 6= y. Since f is one-to-one, f(x) 6= f(y).
But Y is Hausdorff (and f(x), f(y) ∈ Y ) and hence

∃U ∈ V(f(x)), ∃V ∈ V(f(y)) such that U ∩ V = ∅.
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Since U and V are open and f is continuous, f−1(U) and
f−1(V ) are also open. Since f(x) ∈ U and f(y) ∈ V , x ∈
f−1(U) and y ∈ f−1(V ). We also have

f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = f−1(∅) = ∅.

Hence f−1(U) and f−1(V ) are two disjoint neighborhoods of
the x and y respectively (remember that x 6= y). Thus X is
Hausdorff.

(2) On R, consider the discrete topology (denoted by Y ) and the
indiscrete one (denoted X). Now let f : X → Y be the iden-
tity map. Then f is one-to-one but it is not continuous (see
Exercise 4.3.1). It is also known that Y is Hausdorff whereas
X is not.

(3) Keeping the same topologies as in the previous answer but
take f(x) = a (the constant function). Then f is continuous
but not one-to-one and Y is Hausdorff whilst X is not.

Solution 4.3.26.
(1) The set Z(g) is closed since it is the inverse image of a closed

set under a continuous function.
(2) First, we must check that f is well-defined, i.e. its denominator

never vanishes. By Exercise 3.3.33 and since A and B are
disjoint, we immediately see that d(x,A) and d(x,B) cannot
vanish simultaneously and hence

∀x ∈ X : d(x,A) + d(x,B) > 0.

Now, since x 7→ d(x,A) and x 7→ d(x,B) are (uniformly) con-
tinuous by Exercise 2.3.22, the function f , being the quotient
of two continuous functions, is continuous.

(3) We have by Exercise 3.3.33

f(x) = 0⇐⇒d(x,A) = 0

⇐⇒x ∈ A = A

and hence f−1({0}) = A.
A quite similar reasoning applies to show that f−1({1}) =

B.
(4) We must show that any closed set is the zero set of some

continuous function. Let h : X → R be a given function.
Different cases are to be treated.
(a) If Z(h) = ∅, take h(x) = 1 for all x ∈ X and this is a

continuous function.
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(b) If Z(h) = X, take h(x) = 0 for all x ∈ X and this is a
continuous function.

(c) If Z(h) 6= X (and Z(h) 6= ∅) is closed, then there exists
a ∈ X such that h(a) 6= 0. This implies that the two
sets Z(h) and {a} are disjoint. Moreover, they are both
closed. Define h by

h(x) =
d(x, Z(h))

d(x, {a}) + d(x, Z(h))

for all x ∈ X. By Question 2, this is a continuous func-
tion. The proof is complete.

(5) Let

U = f−1

((
−1
5
,
1

4

))
and V = f−1

((
1

3
,
3

2

))

Since f is continuous, both U and V are open. They are also
disjoint for

U ∩ V =f−1

((
−1
5
,
1

4

))
∩ f−1

((
1

3
,
3

2

))

=f−1

((
−1
5
,
1

4

)
∩
(
1

3
,
3

2

))

=f−1(∅) = ∅.

In the end, A is contained in U for 0 ∈ (−1
5
, 1
4
) and V contains

B as 1 ∈ (1
3
, 3
2
) (why?).

Solution 4.3.27. Let n,m ∈ N be such that n 6= m. It is clear
(isn’t?) that

d∞(fn, fm) = 1.

Solution 4.3.28. We recall that for f, g ∈ X

d(f, g) =

∫ 1

0

|f(x)− g(x)|dx and d′(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

First, we prove the closedness of A with respect to d′. Let f ∈ A. Then
for some fn ∈ A, fn converges uniformly to f . This implies two things.
First, that f must be continuous (a well-known result from the course
of advanced calculus, or from Chapter 8).

Second that

∀x ∈ [0, 1] : lim
n→∞

fn(x) = f(x).

But, since fn(0) = 0, we have f(0) = 0 too. Thus f ∈ A.
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Now we show that A is dense in X with respect to d. We need
only show that X ⊂ A. Let f ∈ X, i.e. f is continuous. Consider the
sequence of functions fn defined by

fn(x) =

{
xenf(e−n), 0 ≤ x ≤ e−n,

f(x), e−n ≤ x ≤ 1.

The continuity of f implies that of the fn. Also fn(0) = 0. Hence
fn ∈ A for all n ∈ N. It only remains to show that d(fn, f) → 0 as n
tends to infinity. Let n ∈ N. We have

d(fn, f) =

∫ e−n

0

|fn(x)− f(x)|dx+

∫ 1

e−n

|fn(x)− f(x)|dx

=

∫ e−n

0

|xenf(e−n)− f(x)|dx.

But for all (x, n) ∈ [0, e−n]×N we have

|xenf(e−n)− f(x)| ≤ |xenf(e−n)|+ |f(x)| ≤ e−nen|f(e−n)|+ |f(x)|
≤ 2 sup

x∈[0,e−n]

|f(x)| ≤ 2 sup
x∈[0,1]

|f(x)|.

Thus

d(fn, f) ≤ 2 sup
x∈[0,1]

|f(x)|
∫ e−n

0

dx = 2e−n sup
x∈[0,1]

|f(x)| → 0 as n→∞.

Therefore, f ∈ A.

Solution 4.3.29.
(1) We can prove Aa is closed as done in the foregoing exercise.

Alternatively, we can do the following. Let d be the supremum
metric on X. Let fn ∈ Aa such that d(fn, f) → 0 as n tends
to infinity. Then f is continuous on [0, 1]. We also have

|f(a)| ≤ |fn(a)− f(a)|+ |fn(a)| = |fn(a)− f(a)| ≤ d(fn(a), f(a))→ 0

as n tends to infinity. This gives f ∈ Aa.
(2) Observe that for each a ∈ I, B reduces to some Aa. Thus B

may be written as the arbitrary intersection of closed sets of
the form Aa, i.e.

B =
⋂

a∈I
Aa is closed.
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Solution 4.3.30.
(1) First, we show the given projections are continuous. We show

that p is continuous . Let U be an open set in X. We need to
show that p−1(U) is open in X × Y . We have

p−1(U) = {(x, y) ∈ X × Y : p(x, y) = x ∈ U} = U × Y

which is open in X × Y . Thus p is continuous. The proof of
the continuity of q is very akin to that of p.

Second, we note that the set A (given in the hint) is closed
(see the next coming exercise for the proof that A is closed).
Now we have

p(A) =

{
p

(
x,

1

x

)
: x 6= 0

}
= R∗.

Thus p(A) is not closed and hence p is not closed. The same
arguments apply for q.

(2) Let U and V be open sets in X and Y respectively. We have

p(U × V ) = {p(x, y) = x : (x, y) ∈ U × V } = U.

Now, any open set Ω in X×Y is of the form ∪i∈I(Ui×Vi) where
Ui and Vi are open sets in X and Y respectively. Moreover,

p(Ω) = p

(⋃

i∈I
(Ui × Vi)

)
=
⋃

i∈I
p(Ui × Vi)

︸ ︷︷ ︸
open in X

and hence p is an open mapping. The proof of the openness
of q is very similar to that of p.

Solution 4.3.31.
(1) We are required to prove that X is Hausdorff if and only if
△ is closed, that is, if and only if △c is open. Assume X is
separated. Let (x, y) ∈ △c. Then x 6= y. But X is Hausdorff
and hence

∃(U, V ) ∈ V(x)× V(y) : U ∩ V = ∅.

Now, U ×V is open in X×X, it contains (x, y) and (U ×V )∩
△ = ∅ which implies that U × V ⊂ △c. By Test 7, we get
that △c is open or that △ is closed.

Conversely, suppose that △ is closed. To show that X is
separated, let x 6= y. Then (x, y) ∈ △c. But △c is a union of
basis elements and hence

∃U, V ∈ X ×X : (x, y) ∈ U × V ⊂ △c.
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This implies that U ∩V = ∅ (if a were in both U and V , then
(a, a) ∈ U × V but it would not be in △c, a contradiction!).
Since U and V are open sets that contain x and y respectively,
we immediately see that X Hausdorff, establishing the result.

(2) The function (f, g) : X → Y × Y is continuous (this will be
illustrated below). Now, let △ be the diagonal of Y . Then

[(f, g)]−1(△) = {x ∈ X : f(x) = g(x)}

is closed, being the preimage of a closed set (which one and
why?) by a continuous function.

Solution 4.3.32.

(1) (a) The "if" part. Let x ∈ A. Adopting the notations of
Exercise 4.3.30 we can write g(x) = p(f(x)) and h(x) =
q(f(x)). Since f , p and q are continuous, so are g and h.

(b) The "only if" part. Assume that h and g are both contin-
uous. Let U be an open set in X let V be an open set in
Y . We first show that f−1(U ×V ) is open in A. We have

x ∈ f−1(U × V )⇔ f(x) ∈ U × V

⇔ g(x) ∈ U ∧ h(x) ∈ V

⇔ x ∈ g−1(U) ∧ x ∈ h−1(V )

⇔ x ∈ g−1(U) ∩ h−1(V ).

This shows that f−1(U × V ) = g−1(U) ∩ h−1(V ).
Since g and h are continuous, both g−1(U) and h−1(V )
are open in A. Hence f−1(U × V ) is also open in A.
However, every open set in X×Y is a union of sets of the
form U × V where U is open in X and V is open in Y . If
Ω is open in X × Y , then Ω =

⋃

i∈I
Ui × Vi and

f−1(Ω) = f−1

(⋃

i∈I
Ui × Vi

)
=
⋃

i∈I
f−1(Ui × Vi)

︸ ︷︷ ︸
open in A

.

Thus f is continuous.
(2) The answer is no in this case, i.e. a function may well have

partial continuous functions without being continuous itself.
The following example elucidates that. Let f : R2 → R be
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defined by

f(x, y) =

{ 2xy
x2+y2

, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

The reader can easily check that x 7→ f(x, y) and y 7→ f(x, y) are both
continuous on R while f is not continuous at (0, 0).

Remark. The result in Question 1 can be generalized to an in-
finite cartesian product

∏
i∈I Xi where the Xis are topological spaces

if it is given the product topology (see [10]). If, however, we endow
it with the box topology (for which the basis elements are of the form∏

i∈I Ui where the Uis are open in the Xis), then the result in Question
1 fails to hold.

As a counterexample (borrowed from [10]), take f : R→ Rω, where
Rω = R×R× · · · ×R× · · · (a countably infinite product), defined by

f(x) = (x, x, · · · , x, · · · ).
By the generalization alluded to just above f is continuous with re-
spect to the product topology since all its components are continuous.
However, f is not continuous with respect to the box topology since

Ω = (−1, 1)×
(
−1
2
,
1

2

)
×
(
−1
3
,
1

3

)
× · · · ×

(
−1

n
,
1

n

)
× · · ·

is open in Rω while its preimage f−1(Ω) is not open in R. For if it were
and since (0, 0, · · · , 0 · · · ) ∈ Ω, we would have for some r > 0,

(−r, r) ⊂ f−1(Ω) =⇒ f(−r, r) ⊂ Ω.

Applying the nth projection to the previous inclusion would yield

(−r, r) ⊂
(
−1

n
,
1

n

)
, ∀n ∈ N,

which contradicts the Archimedes axiom.
In this book we shall not use topologies of infinite product of topo-

logical spaces. The reader is referred to [10] for more on the infinite
product topology.

Solution 4.3.33.
(1) The proof is based on Exercise 4.3.31. We know that p :

(x, y) 7→ x and q : (x, y) 7→ y are both continuous. Then
f ◦ p : (x, y) 7→ f(x) is continuous too. Thus by Exercise
4.3.31, the set

{(x, y) ∈ X × Y : (f ◦ p)(x, y) = q(x, y)},
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which is nothing but the graph of f , is closed. This finishes
the proof.

(2) The answer is yes. In usual R, consider

f(x) =

{
0, x = 0
1
x
, x ∈ R∗.

Then f is defined on R and it takes its value in R which is
Hausdorff. Obviously f is not continuous at x = 0. Its graph,
given by

Gf = {(x, f(x)) : x ∈ R} = {(0, 0)} ∪
{(

x,
1

x

)
: x ∈ R∗

}
,

is closed. To show this, we observe that since {(0, 0)} is closed
in R2, we need only show that B =

{(
x, 1

x

)
: x ∈ R∗} is closed.

But since xy = 1⇒ x 6= 0, we can write
B = {(x, y) ∈ R2 : xy = 1}

and this is easily seen to be closed (why?). Finally, remember
that R is Hausdorff.

4.4. Hints/Answers to Tests

Solution 23. No! f is not bijective...

Solution 24. It is closed since A = ∅ (the empty set) and this
is the only reason why it is closed!...

Solution 25. The answer is no. Call the co-finite topology X and
the other one Y . Then id : X → Y is not continuous for {a} is open in
Y but it is not open in X. Similar arguments show that id : Y → X is
not continuous either...

Solution 26. The given sequence does not converge to any point
x in this topology since

∃U = {x, a} ∈ V(x) : ∀N ∈ N, ∃n (n ≥ N ∧ 1

n
6∈ U)...

Solution 27. No! [0, 1) is an open set that contains 0...

Solution 28. The non-empty open sets in Y are {1} and Y . So
if U is one of the latter open sets, then f−1(U) = A or X. What is left
to do should be clear to the reader...

Solution 29. f is continuous iff it is constant...

Solution 30.
(1) Should be a routine by now...
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(2) No, it is not...

Solution 31. The projection p : X×X → X is a homeomorphism
(is it not?)...

Solution 32. Yes. Do it!...

Solution 33. Well, do it...

Solution 34. Very easy!...



CHAPTER 5

Compact Spaces

5.2. True or False: Answers

Answers.
(1) True! If we want to show that {Ui}i∈I covers the whole space

X, then we may write X = ∪i∈IUi for we always have X ⊃
∪i∈IUi.

(2) The answer is negative. In the definition of a compact set, it
asked to verify that every open cover has a finite subcover.

(3) Using closed covers in the definition of compact spaces would
be of little interest. For instance, in Hausdorff spaces, which is
already a large class of interesting topological spaces, the only
compact spaces (using closed covers) would be the finite ones.
For if X is a Hausdorff space, then {{x}}x∈X is a closed cover
for X and we immediately see that X is compact if it is finite.

(4) True if X is compact. In fact, we have an equivalence.
The answer is, however, not true in general. For instance,

in R (which is not compact with respect to the usual topology),
let An = [n,∞). Then, for each n ∈ N, An are non-empty,
closed in R, An+1 ⊂ An but

⋂

n∈N
An = [1,∞)

⋂
· · ·
⋂

[n,∞)
⋂
· · · = ∅.

(5) The answer is no! In the induced usual metric of X = [1,∞),
let An = [n,∞). Let f : X → X defined for all x ≥ 1 by
f(x) = 1. Then f is continuous. Besides, the sequence (An)
is non-empty and decreasing for all n. But

⋂

n∈N
An = ∅ and so f(∅) = ∅

whereas f(An) = {1} and so

∅ 6=
⋂

n∈N
f(An) = {1}.

The result is, however, true if X is assumed to be compact.
See Exercise 5.3.23.

185
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(6) The answer is yes. Take any open cover in any topological
space. Then ∅ will always be contained in any finite union of
elements of that cover.

(7) In the usual topology of R (the Heine-Borel theorem). But
as soon as we leave the usual topology, this result may fail
to hold. For instance, in the discrete topology, [a, b] is not
compact any more (see Exercise 5.3.2).

(8) False! Consider the topology of Exercise 3.5.7. Since {1} is
finite, it is compact. However, {1} = N is not compact. For a
proof see Test 38.

(9) The answer is no. In the usual topology, consider f : R → R
defined by f(x) = 1 for all x ∈ R. Then A = [0, 1] is compact
in R but f−1(A) = R is not compact.

In Exercise 5.5.10, some condition implying the compact-
ness of f−1(A) is given.

(10) We try to give an exhaustive comment on this question. The
well known-result says that a set in R equipped with the usual
topology (or Rn equipped with the euclidian metric) is closed
if and only if it is bounded and closed. This result need not
hold if we change R by Q even if we give Q the induced usual
topology (see Exercise 5.3.17 where a closed and bounded set
is not compact). Even in R equipped with a metric differ-
ent from the usual metric, a closed and bounded set does not
have to be compact (see also Exercise 5.3.18). Also, in an infi-
nite dimensional space, a closed and bounded set need not be
compact either.

It should also be remembered that in any metric space
every compact subspace is closed and bounded.

(11) The answer is yes. The reason is simple. Every open cover for
X with respect to T is one for X with respect to T ′.

The converse is not true. The usual topology is finer than
the co-finite topology (on R). However, R is compact in the
co-finite topology and it is not in the usual topology.

(12) The problem with the reasoning is purely algebraic. More
precisely,

R 6⊂
n⋃

i=1

Ui 6=⇒ R ⊂
(

n⋃

i=1

Ui

)c

(remember that if A 6⊂ B and A and B are disjoint, then
A ⊂ Bc).
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For a correct proof of the compactness of R in the co-finite
topology, see Exercise 5.3.11.

(13) First, R has to be equipped with a metric to be able to talk
about the possible boundedness of f . Second, what is the
topology given to [a, b]? In general, the answer is no as showed
by the following example: let f : [0, 1]→ R defined by

f(x) =

{
1
x
, x ∈ (0, 1],

1, x = 0.

If we equip [0, 1] with the discrete topology (and R with the
usual metric), then f will be continuous and f is clearly un-
bounded. What went wrong with our example is the fact
that [0, 1] is not compact in the discrete topology (see Exercise
5.3.2).

(14) If considered as a subspace of usual R, then (0, 2) is relatively
compact. But, if considered, for instance, as a subspace of
itself, then it is clearly not relatively compact.

(15) Not always! For a counterexample, see Exercise 5.3.20. We
note that in normed vector spaces, the closed unit ball is com-
pact iff the space in questions has a finite (algebraic) dimen-
sion. It may be proved in an introductory functional analysis
course that a normed vector space is locally compact iff the
closed unit ball is compact.

(16) The answer is no! For instance, in R endowed with the co-
finite topology, every subset is compact (see the remark below
the solution of Exercise 5.3.11). Hence R+ is compact but it is
not closed. Also observe that this topology is not Hausdorff.

(17) True. Let us show that. Let f be a homeomorphism between
two topological spaces X and Y . Assume that X is compact.
Since f is continuous, f(X) is compact. Since f is onto Y =
f(X). Thus Y is compact. The same idea of proof can be
applied to f−1 (in lieu of f) so that if Y is compact, so is X.

(18) True. Let us prove it. Let f be a homeomorphism between two
topological spaces X and Y . Assume that X is sequentially
compact. Let (yn) be a sequence in Y . Since f is bijective,
f−1(yn) is a well-defined sequence (into X) which we denote by
xn. Since X is sequentially compact, (xn = f−1(yn)) contains
a subsequence, which we denote by xn(k), that converges to
some x in X. Since f is continuous, we immediately see that

f(xn(k)) = f(f−1(yn(k))) = yn(k) −→ f(x).
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Therefore, (yn) contains a convergent subsequence. Applying
the previous proof to f−1 (instead of f), we get that whenever
Y is sequentially compact, then so is X.

(19) False! For a counterexample the reader is referred to Exercise
5.3.25.

(20) True! The reader is asked to give a proof in Exercise 5.5.15.
(21) False! A counterexample will be encountered in Exercise 5.3.26.
(22) True. Let us show that. Let A = {x1, x2, · · · , xn} be this finite

part. Then obviously

A ⊂
⋃

1≤i≤n

{xi} and d({xi}) = 0, ∀i = 1, 2, · · · , n.

In fact, a stronger result (in a restrained context) holds: Every
bounded set in Rn is totally bounded (the reader is requested
to give a proof in Exercise 5.5.18).

If the metric space is arbitrary, then this may not be true
(see Exercise 7.5.13). Remembrer that the converse is always
true, that is, any totally bounded set is bounded.

(23) False! Total boundedness is not a topological property. This
is its main weakest point. As a counterexample, consider the
function f : (0, 1)→ (1,+∞) defined by f(x) = 1

x
. Then f is

a homeomorphism, (0, 1) is totally bounded whereas (1,+∞)
is not for it is not bounded.

5.3. Solutions to Exercises

Solution 5.3.1. Let U = {(−n, n)}n∈N be an open cover of R (cf.
Exercise 1.2.6). Now no finite subcollection of U can cover all of R.
For if Up = {(−ni, ni)}1≤i≤p is a finite subcover, then its union will be
of the form (−N,N) where N = max

1≤i≤p
ni.

For [0,+∞), we may consider the open cover U = {(−1, n)}n. It is

in effect a cover since [0,+∞) ⊂
∞⋃

n=1

(−1, n). Now any finite subcollec-

tion of U is of the form {(−1, n1), (−1, n2), · · · , (−1, np)} and its union
is (−1, N), N = max

1≤i≤p
ni. Lastly, it is plain that

[0,+∞) 6⊂ (−1, N), ∀N ∈ N.

As for (0, 1), the reader may take U =
(
0, 1− 1

n

)
n≥2

(or just
(
1
n
, 1
)
n≥2

)
and then show that (0, 1) is not compact.
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Solution 5.3.2.
(1) Q is not compact as it is not closed in R (or since it is not

bounded).
(2) A = { 1

n
: n ∈ N} is not compact since it is not closed.

(3) Q ∩ [0, 1] is not closed in R and hence it is not compact.
(4) In fact [a, b] is not compact in the discrete topology and neither

is R nor is an infinite set. We only do that in the case of [a, b].
In (R,P(R)) the singleton {x} is open and hence U = {x}x∈[a,b]
is an open cover of [a, b] and every finite subcollection of it will
never cover [a, b]. Therefore, [a, b] is not compact in (R,P(R)).

(5) Since we are now in the standard topology of R2, then to
show the compactness of the given sets it suffices to show that
they are both closed and bounded in R2 and this in all the
remaining questions of this exercise. The set A is obviously
closed and bounded and hence it is compact in R2. As for B
and C none of them is compact since they are not closed (cf.
Exercise 4.3.20) and C is even unbounded .

(6) A is not compact as it is not bounded in R2 (it cannot be
contained in a ball in R2 of finite radius, show it!).

(7) Both A and B are not compact since A is closed and not
bounded while B is bounded but not closed. Let us show
that. The set A can be modified to be written as

A = {(x, y) ∈ R2 : x ≥ 0, xy = 1}
since xy = 1 implies x 6= 0. Now we can easily show that A is
closed. However it is not bounded as it cannot be contained
in a ball of finite radius. The set B is obviously bounded since
B ⊂ (0, 1] × [−1, 1]. Let us show that it is not closed. The
sequence

(
1
nπ
, 0
)

does belong to B while its limit (in R2) is
(0, 0) is not in B.

(8) The reader may show that A is actually equal to Bc(0R2, 1)
(the closed ball in R2 of center (0, 0) and of radius 1). Thus A
is compact.

Solution 5.3.3.
(1) We use the Euclidean metric (we could have used the sup

metric or the taxi cab metric too for they are equivalent on
Rn. See Exercise 2.3.9). The set A is closed (why?) but it is
not bounded. Let us show that. The set A cannot be bounded
since for all M > 0,

(M,
3
√
1−M) ∈ A and d2((M,

3
√
1−M), (0, 0))2 ≥M2.
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Therefore, A is not compact in usual R2.
(2) Now we use the taxicab metric. The set B is compact in R2.

It is obviously closed (is it not?). Since x4 + y2 = 1, |x| ≤ 1
and |y| ≤ 1 (why?). Whence

∀x, y ∈ A : d1((x, y), (0, 0)) = |x|+ |y| ≤ 2,

proving the boundedness of B and hence its compactness.

Solution 5.3.4. Set

Un =

{ (
2
3
, 3
2

)
, n = 1,(

1
n+1

, 1
n−1

)
, n ≥ 2.

Observe that for any n ≥ 1, Un is open. It is also clear that

A =

{
1

n
: n ∈ N

}
⊂
⋃

n≥1

Un.

Hence U = {Un}n is an open cover for A. Since each Un contains
only one point of A and since A is infinite, we conclude that no finite
subcover of U can contain A. Thus A is not complete.

Solution 5.3.5. Two methods are given (another one will follow
in Exercise 7.3.23).

(1) A method based on the completeness axiom: Let U = {Ui}i∈I
be an open cover of [a, b]. Set

A = {x ∈ [a, b] : [a, x] can be covered by a finite subcollection of Ui}.
It is clear that me have to show that b ∈ A. We first note
that A is non void for a ∈ A because [a, a] = {a} is covered
by one Ui for some i ∈ I. Besides, A is bounded above by b
as A ⊂ [a, b]. Thus, A has the least upper bound property.
Hence its sup, denoted by M , satisfies M ≤ b. If we come to
show that M ∈ A and M = b , then we are done, i.e. [a, b]
will be compact.

Let us first show that M ∈ A. Since M ∈ [a, b], there
exists some j ∈ I such that M ∈ Uj . But Uj is open in the
usual topology of R and so

∃r > 0 : (M − r,M + r) ⊂ Uj .

Moreover, by definition of the least upper bound we have

∃x ∈ A : M − r < x ≤M.

Since x ∈ A, [a, x] is covered by a finite number of Ui (i =
1, 2, · · · , n, say), {U1, U2, · · · , Un, Uj} covers the interval [a,M ]
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for

[a,M ] = [a, x] ∪ [x,M ] ⊂ [a, x] ∪ (M − r,M + r) ⊂
n⋃

i=1

Ui ∪ Uj

︸ ︷︷ ︸
a finite union!

.

Therefore, M ∈ A. To finish the proof, we need to verify
that M = b. Assume M 6= b, i.e. M < b. Pick a y such
that y < b and M < y < M + r. Then we immediately see
that {U1, U2, · · · , Un, Uj} covers [a, y] too (why?), i.e. y ∈ A.
We have then reached a contradiction as we have y ∈ A and
M < y!

Thus b = M ∈ A, i.e. [a, b] is covered by a finite subcol-
lection of Ui, that is, [a, b] is compact. The proof is complete.

(2) A method based on the nested interval property: Assume [a, b]
is not compact, i.e. there is an open cover U = {Ui}i∈I from
which no finite subcover can be extracted. We bisect [a, b] at
its middle point, i.e. at 1

2
(a + b). We then obtain the two

closed intervals
[
a,

a+ b

2

]
and

[
a+ b

2
, b

]

(observe that their length is (b− a)/2).
One (at least!) of the two segments cannot be covered by

a finite number of Ui otherwise the two intervals and hence
their union will be covered by a finite number of Ui! Call
this interval I1 and write it as [a1, b1]. Now, bisect it into two
intervals as done previously and obtain the two intervals

[
a1,

a1 + b1
2

]
and

[
a1 + b1

2
, b1

]

(with this time intervals having for length (b− a)/4 regardless
of what a1 and b1 can be). As before, at least one of them
cannot be covered by a finite number of Ui. Continuing this
process, we obtain a sequence of closed and bounded intervals
(In) (with I0 = [a, b]) verifying
(a) (In) is decreasing;
(b) the length of In is (b− a)/2n for each n;
(c) each In cannot be covered by a finite number of Ui.

Now, by construction, the sequences (an) and (bn) satisfy

a ≤ an ≤ an+1 ≤ bn+1 ≤ bn ≤ b
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for all n. Thus (an) is increasing and bounded above by b
and (bn) is decreasing and bounded below by a. Hence they
both converge to different limits, but the condition bn − an =
(b − a)/2n ensures that this limit must be the same, call it l.
It is certainly (by the sandwich rule!) inside [a, b] and so it lies
in some Uj , j ∈ I, of the initial open cover. By the openness
of Uj we have

∃r > 0 : (l − r, l + r) ⊂ Uj .

Since (b−a)/2n tends to zero as n goes to infinity, we have for
large n, (b− a)/2n < r which gives

[an, bn] ⊂ (l − r, l + r)

(remember that l ∈ [an, bn] for all n). Therefore, we have
reached the desired contradiction for [an, bn] cannot be covered
by a finite number of Ui. The proof is complete.

Solution 5.3.6. We answer both questions directly. We claim
that any set containing K is not compact. The proof is simple. Let
A be a set which contains K. Since K ′ = ∅ (see Exercise 3.3.30), we
immediately deduce that A is not limit point compact and hence it is
not compact.

Solution 5.3.7. We write what xn → a means in a topological
space

xn −→ a⇐⇒ ∀U ∈ V(a), ∃N ∈ N, ∀n (n ≥ N ⇒ xn ∈ U).

Now let U = {Ui}i∈I be an open cover of A = {xn : n ∈ N} ∪ {a}.
Hence A ⊂

⋃

i∈I
Ui. We can write the following

A = {xn : n < N} ∪ {xn : n ≥ N} ∪ {a}.
With the xn for n < N we can associate N − 1 elements of the cover
U . Also we observe that {a} is contained in some Uj and since the
latter is open (and contains a) then it is a neighborhood of a and
hence by definition of the limit (see above) we also have xn ∈ Uj for

n ≥ N . Therefore we deduce that A ⊂
N−1⋃

i=1

Ui ∪ Uj, establishing the

compactness of A.

Solution 5.3.8.
(1) Let A be a finite set having n elements. Hence we may write

A = {x1, x2, · · · , xn}
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where all xi (1 ≤ i ≤ n) belong to X. Let U = {Ui}i∈I be an
open cover of A, i.e.

A = {x1, x2, · · · , xn} ⊂
⋃

i∈I
Ui.

Hence, each xi will belong to some Ui and thus

A = {x1, x2, · · · , xn} ⊂ U1 ∪ U2 ∪ · · · ∪ Un,

establishing the compactness of A.
(2) Question 4 of Exercise 5.3.2 combined with the preceding ques-

tion does the job.

Solution 5.3.9.

(1) Let A and B be compact. Let U = {Ui}i∈I be an open cover
of A ∪ B, i.e.

A ∪ B ⊂
⋃

i∈I
Ui.

Hence

A ⊂
⋃

i∈I
Ui and B ⊂

⋃

i∈I
Ui.

This tells us that U = {Ui}i∈I is an open cover for both A and
B. Since they are compact, we have

A ⊂
n⋃

i=1

Ui and B ⊂
m⋃

j=1

Uj

which yield

A ∪B ⊂
n⋃

i=1

Ui ∪
m⋃

j=1

Uj

︸ ︷︷ ︸
a finite union

.

Therefore, A ∪B is compact.
The previous result is not true for an arbitrary union. For

instance, in standard R, the intervals [−n, n] are all compact

for any n ∈ N. However,
∞⋃

n=1

[−n, n] = R is not compact.

(2) Let (Ai)i∈I be an arbitrary family of compact sets in a Haus-
dorff space. Since they are all compact, they are all closed.
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Hence
⋂

i∈I
Ai is closed. But for some (and all) j ∈ I one has

⋂

i∈I
Ai

︸ ︷︷ ︸
closed

⊂ Aj︸︷︷︸
compact

.

Thus
⋂

i∈I
Ai is compact since a closed subset of a compact set

is compact.

Solution 5.3.10. Let t ∈ X. Recall that x 7→ d(x, t) is continuous
on X (see Exercise 2.3.22). Since A is compact, infx∈A d(x, t) is attained
so that

∃x0 ∈ A : inf
x∈A

d(x, t) = d(x0, t),

which, in its turn, implies that:
⋃

x∈A
Bc(x, r) = {t ∈ X : inf

t∈A
d(x, t) ≤ r}.

The latter set is closed for the function t 7→ infx∈A d(x, t) is continuous
on R (is it not?) and (−∞, r] is closed.

Solution 5.3.11. Yes, R is compact in the co-finite topology. Let
U = {Ui}i∈I be an open cover of R in X, i.e. R =

⋃

i∈I
Ui. We need

to show that R can be covered by a finite subcollection of U . We
have R = Uj ∪ U c

j (j ∈ I) and since U c
j is finite, it has the form

{x1, x2, · · · , xp}, say, where all xi are real. Hence
{x1, x2, · · · , xp} ⊂ U1 ∪ U2 ∪ · · · ∪ Up

and thus
R = Uj ∪ U c

j ⊂ Uj ∪ U1 ∪ U2 ∪ · · · ∪ Up.

This shows that R is compact in the co-finite topology.

Remark. The same method applies to show that any infinite set
(finite sets are already compact!) is compact in the co-finite topology.

Solution 5.3.12.
(1) R is not compact. Let U = {xn : n ∈ N} be a countable set.

Then set
Un = U c ∪ {x1, x2, · · · , xn}.

Hence ∞⋃

n=1

Un = U c ∪ U = R,
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i.e. {Un}n constitutes an open cover for R. However, no finite
subcollection of {Un}n can cover all of R. To see this explicitly,

N⋃

p=1

Un(p) 6= R as, for instance, xN+1 6∈
N⋃

n=1

Un(p)

where N = max
1≤p≤N

n(p).

(2) No, for the same reason as before. In fact, the previous method
can be applied to show that any infinite set is not compact in
the co-countable topology.

(3) No and also as before. An alternative way of seeing this is the
following: If A is countable, then the induced topology is the
discrete one and in a discrete topology a set is compact iff it
is finite!

Solution 5.3.13.

(1) Let us show that T is a topological space on R. ∅ belongs to
T by definition of T and R ∈ T since Rc = ∅ is compact. Let
U and V be both in T .
(a) If U or V is empty, then U∩V is empty and hence U∩V ∈

T .
(b) If U and V are both non-empty, then U c and V c are both

compact. We have (U ∩ V )c = U c ∪ V c. Hence (U ∩ V )c

is compact as it is a finite union of compact sets. Hence
U ∩ V ∈ T .

Now let (Ui)i∈I be an arbitrary collection of elements of T . We
need to show that

⋃

i∈I
Ui ∈ T . As before, we need to discuss

two cases.
(a) If all Ui are empty, then so is their union

⋃

i∈I
Ui yielding

⋃

i∈I
Ui ∈ T .

(b) If at least one Uj (j ∈ I) is non-empty, then U c
j is compact.

Moreover,

(⋃

i∈I
Ui

)c

=
⋂

i∈I
U c
i

︸ ︷︷ ︸
compact in usual R hence closed

⊂ U c
j︸︷︷︸

compact

.
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This implies that

(⋃

i∈I
Ui

)c

is compact, i.e.
⋃

i∈I
Ui ∈ T .

Thus we have proved that T is a topological space.
(2) No, T cannot be separated as no two open sets of T can be

disjoint. To see this, take any two (non-empty) open sets U
and V of T . If U ∩V = ∅, then U c∪V c = R where U c and V c

are compact in standard R and hence they must be bounded.
Hence their (finite!) union cannot be equal to R. Thus, T is
not Hausdorff.

(3) We need to find a dense subset of R (density with respect to
T ) which is countable. The desired set is Q. It is of course
countable (and this has nothing to do with topology). It is
also dense in R. To see this, take any x ∈ R. We need to show
that

∀U ∈ V(x) : U ∩Q 6= ∅.

If U is an open set (containing x), then U c is compact with
respect to standard R and hence it is closed with respect to
standard R. This tells us that U is open in standard R and so
U may be written as a union of open intervals in R and hence
U ∩ Q 6= ∅. This means that R ⊂ Q. The other inclusion
being obvious, we conclude that Q is dense in R. Thus (R, T )
is separable.

(4) Let us show that R is compact in this topology. Let U =

{Ui}i∈I be an open cover of R in X, i.e. R ⊂
⋃

i∈I
Ui and all U c

i

are compact in R. But we observe that for some j ∈ I

U c
j ⊂ R ⊂

⋃

i∈I
Ui.

Since all Ui are open in R (why?), the compact U c
j is covered

by U = {Ui}i∈I and hence U c
j ⊂

p⋃

i=1

Ui. Thus

R = Uj ∪ U c
j ⊂ Uj ∪

p⋃

i=1

Ui (a finite subcollection of U).

This establishes the compactness of R in T .

Solution 5.3.14. We recall that the topology T was defined on
[−1, 1] as

U open in T ⇐⇒ {0} 6⊂ U or (−1, 1) ⊂ U.
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Let us show that [−1, 1] is compact in T . Let U = {Ui}i∈I be an open
cover of [−1, 1], i.e. [−1, 1] ⊂

⋃

i∈I
Ui. Since 0 ∈ [−1, 1], this implies

the existence of a j0 in I such that {0} ⊂ Uj0 . By definition of this
topology, this forces us to have (−1, 1) ⊂ Uj0. Similarly,

∃j1, j2 ∈ I : {−1} ⊂ Uj1 and {1} ⊂ Uj2.

Thus,
[−1, 1] = {−1} ∪ (−1, 1) ∪ {1} ⊂ Uj1 ∪ Uj0 ∪ Uj2,

i.e. proving the compactness of [−1, 1] as required.

Solution 5.3.15. Let xn = 1
n

(n ≥ 2) define a sequence in (0, 1).
It obviously converges to 0 and hence so do all its subsequences! But
0 6∈ (0, 1) and hence (0, 1) is not sequentially compact. Hence (0, 1) is
not compact.

Solution 5.3.16. We know that the projections

p : X × Y → X

(x, y) 7→ p(x, y) = x

and

q : X × Y → X

(x, y) 7→ q(x, y) = y

are continuous functions (see Exercise 4.3.30). Since X×Y is compact
and p is continuous and onto, p(X×Y ) = X is compact. An analogous
reasoning show that Y is also compact.

Solution 5.3.17.
(1) That A is bounded is clear. Let us show that it is closed. We

can write

A = {x ∈ Q :
√
2 < x <

√
3} ∪ {x ∈ Q : −

√
3 < x < −

√
2}.

Call the first set in the union A1 and the second A2. Now A1

is closed in Q since one can write

A1 = [
√
2,
√
3] ∩Q.

Also A2 is closed in Q and hence A is closed in Q. To show
that A is not compact, we can consider the open covering
U = {Un}n≥1 where

Un =

{
x ∈ Q : 2 +

1

n
< x2 < 3− 1

n

}

and we can easily verify that it has no finite subcover.
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(2) Finally, yes A is open in Q as one can write

A = [(
√
2,
√
3) ∪ (−

√
3,−
√
2)] ∩Q.

Solution 5.3.18.
(1) (R, d) is bounded if there exists an r > 0 such that R ⊂

Bc(0, r). This "r" is 1 since
∀x ∈ R : d(x, 0) ≤ 1.

Thus (R, d) is bounded.
(2) Let us show that (R, d) is not sequentially compact. We show

that (an) does not have any convergent subsequence. Before
that we obviously have

d(an, am) = d(n,m) = inf(|n−m|, 1) =
{

0, n = m,
1, n 6= m

(d(n,m) is worth 1 in the case n 6= m since n and m are in-
tegers). In order to reach a contradiction, assume that (an(k))
converges to a real number, say a. Hence
∀ε > 0, ∃K ∈ N, ∀k (k ≥ K ⇒ d(an(k), a) < ε).

In particular for ε = 1
4
, there is K ∈ N such that

d(an(k), a) <
1

4
.

whenever k ≥ K. Hence

d(an(K), an(K+1)) ≤ d(an(K), a) + d(a, an(K+1)) <
1

4
+

1

4
=

1

2
.

Now, remember that k 7→ n(k) is strictly increasing and hence
n(K+1) > n(K) (as K+1 > K) and hence n(K+1) 6= n(K).
Therefore,

d(n(K + 1), n(K)) = 1 6< 1

2
,

proving the non-compactness of R.
(3) We have just seen that R was bounded with respect to d.

Since it is the whole set, then it is closed. This is yet another
example of a closed and bounded set which is not compact.

Solution 5.3.19.
(1) Set xn = n for each n ∈ N. Then (xn) is a sequence in R from

which no convergent subsequence can be extracted for

lim
n→∞

δ(n, x) = lim
n→∞

| arctann− arctan x| =
∣∣∣π
2
− arctan x

∣∣∣ > 0

for all x ∈ R. Thus R is not sequentially compact.
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(2) This another example of a closed and bounded set which is
not compact (that R is bounded was done in Exercise 2.3.26
and that R is closed is clear).

Solution 5.3.20.
(1) We know from a basic algebra course that dimX =∞.
(2) The unit closed ball is not sequentially compact in C([0, 1],R).

To see this, let (fn) be the moving bump (see Exercise 4.3.27).
Then for all different n,m

d∞(fn, fm) = 1.

Since fn ∈ Bc(0, 1) for all n, we deduce from the equality just
above that (fn) is a sequence in the closed unit ball which
cannot have a convergent subsequence. Thus the closed unit
ball in C([0, 1],R) is not sequentially compact.

(3) Since we are in a metric space, the closed unit ball is not
compact either.

(4) No, it is not locally compact. The proof relies on results from
normed vector spaces, so we shall not include it here.

Solution 5.3.21.
(1) No, f(R) = R+ is not compact (see Exercise 5.3.2).
(2) Since R is compact in X and f(R) is not compact, we deduce

that f cannot be continuous.

Solution 5.3.22. The answer is no in both cases, that is, [0, 1] is
neither homeomorphic to [0,∞) nor to (0, 1]. The reason is that [0, 1]
is compact and the other two sets are not. Hence no homeomorphism
between the two sets exists.

Solution 5.3.23. Since the intersection of all the An is contained
in each An we have for any f

f(
⋂

n∈N
An) ⊂

⋂

n∈N
f(An).

To prove the reverse inclusion, we first observe that since X is com-
pact, the hypotheses on An guarantee that

⋂

n∈N
An 6= ∅ and hence

f(
⋂

n∈N
An) 6= ∅. This yields

⋂

n∈N
f(An) 6= ∅ since f(

⋂

n∈N
An) ⊂

⋂

n∈N
f(An).
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Let y ∈
⋂

n∈N
f(An). Then y ∈ f(An) for all n. Hence for all n, y = f(xn)

with xn ∈ An ⊂ X. Therefore, (xn) being a sequence in X which is
compact or equivalently sequentially compact, it possesses a convergent
subsequence, denoted by (xn(k)). Let x ∈ X be its limit.

Since f is continuous or equivalently sequentially continuous, we
have

lim
k→∞

f(xn(k)) = f(x) = y (why?)

The proof will be complete as soon as we verify that x is in each An

for all n. To see this, fix an m ∈ N. Then

xn ∈ An ⊂ Am, ∀n ≥ m

for (An) is decreasing. A fortiori, the previous holds true for each k.
Passing to the limit (as k → ∞) we immediately observe that x must
be in Am = Am (why?) and this is for each m. Thus

x ∈
⋂

m∈N
Am =

⋂

n∈N
An.

Thus the proof is complete.

Solution 5.3.24.
(1) (a) It is clear that

∀x ∈ X, ∀U ∈ V(x) : U ⊂ X.

Since X is compact, we see immediately that X is locally
compact.

Remark. The converse is obviously not always true. See
the next answer.

(b) Let x ∈ R. In usual R, [x − 1, x − 1] is a compact set.
It contains (x − 1, x − 1) which is a neighborhood of x.
Therefore, R is locally compact (remember that it is not
compact!).

(c) If Q were locally compact, there would exist a compact
set V such that a neighborhood of 0 (for example!) U ,
say, would satisfy U ⊂ V . But U = (−r, r) ∩ Q for some
r > 0. For irrational r, [−r, r] ∩ Q would be a closed set
in V and hence it would be compact. This is evidently
not true for we can take a sequence of rationals, (rn) say,
which converges to the (irrational!) r. Thus (rn) cannot
have a converging subsequence as all subsequences would
converge to r too (and r 6∈ [−r, r] ∩Q!).



5.3. SOLUTIONS TO EXERCISES 201

If r is not irrational, then replace [−r, r] by [−s, s] where
s < r is irrational and follow a similar reasoning!

(d) A similar proof as before applies to show that R\Q is not
locally compact.

(e) Let x ∈ X. Then {x} is a compact set (why?) and it is a
neighborhood of x. The proof is complete.

(f) Let x ∈ X. It is clear that {a, x} is compact and a neigh-
borhood of x simultaneously. Thus X is locally compact.

(2) From the previous answers, Q is Hausdorff but it is not locally
compact. Also, R is Hausdorff and locally compact.

Solution 5.3.25. Let f be the identity mapping from X onto Y
where X is R \Q endowed with the discrete topology and Y is R \Q
equipped with the usual topology.

Then f is continuous and we have f(X) = Y . Now from Exercise
5.3.24, X is locally compact while Y is not.

Solution 5.3.26.
(1) Let C be a closed set in X. Let x ∈ C. Let Y be a compact

set that contains a neighborhood U of x. Then Y ∩C is closed
in C and thus it is compact. Besides

x ∈ U ∩ C ⊂ Y ∩ C

and so U ∩ C is a neighborhood of x in C, proving the local
compactness of C.

(2) Let U be an open set in X and let x ∈ U . From the hint, there
exists V ∈ V(x) such that V is compact and V ⊂ U . Since
V ⊂ V , U becomes locally compact.

(3) Well, {(0, 0)} is compact and hence locally compact. The set
{(x, y) ∈ R2 : x > 0} is locally compact by the previous
question for it is open in usual R2 (which is Hausdorff!).

(4) The given set is not locally compact. It is not locally compact
at 0 (which is the only point causing the problem of non-local
compactness) as the reader may check.

(5) We deduce from the previous two questions that the union of
two locally compact spaces need not remain locally compact.

Solution 5.3.27.
(1) No! For example, take X = [0, 1] and f(x) = x2

3
.

(2) Define a function

ϕ : (X, d)→ (R, | · |) by ϕ(x) = d(x, f(x)).
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We claim that ϕ is continuous on X. To see this, let x, y ∈ X.
Then we have by Exercise 2.5.2

|ϕ(y)− ϕ(x)| ≤ d(x, y) + d(f(x), f(y)) ≤ 2d(x, y)

(for all x, y ∈ X). Therefore, ϕ is continuous on X which is
compact and so the function ϕ attains its minimum (and its
maximum too!) at some a ∈ X. Let us show that a is the
looked for fixed point. Assume f(a) 6= a. Then

ϕ(f(a)) = d(f(a), (f ◦ f)(a)) < d(a, f(a)) = ϕ(a)

and we realize that ϕ does not attain its minimum at a any-
more! Therefore, f(a) = a, showing the f admits a fixed point.
Let us now show its uniqueness.

Assume there were two different fixed points x and y say,
i.e. f(x) = x and f(y) = y with x 6= y. Then

d(x, y) = d(f(x), f(y)) < d(x, y)

which is impossible and hence x = y necessarily. The proof is
complete.

Remark. An instance showing the importance of the
compactness hypothesis may be found in Exercise 7.3.20.

Solution 5.3.28. Let (X, d) be a compact metric space. Then it

is not hard to see that U =
⋃

x∈X
B(x,

1

n
) constitutes an open cover for

X. By compactness, we can cover X by
m⋃

k=1

B(xk,
1

n
) which we denote

by Sn. Now set S =
⋃

n∈N
Sn. Then it is plain that S is countable. It

remains to verify that S is dense in X. Observe that

∀x ∈ X, ∀n ∈ N, ∃y ∈ Sn ⊂ S : d(x, y) <
1

n
which implies that

d(x, S) = inf
s∈S

d(x, s) <
1

n

for all n ∈ N. Thus d(x, S) = 0 and hence Exercise 3.3.33 implies that
x ∈ S which completes the proof.

Solution 5.3.29. The answer depends on the cardinality of X.
(1) If cardX is finite, then (X, d) is totally bounded (see the

"True/False" section).
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(2) If cardX is infinite, then let 0 < ε < 1
3

(for instance). Then
the only subsets of X whose diameter is smaller than ε are
the singletons {x}, where x ∈ X (and evidently ∅). It thus
becomes clear that it is impossible to cover the infinite X by
a finite number of singletons! This tells us that (X, d) is not
totally bounded and that only finite discrete metric spaces are
totally bounded.

5.4. Hints/Answers to Tests

Solution 35. Well, do it!...

Solution 36. Yes {a} is compact since it is finite. X is not
compact (if it is infinite!). To see this we observe that {a, x} are open
sets for each x ∈ X (why?) whose union covers X from which no finite
subcollection can cover the whole of X.

We deduce from that {a} is not relatively compact since from Ex-
ercise 3.3.25, {a} = X.

Solution 37. It suffices to show S ⊂ T . If V is a closed set
in S, then V is compact and compact sets in Hausdorff spaces are
closed...Alternatively, use the identity mapping between S and T ...

Solution 38. Consider the open cover consisted of the sets
{1}, {1, 2} · · · , {1, 2, · · · , n}, · · · which is not reducible to a finite cover...

Solution 39. No, R is not compact in Rℓ. One reason is that
{[−n, n)}n∈N is an open cover of R and the rest is obvious...

Solution 40. Yes...

Solution 41. No! (Why?)...

Solution 42. Fairly simple...

Solution 43. Yes (why?)...

Solution 44. Yes by Heine’s theorem!...

Solution 45. Yes! Why?...





CHAPTER 6

Connected Spaces

6.2. True or False: Answers

Answers.

(1) If (X, T ) is not connected, then (X, T ′) is not connected. The
reason is simple, that is, if U and V are open in T such that
U ∪ V = X and U ∩ V = ∅ (meaning that (X, T ) is not
connected), then U and V are open in T ′ with U ∪ V = X
and U ∩ V = ∅ as well, leading to the non-connectedness of
(X, T ′). The other implication does not always hold. As a
counterexample, take usual R and the discrete R, denoted by
Rdis. Then R is connected while Rdis is not and yet R ⊂ Rdis.

(2) The answer is no! In usual R, {1, 2} is closed and not con-
nected (it is not an interval) but R is connected.

(3) The answer is no! For instance, in the usual topology, A =
[−1, 1] is connected while its boundary {−1, 1} is not.

(4) The answer is no! A counterexample is Q which is not con-
nected (as will be seen below) while Q = R is connected. The
converse is always true, i.e. if A is connected, so is its closure
A. See Exercise 6.3.7.

(5) The answer is no! For example, in the usual topology, both
A = [0, 1] and B = [2, 3] are connected while their union is
not.

(6) The answer is no! Let A be the unit circle (in R2 endowed
with its euclidian metric) and let B be the real axis. They are
both connected whilst their intersection, equal to {−1, 1}, is
not connected.

(7) The answer is no in general. Take B = Bc((0, 1), 1) ∪ Bc((0,
−1), 1). Then B is connected (see Exercise 6.3.1). It can be

shown that
◦
B = B((0, 1), 1) ∪ B((0,−1), 1) which is not con-

nected (see again Exercise 6.3.1).
It is worth stating that the result is true in the usual topol-

ogy of R. It is known that the connected parts of standard R
205
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are the intervals and the interior of an interval in R remains
an interval and hence it is connected.

(8) If both [−1, 1] and R are endowed with the usual topology, the
answer is yes. But if we just endow [−1, 1] with the discrete
topology (and leave R equipped with the usual topology), then
the given statement becomes false. Consider the function f
defined by

f(x) =

{
−1, −1 ≤ x ≤ 0,
1, 0 < x ≤ 1.

The discreteness of the topology of [−1, 1] guarantees the con-
tinuity of f . Besides, f verifies f(−1)f(1) < 0 and observe
that ∀x ∈ [−1, 1] : f(x) 6= 0.

(9) True (in usual R)! Polynomials on R are continuous. Since the
degree is odd, then the limits at ±∞ are ±∞ or ∓∞. Thus
the polynomial in question will have to pass through the real
axis at least once.

(10) No! In usual R, it will be shown in Exercise 6.3.11 that R∗ is
not path-connected. However, R∗ = R is path-connected.

(11) The answer is no! See Exercise 6.3.15.
(12) The answer is no! Consider the identity map from X into Y

(denoted by f) where X is the usual topology of R and Y is
R equipped with the co-finite topology. Then f is continuous.
Then, [0, 1]∪ [2, 3] is connected in Y (cf. Exercise 6.3.1 below)
whereas

f−1([0, 1] ∪ [2, 3]) = [0, 1] ∪ [2, 3]

is not a connected set in X as it is not an interval. The answer
is also no in usual R. Take f : R → R defined by f(x) =
x2. Then {2} is connected but f−1({2}) = {

√
2,−
√
2} is not

connected.
(13) True! Let f : X → Y be such a homeomorphism. Let x ∈ X

and let Cx be its component. We ought to show that

Cf(x) = f(Cx).

(a) Since Cx is connected, f(Cx) is connected for f is contin-
uous. But f(x) ∈ f(Cx). Thus f(Cx) ⊂ Cf(x).

(b) Conversely, assume that Cf(x) ⊂ A for some connected
A 6= f(Cx). Then f−1(Cf(x)) ⊂ f−1(A). By the proof of
the other part,

Cx = f−1[f(Cx)] ⊂ f−1(Cf(x)) ⊂ f−1(A).
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But f−1 is continuous and hence f−1(A) is connected.
Since x ∈ f−1(A), we see that we arrived at a contradic-
tion for Cx is the largest connected set that contains x!
The proof is over.

Remark. Thanks to this result, we can prove interesting
results on the non-homeomorphy of some spaces. See some
exercises below.

(14) True! In fact, this a simple corollary of the fact that the con-
tinuous image of a connected set (path-connected respectively)
is connected (path-connected respectively).

(15) True! Both implications are trivial. The right-to-left implica-
tion is the most trivial. For the other one, if X is connected,
then it is obviously the largest connected set in X containing
x!

(16) No, there is no contradiction between this question and the
closedness of the components. First R∗ is not connected since
it has two components (this is one proof among others). Of
course both (0,∞) and (−∞, 0) are not closed in R but they
are closed in R∗ with the induced topology (which is the meant
topology in the definition).

6.3. Solutions to Exercises

Solution 6.3.1.

(1) The only open and closed parts simultaneously in T are A and
∅. Hence A is connected.

(2) The discrete topology is disconnected since every subset is
clopen.

(3) Let T = {∅} ∪ {U ⊂ R : U c finite }. Then R is connected in
T . If R were not connected in this topology, then there would
exist two non-empty and open sets U and V in T (i.e. U c and
V c are both finite) such that

{
U ∪ V = R,
U ∩ V = ∅.

Since U ∩V = ∅, U c∪V c = R and this clearly contradicts the
infiniteness of R!

(4) Let A = B((0, 1), 1) ∪ B((0,−1), 1). The intersection of the
two balls is empty as we will show. Let (x, y) ∈ B((0, 1), 1) ∪
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B((0,−1), 1). Then
{

x2 + (y − 1)2 < 1,
x2 + (y + 1)2 < 1

which gives
{

x2 + y2 − 2y < 0,
x2 + y2 + 2y < 0

and hence x2 + y2 < 0 which clearly cannot occur for any real
couple (x, y). Thus A is non connected since
{B((0, 1), 1), B((0,−1), 1)} is an open partition.

(5) The given set A is connected since it is the union of two con-
nected sets whose intersection is not empty (it is equal to
{(0, 0)}).

(6) A is also connected. From the penultimate proposition of Sub-
section 6.1.1, we know that if X and Y are two non-empty
connected sets such that X ∩Y 6= ∅, then X ∪Y is connected.
Now, we have (as we are in Euclidian R2)

B((0, 1), 1)∩Bc((0,−1), 1) = Bc((0, 1), 1)∩Bc((0,−1), 1) = {(0, 0)} 6= ∅.

Thus A = B((0, 1), 1) ∪ Bc((0,−1), 1) is in effect connected.

Solution 6.3.2. First, we can write

A = {M ∈Mn(R) : detM 6= 0}
which can also be written as

A = {M ∈Mn(R) : detM < 0}︸ ︷︷ ︸
A1

∪{M ∈Mn(R) : detM > 0}︸ ︷︷ ︸
A2

.

But, the function "det" is real-valued and continuous (see Exercise
4.3.9). Hence, A1 and A2 are open (why?). Lastly, it is plain that
A1 ∩A2 = ∅. Thus, {A1, A2} is an "open partition" of A which means
that A cannot be connected.

Solution 6.3.3. We give three proofs
• First proof: Q is not connected since it is not an interval. If

it were one, then for any x, y ∈ Q, one would have (x, y) ⊂ Q.
But this is obviously not true. For instance, 2, 4 ∈ Q but
(2, 4) 6⊂ Q as π ∈ (2, 4) while π 6∈ Q.
• Second proof: Q is not connected since there is another open

and closed set in the subspace topology of Q (apart from Q
itself and ∅). Take A = Q ∩ (−∞,

√
2). Then A is clopen in

the subspace topology of Q for

A = Q ∩ (−∞,
√
2) = Q ∩ (−∞,

√
2]

and obviously (−∞,
√
2) is open in R and (−∞,

√
2] is closed

in R.
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• Third proof: The following two sets A = Q ∩ (−∞,
√
2) and

B = Q∩ (
√
2,∞) are open in Q in the subspace topology and

constitute an open partition for Q.

Solution 6.3.4.
(1) As for R\Q one can proceed exactly as in the foregoing exercise

to show that this set is not connected.
(2) The set { 1

n
: n ≥ 1} is not connected since it is not an interval,

say.
(3) No, since [0, 1) ∪ (1, 2) is not an interval.
(4) N is not connected since

U =

(
0,

3

2

)
∩ N, V =

(
3

2
,+∞

)
∩ N

are both open in N and they constitute a partition for N.

Solution 6.3.5. Assume [0, 2) is not connected, then it could be
written as [0, 2) = U ∪ V with U ∩ V = ∅ where U and V are open.
But U ∩ V = ∅ does not hold since every non-empty open set in this
topology contains at least 0. Thus, [0, 2) is connected with respect to
the given topology.

Solution 6.3.6.
(1) We have z ∈ A iff Im z 6= 0. Hence there are two components

corresponding to the cases Im z > 0 and Im z < 0.
(2) The components of A are

B = {(x, y) ∈ R2 : x < y} and C = {(x, y) ∈ R2 : x > y}.
(3) A has two components, to wit B((0, 1), 1) and B((0,−1), 1).

B is connected and hence it has one component, viz itself.

Solution 6.3.7.
(1) First, we recall that AB

= B∩AX . Since B ⊂ A
X , we get that

A
B
= B. Now, let f : B → {0, 1} be a continuous function.

We ought to show that f is constant. Since A ⊂ B, we deduce
that f is continuous on A too. By the connectedness of A, we
know that f must be constant, i.e. f(A) = {0} or f(A) = {1}.
Assume f(A) = {1}. The continuity of f and the closedness
of {1} lead to

f(B) = f(A
B
) ⊂ f(A) = {1} = {1}.

Thus f(B) = {1}, i.e. f is constant and hence B is connected.
The case f(A) = {0} is very analogous to the foregoing

one and hence we leave it to the reader.
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(2) Since A ⊂ A ⊂ A, the previous result applies to A, i.e. A is
connected whenever A is connected.

Solution 6.3.8.
(1) It is clear that (−∞, 0) inherits the usual topology as a sub-

space of RK and so does (0,∞). Thus, both spaces are con-
nected.

(2) Since (−∞, 0) and (0,∞) are connected, so are their closures,
i.e. (−∞, 0] and [0,∞). But

(−∞, 0] ∩ [0,∞) = {0} 6= ∅

and so (−∞, 0] ∪ [0,∞) = RK is connected.

Solution 6.3.9. Assume that such function exists. Since Q is
countable, so is f(Q) by Exercise 1.3.7. The set f(R\Q) is also count-
able, but this time, since it is a subset of Q. We hence end up with
f(R) being countable.

Now, R is connected and so is its direct image f(R) by the conti-
nuity of f . Thus f(R) must be an interval. But, it is clear that the
only countable intervals are the very particular intervals [a, a], which
are singletons {a} (a ∈ R). This forces f to be constant and hence
f(x) = a for all x ∈ R.

Going back to the hypotheses again we see that

f(Q) ⊂ R \Q⇒ a ∈ R \Q
and

f(R \Q) ⊂ Q⇒ a ∈ Q,

which is a clear contradiction. Thus no such function f verifying the
hypotheses exists.

Solution 6.3.10. If N were path-connected, then there would ex-
ist a continuous mapping f : [0, 1]→ N. Now we have

N =
⋃

n∈N
{n} =⇒ [0, 1] = f−1(N) = f−1(

⋃

n∈N
{n}) =

⋃

n∈N
f−1({n}).

Since f is continuous and the singletons {n} are closed for each n (they
are finite), the sets f−1({n}) are closed. Hence, we would end up with
a countable union of disjoint and closed sets equal to [0, 1] which is
continuum, i.e. compact, Hausdorff and connected. But this clearly
contradicts the Sierpinski theorem which says that no continuum can
be written as a countable union of many closed sets. Thus N is not
path-connected with respect to the co-finite topology.
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Remark. The Sierpinski theorem used above was proved in 1918.
Its original proof may be found in [12].

Solution 6.3.11. Assume that R∗ is path-connected. Since−1, 1 ∈
R∗, there exists a continuous function f defined on [0, 1], taking values
in R∗ such that f(0) = −1 and f(1) = 1. By the intermediate value
theorem there exists at least an α in [0, 1] such that f(α) = 0 which
clearly leads to a contradiction as f(x) 6= 0, for all x ∈ [0, 1].

Solution 6.3.12.
(1) Let us show that if C is convex, then it is path-connected.

Let x, y ∈ C and consider the function f defined on [0, 1] and
taking its values in C such that f(t) = (1− t)x+ ty.

Then f is continuous and f(0) = x and f(1) = y. Thus C
is path-connected and hence connected.

(2) The set Rn is obviously convex (why?) and hence it is path-
connected and so it is connected too.

Now, we show that the closed ball in Rn is convex (the
proof for the open ball is very similar and hence left to the
reader). WLOG, we may do the proof for n = 2 only. Let
Bc((a, b), r) be the closed ball of center (a, b) ∈ R2 and radius
r > 0. Let (x, y), (x′, y′) ∈ Bc((a, b), r) and let r > 0. We need
to show that (1− t)(x, y) + t(x′, y′) ∈ Bc((a, b), r), i.e.

[(1− t)x+ tx′ − a]2 + [(1− t)y + ty′ − b]2 ≤ r2.

Details are left to the reader.

Solution 6.3.13.
(1) If n = 1, then it is showed above that R∗ is not path connected.

If n ≥ 2, then any two elements of Rn can always be joined by
a segment if this segment does not pass through the origin. If
it does pass through it, then we may consider another point z
and draw a segment from x to z, then one from z to y.

(2) If n = 1, then Sn−1 is reduced to S0, which in its turn, is
reduced to the set {−1, 1}. Hence it is not path-connected.

If n ≥ 2, then Sn−1 becomes connected via the following
arguments. Consider the function f : Rn \ {0Rn} → Sn−1

defined by

f(x1, x2, · · · , xn) =
(x1, x2, · · · , xn)√

(x2
1 + x2

2 + · · ·+ x2
n)
.

Then f is continuous and onto. But Rn \ {0Rn} is path-
connected (for n ≥ 2) and hence f(Rn \ {0Rn}) = Sn−1 is
path-connected too.
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Solution 6.3.14.
(1) The functions f and g are obviously continuous on their do-

mains since their components are so. Now f ◦ g : A→ A and
g ◦ f : [a, b]× T→ [a, b]× T are given respectively by
(f ◦ g)(x, y) = (x, y) and (g ◦ f)(t, (x, y)) = (t, (x, y)).

Hence f is a continuous bijection. Its inverse g is also contin-
uous. Thus f is a homeomorphism.

(2) Since [a, b] and T are both path-connected, so is [a, b] × T.
Thus A is, in its turn, path-connected.

Solution 6.3.15.
(1) First, f is continuous since it is the restriction of f . So is (f)−1

too as it is the restriction of f−1. Now, it is clear that f is also
a bijection. Therefore, f is a homeomorphism.

(2) Assume that f : R → R2 is a homeomorphism. According
to the previous question, f : R \ {0} → R2 \ {f(0)} should
remain a homeomorphism. But (f)−1 is continuous, R2\{f(0)}
is path-connected (cf. Exercise 6.3.13) and R∗ is not path-
connected (see Exercise 6.3.11). This a clearly a contradiction
since the image of a path-connected set under a continuous
function has to stay path-connected. Thus R and R2 are not
homeomorphic.

Solution 6.3.16. X and S are not homeomorphic. If there were a
homeomorphism between X and S, then f : X \ {a} → S \ {f(a)} (a ∈
X) would remain one. But if a is the junction point of X, then X−{a}
has four components while S deprived of one point has either one or
two components depending on its position on S.

A similar reasoning shows that E and W cannot be homeomorphic.

6.4. Hints/Answers to Tests

Solution 46. Well do it!...For a two-point set find a counterex-
ample...

Solution 47. No! One reason is that [0, 1) is clopen in Rℓ (cf.
Exercise 3.3.29)...

Solution 48. Any subset A (a, b ∈ A) or Rℓ is not connected as
A ∩ [a, b) is a proper clopen set of A...

Solution 49. Well, R is connected in the co-countable topology...
As for Q, it is not connected (Is Q connected in the discrete topol-

ogy?)...
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Solution 50. The result follows from Exercise 6.3.7...

Solution 51. We already know that R is connected in this topol-
ogy...

Solution 52. No! Deprive [−1, 1] of one point (not 1 and not
−1)...





CHAPTER 7

Complete Metric Spaces

7.2. True or False: Answers

Answers.
(1) We cannot take ε ≥ 0! But we can take d(xn, xm) ≤ ε with

no problem at all.
(2) Let X be a a metric space. To establish its completeness, we

take an arbitrary Cauchy sequence (xn) in X and we show that
this sequence converges to a limit x which belongs to X.

Remark. Do not take a particular Cauchy sequence and
show it converges! The sequence must be arbitrary.

(3) On the contrary to the previous answer, if we want to show
that a given metric space X is not complete, it suffices to find
one Cauchy sequence (xn) which converges. But, its limit does
not belong to X.

Alternatively, we can show that X is not closed.
(4) If we want to use the completeness of a space X, we try to

define a sequence in X and then show it is Cauchy. Now,
since the space is complete, this sequence converges to a limit
in X (do not say in the beginning, let (xn) be a an arbitrary
Cauchy sequence. Then it converges. Then what?)

(5) The importance is about convergence. For example, since
usual R is complete, to prove a sequence is convergent it suf-
fices to show it is Cauchy. For instance, to prove the series∑

n≥1

1

na
, a > 1, is convergent it suffices to show it is Cauchy in-

stead of trying to find its limit (whose exact value is unknown
anyway, except for a = 2)!

Another major point, still about convergence, is the fixed
point theorem. Many solutions to problems can be obtained
via the fixed point theorem (approximation problems, ordinary
differential equations, integral equations...etc).

(6) False! As a "lazy" counterexample, we can just endow (0,∞)
with the discrete metric (see Exercise 7.3.2). But, there are

215
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more interesting counterexamples. For instance, if we equip
(0,∞) with the following metric

d(x, y) = | lnx− ln y|, ∀x, y > 0,

then (0,∞) will be complete (see Exercise 7.3.16).
Evidently, (0,∞) is not complete in the usual metric.

(7) The answer is no! For instance, in usual R, consider Q and
R \Q. They are both dense in R and yet

Q ∩ (R \Q) = ∅.

Another example (similar though!) consists of taking the set
of algebraic numbers and the set of transcendental ones (both
as subsets of R).

(8) The answer is yes. For example, in R equipped with its usual
metric, both Q and R \Q are not complete. But, their union,
i.e. R, is complete.

(9) Only the left-to-right implication holds. Let us show that.
Since (xn) is Cauchy, for all ε > 0 and in particular for ε = 1,

∃N ∈ N, ∀n,m (n,m ≥ N ⇒ d(xn, xm) ≤ 1).

If a = xN , then for all m ≥ N : d(a, xm) ≤ 1. This means that
xm ∈ Bc(a, 1). Thus it becomes clear that

{xn : n ∈ N} ⊂ {x1, x2, · · · , xN−1}︸ ︷︷ ︸
finite hence bounded

∪Bc(a, 1)

proving the boundedness of the sequence as its range will be
included in the (finite!) union of two bounded sets.

The other implication need not be true in general. From
basic real analysis, it is known that ((−1)n)n is bounded but
not convergent hence not Cauchy (usual R is complete!).

(10) The answer is yes. Since the two metrics are equivalent, we
have

∃α, β > 0, ∀n,m ∈ N : αd(xn, xm) ≤ d′(xn, xm) ≤ βd(xn, xm)

giving us the desired result.
(11) The answer is yes if one of the inequalities involved in the def-

inition of equivalent metrics is satisfied. For example, assume
that d and d′ are two metrics on a set X. If only (for some
α > 0) the inequality

d(x, y) ≤ αd′(x, y), ∀x, y ∈ X
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holds, then d and d′ are not equivalent metrics. Nevertheless,
the "Cauchyness" of a sequence (xn) in (X, d′) implies that of
(xn) in (X, d).

The answer is, however, false if none of the inequalities
intervening in the definition of equivalent metrics is satisfied.

(12) It is false. While the fact that (fn) is a Cauchy sequence of con-
tinuous functions can be seen in Exercise 7.3.12, the remaining
part is false for a simple reason. That is, the convergence used
to get f is the pointwise one, i.e. we are not using the right
metric which should be d.

(13) False again. In this case the metric is the right one but the
argument used is not quite right. What tells us that there is
not another continuous function which is the d-limit of fn?
One possible answer is that we are in a metric space (hence
Hausdorff) and the limit of a convergent sequence is always
unique in a metric space. Digging more into this, the function
f is Riemann integrable and d is not a metric on the set of
Riemann integrable functions (see Exercise 2.3.12) and more
particularly d(f, g) = 0⇒ f = g (which is essential for proving
uniqueness of limits!) is the axiom which does not hold.

(14) The answer is no! Let f : R∗
+ → R∗

+ be defined by f(x) = 1
x

for all x > 0. Then f is evidently a homeomorphism. Now,
let xn = 1

n
. Then (xn) is Cauchy. Nevertheless, f

(
1
n

)
= n is

not Cauchy (for example, since it is not bounded).
(15) True! The reader is asked to prove this in Exercise 7.5.9.
(16) False! There are many counterexamples. Consider the func-

tion

f : [1,+∞)→ (0, 1] defined for all x ≥ 1 by f(x) =
1

x
.

Then f is uniformly continuous and obviously [1,+∞) is com-
plete (why?). But its image which is (0, 1] is not complete as
it is not closed.

(17) False! For a counterexample, see Exercise 7.3.16.
If, for example, two metric spaces ((X, d) and (X ′, d′), say)

are isometric, i.e. there exists a one-to-one correspondence
f : (X, d)→ (X ′, d′) such that

∀x, y ∈ X : d′(f(x), f(y)) = d(x, y),

then X is complete iff X ′ is so. For a proof see Exercise 7.3.21.

Remark. A slightly weaker result holds, that is, if there
exists some one-to-one correspondence f between (X, d) and
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(X ′, d′) such that
∃α, β > 0, ∀x, y ∈ X : αd(x, y) ≤ d′(f(x), f(y)) ≤ βd(x, y),

then X is complete iff X ′ is so.

(18) False! Two conditions are to be imposed on f and on A both in
order that such an extension is guaranteed to exist. We recall
the following theorem from the "What you need to know"
section:

Theorem. Let (X, d) and (Y, d′) be two metric spaces.
Assume that A ⊂ X is dense and that (Y, d′) is complete.
Let f : (A, d) → (Y, d′) be uniformly continuous on A. Then
there exists a unique function g : (X, d) → (Y, d′) which is
also uniformly continuous and such that g(x) = f(x) for each
x ∈ A.

Remark. The proof for uniqueness is a simple applica-
tion of Exercise 4.3.23.

Remark. In normed vector spaces, the continuity is equiv-
alent to uniform continuity whenever the function or map is
linear. Thus a very similar result holds in normed vector spaces
by assuming that the function is linear and continuous.

Let us give two counterexample which show that the con-
ditions Y complete and f uniformly continuous cannot be dis-
pensed with.
(a) Let f be the identity function from Q onto Q in the usual

topology. Then f is uniformly continuous (note that the
codomain, i.e."arrival" set, Q is not complete). Assume
that f had an extension f̃ , then f̃|Q(x) = x. Since Q
is dense in R, an irrational y is a limit of a sequence
(yn) ⊂ Q. We would then have

f̃(y) = lim
n→∞

f̃(yn) = lim
n→∞

f(yn) = lim
n→∞

yn = y 6∈ Q.

This illustrates the importance of Y being complete.
(b) Let X = [0, 1], A = (0, 1] and Y = R. Define a function

f on A as f(x) = ln x. Then A is dense in X, but f is
"only" continuous (the continuity is not uniform). If f̃
were such an extension of f , then we would have

f̃(0) = lim
x→0

f̃(x) = lim
x→0

f(x) = lim
x→0

ln x = −∞.

This tells us that such an extension does not exist showing
the importance of the uniform continuity.
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(19) There are many properties shared by compact and complete
metric spaces. An important result is that every compact met-
ric space is complete (the reader is asked to give a proof in
Exercise 7.3.6). Some of the properties illustrating the anal-
ogy are listed below:
(a) Any closed subspace of a compact space is compact and

any closed set in a complete metric space is complete.
(b) Any compact subspace of a metric space is closed and so

is any complete subspace.
(c) The finite union of complete metric spaces is complete

and a finite union of compact spaces is compact too.
(d) The arbitrary intersection of complete metric spaces is

complete. The same result holds with "compact" instead
of "complete".

7.3. Solutions to Exercises

Solution 7.3.1.
(1) Q is not complete as it is not closed (or, for instance, the

sequence
(
1 + 1

n

)n belongs to Q and it is Cauchy in R and
hence Cauchy in Q but its limit is e 6∈ Q).

(2) It is not complete as it is not closed. Another way of seeing
this is the following: Consider the sequence (xn) defined by

{
xn+1 =

√
2 + xn, n ∈ N,

x1 =
√
2.

Then, it can easily be established that (xn) is an increasing
and bounded above. Hence it converges (and thus Cauchy!).
It can also be shown that (xn) takes its values in R \ Q and
that xn → 2 6∈ R \Q.

(3) The set Q ∩ [3, 4] is not complete since it is not closed as we
can show that its closure in R is [3, 4] (cf. Exercise 3.3.19).

(4) The set (0,∞) is not complete since it is not closed.
(5) The set {n : n ≥ 1} (which is nothing but N!) is closed in R

since its complement is an infinite union of open sets (hence it
is open) and thus {n : n ≥ 1} is complete.

(6) Again, {(−1)n : n ≥ 1} is closed (why?) in R and hence
complete.

(7) { 1
n
: n ∈ N} ∪ {0} is complete (why?).

(8) The given set can be written as

{(x, y) ∈ R2 : x ≥ 1, y(x− 1) ≥ 1}
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Adopting the method of Exercise 4.3.33, we can show that it
is closed in R2, which is complete, yielding the completeness
of the given set.

Solution 7.3.2. Let (xn)n be a Cauchy sequence in X. Hence for
any ε > 0 there exists N ∈ N such that for all n,m ∈ N

n,m ≥ N ⇒ d(xn, xm) < ε.

Take for instance ε = 1
4
, then this gives us ∀n,m ≥ N : xn = xm

which is an eventually constant sequence and in a discrete metric space
the only convergent sequences are the eventually constant ones. Thus
X is complete.

Solution 7.3.3. Let (xn) be a Cauchy sequence in X and let
(xn(k)) be a convergent subsequence to x. Let ε > 0. Since (xn) is
Cauchy, there is some integer N such that

∀n,m ≥ N : d(xn, xm) <
ε

2
.

Since (xn(k)) converges to x, there is some integer K such that

∀k ≥ K : d(xn(k), x) <
ε

2
.

For any n ≥ N , choose k ≥ K verifying n(k) ≥ N so that we have

d(xn, x) ≤ d(xn, xn(k)) + d(xn(k), x) <
ε

2
+

ε

2
= ε.

The proof is complete.

Solution 7.3.4. Let (xn) be a Cauchy sequence in R. This implies
that it is bounded. The Bolzano-Weierstrass theorem implies that (xn)
has a convergent subsequence. But, a Cauchy sequence having a con-
vergent subsequence is itself convergent to the same limit (see Exercise
7.3.3). Therefore, (R, | · |) is complete.

Solution 7.3.5. Let (xn)n be a Cauchy sequence in (C, | · |C).
Since xn is complex-valued, one can write xn = an + ibn (where of
course (an)n and (bn)n are two real-valued sequences). Since (xn)n is
Cauchy,

∀ε > 0, ∃N ∈ N, ∀m,n (m,n ≥ N =⇒ |xn − xm|C < ε).

Now both (an)n and (bn)n are Cauchy as

|an − am|R = |Re(xn − xm)|R ≤ |xn − xm|C
and

|bn − bm|R = | Im(xn − xm)|R ≤ |xn − xm|C.
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Since (R, | · |) is complete, both (an)n and (bn)n are convergent to a and
b respectively. We set x = a + ib. Then obviously x ∈ C and we need
only show that xn → x in (C, | · |C). This follows easily from

0 ≤ |xn − x|C = |(an − a) + i(bn − b)|C ≤ |an − a|R + |bn − b|R → 0.

Solution 7.3.6.
(1) Call this space X. Let (xn) be a Cauchy sequence in X. Since

X is compact, it is sequentially compact (we are in a metric
space!) so that (xn) has a subsequence (xn(k)) which converges
to a point x ∈ X, say. Thus, by Exercise 7.3.3, (xn) too
converges to x ∈ X, proving the completeness of X.

(2) The answer is no in general. For instance, usual R is complete
but not compact (remember that we need also total bounded-
ness for the converse to hold).

(3) By the first answer, we know that for instance [−2, 2] is com-
plete. To prove R is complete, let (xn) be a Cauchy sequence
in R. Then for all ε > 0 and in particular for ε = 2,

∃N ∈ N : ∀n,m ∈ N (n,m ≥ N ⇒ |xn − xm| ≤ 2).

Set yn = xN+n − xN for all n. Then (yn) is Cauchy in [−2, 2]
and hence it converges, call y its limit. Hence

y = lim
n→∞

yn = lim
n→∞

xn − xN =⇒ lim
n→∞

xn = y + xN ∈ R,

proving the completeness of R.
(4) None of the implication is true. For example, in the usual

metric (−1, 1) is locally compact but it is not complete. Con-
versely, the space C([0, 1],R) (see Exercise 7.3.13) is complete
but not locally compact (see Exercise 5.3.20).

Solution 7.3.7. Let us show that (xn = n)n is a Cauchy sequence
in (R, d) not converging to any point in R. We have

d(n,m) =

∣∣∣∣
n

1 + |n| −
m

1 + |m|

∣∣∣∣ =
∣∣∣∣

n

1 + n
− m

1 +m

∣∣∣∣ =
∣∣∣∣

n−m

(1 + n)(1 +m)

∣∣∣∣ .

WLOG, we may assume that n ≥ m. Hence

0 ≤ d(n,m) =

∣∣∣∣
n−m

(1 + n)(1 +m)

∣∣∣∣ ≤
n−m

nm
≤ n

nm
=

1

m
−→ 0

as n,m −→∞.
Now if (n)n converged to some a ∈ R with respect to d, then we

would have

0 = lim
n→∞

∣∣∣∣
n

1 + |n| −
a

1 + |a|

∣∣∣∣ =
∣∣∣∣1−

a

1 + |a|

∣∣∣∣
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and it is plain (check it out!) that the equation
∣∣∣1− a

1+|a|

∣∣∣ = 0 has no
solution. Thus (R, d) is not complete.

Solution 7.3.8. Recall the d was defined for every x, y ∈ N, by

d(x, y) =

{
0, x = y,

5 + 1
x
+ 1

y
, x 6= y.

Now, we proceed to show the completeness of (N, d). Let (xn) be a
Cauchy sequence in (N, d). Then

∀ε > 0, ∃N ∈ N, ∀n,m ∈ N : (n,m ≥ N ⇒ d(xn, xm) < ε)

or

∀ε > 0, ∃N ∈ N, ∀n,m ∈ N : (n,m ≥ N ⇒ 5 +
1

xn
+

1

xm
< ε)

Since this is true for all ε > 0, it is true for ε = 5, say. This gives
us a contradiction unless we take d(xn, xm) = 0. Hence xn = xm for
all n,m ≥ N . This is an eventually constant sequence and hence it
converges.

Solution 7.3.9.
(1) Let x = (xn) = (1, 1, · · · , 1, · · · ) and

y = (yn) = (1, 1√
2
, 1√

3
, · · · , 1√

n
, · · · ). Then

∞∑

n=1

|xn|2 = 12 + 12 + · · ·+ 12 + · · · = +∞

and
∞∑

n=1

|yn|2 =
∞∑

n=1

(
1√
n

)2

=
∞∑

n=1

1

n
= +∞

since both series are divergent. This means that neither x nor
y belongs to ℓ2.

Now let x′ = (x′
n) = (1, 1, · · · , 1, 0, · · · ) and y′ = (y′n) =

(1, 1
2
, 1
3
, · · · , 1

n
, · · · ). Then both x′ and y′ belong to ℓ2 as

∞∑

n=1

|x′
n|2 = 12 + 12 + · · ·+ 12 + 0 + · · · < +∞

and
∞∑

n=1

|y′n|2 =
∞∑

n=1

(
1

n

)2

=

∞∑

n=1

1

n2
< +∞,

i.e. both of the involved series converge.
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(2) We first prove that d is a metric. We start by showing that
d is well-defined (i.e. the series involved in the definition of d
converges). We have for all k

|xk − yk|2 = |xk|2 + 2Re(xkyk) + |yk|2 ≤ |xk|2 + 2|Re(xkyk)|+ |yk|2

Hence

|xk − yk|2 ≤ |xk|2 + 2|xkyk|+ |yk|2

for every k. The Cauchy-Schwarz inequality then gives us

n∑

k=1

|xk − yk|2 ≤
n∑

k=1

|xk|2 + 2

√√√√
n∑

k=1

|xk|2
√√√√

n∑

k=1

|yk|2 +
n∑

k=1

|yk|2.

Therefore
n∑

k=1

|xk − yk|2 ≤
∞∑

k=1

|xk|2 + 2

√√√√
∞∑

k=1

|xk|2
√√√√

∞∑

k=1

|yk|2 +
∞∑

k=1

|yk|2 < +∞

as x, y ∈ ℓ2. Thus the partial sum
n∑

k=1

|xk − yk|2 is bounded

above and increasing since all terms are positive. Thus the
series

∑

k≥1

|xk − yk|2 converges.

Let us now verify that d satisfies the properties of a metric.
(a) Let x, y ∈ ℓ2.

(i) Obviously x = y ⇒ d(x, y) = 0.
(ii) We have

d(x, y) = 0⇔
∞∑

n=1

|xn− yn|2 = 0⇒ |xn− yn|2 = 0, ∀n⇒ xn = yn, ∀n.

Hence x = y.
(b) For any x, y ∈ ℓ2, d(x, y) = d(y, x).
(c) Let x, y, z ∈ ℓ2. From the Minkowski inequality with

p = 2 (see Exercise 2.3.9) one has
√√√√

n∑

k=1

|xk − zk|2 ≤

√√√√
n∑

k=1

|xk − yk|2 +

√√√√
n∑

k=1

|yk − zk|2

and hence√√√√
n∑

k=1

|xk − zk|2 ≤

√√√√
∞∑

k=1

|xk − yk|2 +

√√√√
∞∑

k=1

|yk − zk|2.
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A similar argument to one used just above shows that
√√√√

∞∑

k=1

|xk − zk|2 ≤

√√√√
∞∑

k=1

|xk − yk|2 +

√√√√
∞∑

k=1

|yk − zk|2,

establishing the triangle inequality for d.
Now we show that (ℓ2, d) is complete. Let (xp)p be a Cauchy
sequence in ℓ2 where xp = (x1p, x2p, · · · , xnp, · · · ). Let ε > 0,
then there exists an N ∈ N such that for all p, q ∈ N (p, q ≥
N ⇒ d(xp, xq) < ε). Thus for any n we have

n∑

k=1

|xkp − xkq|2 ≤ d(xp, xq) < ε2.

Taking q →∞ (and keeping n and p fixed) gives us
n∑

k=1

|xkp − xk|2 ≤ ε2

and hence
n∑

k=1

|xkp − xk|2 converges to a limit which is less

than or equal to ε2. Thus the sequence yk = xkp − xk belongs
to ℓ2. But (xp)p ∈ ℓ2 and hence (xk)k ∈ ℓ2. In the end one has
d(xp, x) ≤ ε for all p ≥ N .

Solution 7.3.10. We first show that (xn) is Cauchy. Let ε > 0.
We proceed as follows (what we will do in the next line will seldom be
useful but it really helps here)

d(xn, xm) = |e−n − e−m| ≤ |e−n|+ |e−m| = e−n + e−m.

One can choose N such that e−N < ε
2

(why?). Then for all n,m ≥ N ,
one has

e−n + e−m ≤ e−N + e−N <
ε

2
+

ε

2
= ε,

i.e. (xn) is Cauchy.
We digress a bit to say: Do not think that (−n) has −∞ as its

limit!! This is not the usual metric!
Now, let us show that (xn) does not converge in (R, d). Assume it

were and let x be its limit. Then we would have on the one hand

|e−n − ex| → 0.

On the other hand, we know that

lim
n→∞

|e−n − ex| = ex.
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Hence we ended up with ex = 0 which of course does not hold for any
x ∈ R. Thus the limit of the sequence does not exist and (X, d) is not
complete.

Solution 7.3.11. The given set A is not complete as it is not
closed. Let us show that. Consider the sequence

(xn)n =

(
1,

1

2
,
1

3
, · · · , 1

n
, 0, 0, · · ·

)
.

Then (xn)n belongs to A. It has as limit with respect to d the element

x =

(
1,

1

2
,
1

3
, · · · , 1

n
,

1

n + 1
,

1

n+ 2
, · · ·

)

as

d(xn, x)
2 =

∞∑

k=n+1

1

k2
→ 0 as n→∞,

since this is a remainder of a convergent series.
Evidently, x 6∈ A and hence A is not complete.

Remark. We ask the reader the following question which he/she
should try to give an answer to. We could (couldn’t we?) have taken
as "another limit"

y =

(
1,

1

2
,
1

3
, · · · , 1

n
,

1

2(n+ 1)
,

1

2(n+ 2)
, · · ·

)
6∈ A

since d(xn, y) → 0, as n → ∞. We can then have two limits for a
convergent sequence in a metric space!! What is then wrong with this
reasoning?

Solution 7.3.12.
(1) We show (fn) is a Cauchy sequence. We can show the "Cauchy-

ness" of (fn) either by doing some arithmetic or geometrically
by observing that d(fn, fn+p) is actually the area of the trian-
gle of apexes

(
1
2
− 1

n
, 0
)
,
(

1
2
− 1

n+p

)
and

(
1
2
, 0
)

where p, n ∈ N.
Hence

d(fn, fn+p) =
1

2
× 1×

[
1

2
− 1

n+ p
−
(
1

2
− 1

n

)]

=
1

2

(
1

n
− 1

n + p

)
≤ 1

2n
.

Hence

∀ε > 0, ∃N =
[ε
2

]
+ 1 ∈ N, ∀n, p ∈ N (n ≥ N ⇒ d(fn, fn+p) < ε),

establishing the "Cauchyness" of (fn).
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(2) The pointwise limit of (fn) is

f(x) =

{
0, 0 ≤ x < 1

2
,

1, 1
2
≤ x ≤ 1.

Hence

d(fn, f) =

∫ 1

0

|fn(x)− f(x)|dx

=

∫ 1
2
− 1

n

0

0dx+

∫ 1
2

1
2
− 1

n

[
nx+

(
1− 1

2
n

)]
dx+

∫ 1

1
2

0dx

=
1

2n
→ 0 as n→∞.

Now, to show (X, d) is not complete, assume that there is a
continuous function g on [0, 1] such that d(fn, g) → 0 and we
will reach a contradiction. Since

|f(x)− g(x)| ≤ |f(x)− fn(x)|+ |fn(x)− g(x)|, ∀x ∈ [0, 1],

we have

0 ≤
∫ 1

0

|f(x)− g(x)|dx ≤
∫ 1

0

|f(x)− fn(x)|dx+

∫ 1

0

|fn(x)− g(x)|dx.

Passing to the limit and using our hypotheses yield
∫ 1

0

|f(x)− g(x)|dx = 0

and hence f(x) = g(x) at each x for which f−g is continuous,
i.e.

f(x) = g(x), ∀x ∈ [0, 1] \
{
1

2

}
.

But, g is assumed to be continuous on [0, 1] and hence it must
be continuous at 1

2
and we would have

lim
x→ 1

2

−
g(x) = lim

x→ 1
2

+
g(x) = g

(
1

2

)
.

However,

lim
x→ 1

2

−
g(x) = lim

x→ 1
2

−
f(x) = 0 6= lim

x→ 1
2

+
g(x) = lim

x→ 1
2

+
f(x) = 1.

Therefore, such a continuous function g cannot exist. In fact,
such a function (without continuity) does not even exist and
hence (X, d) is not a complete metric space. The solution is
over.
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Solution 7.3.13. Let (fn) be a Cauchy sequence in (X, d∞). Then

∀ε > 0, ∃N ∈ N, ∀n,m ∈ N (n,m ≥ N ⇒ d∞(fn, fm) < ε)

or

∀ε > 0, ∃N ∈ N, ∀n,m ∈ N (n,m ≥ N ⇒ sup
x∈[0,1]

|fn(x)− fm(x)| < ε).

This implies that for each particular x in [0, 1] one has

|fn(x)− fm(x)| < ε for all n,m ≥ N.

Thus for each x ∈ [0, 1], (fn(x))n is a Cauchy sequence in usual R.
Since the latter is complete, we deduce that (fn(x))n must converge to
some f(x) ∈ R (for each x ∈ [0, 1]) . Thus we have a function f defined
for all x ∈ [0, 1]. Fixing n in the last displayed equation, and letting m
tend to infinity yield

|fn(x)− f(x)| < ε whenever n ≥ N

and for each x where N is independent of x. Thus

d∞(fn, f) = sup
x∈[0,1]

|fn(x)− f(x)| < ε for all n ≥ N.

Therefore, we have shown that (fn) converges in the supremum metric
to f , i.e. that (fn) converges uniformly to f . From the hint, f must
therefore be continuous.

In the end, the arbitrary Cauchy sequence (fn) converges in (X, d∞)
to a continuous function f . In other words, (X, d∞) is complete. The
proof is over.

Solution 7.3.14. Let (fn) be a Cauchy sequence in X. As in the
previous exercise, we can easily obtain that (fn(x))n converges to a
function f defined on [0, 1]. To finish the proof, two claims are to be
shown.

(1) Claim: f is bounded. Since (fn) is Cauchy, for ε = 1 > 0,
there is some N ∈ N such that for all n,m ≥ N we have
d(fn, fm) < 1. Hence for m = N , we have d(fn, fN) < 1
whenever n ≥ N . Remember that fN is bounded and hence
for some M ≥ 0, |fN(x)| ≤M for all x ∈ [0, 1]. Now we have

∀x ∈ [0, 1] : |fn(x)| ≤ |fn(x)− fN(x)|+ |fN(x)| < 1 +M

whenever n ≥ N . Passing to the limit as n tends to ∞ gives

∀x ∈ [0, 1] : lim
n→∞

|fn(x)| = | lim
n→∞

fn(x)| = |f(x)| ≤ 1 +M,

proving the boundedness of f .
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(2) Claim: lim
n→∞

d(fn, f)→ 0. Since (fn) is Cauchy, we know that

∀ε > 0, ∃N ∈ N, ∀n,m ∈ N (n,m ≥ N ⇒ d(fn, fm) < ε).

But d is the supremum metric, and hence

|fn(x)− fm(x)| < ε, ∀x ∈ [0, 1]

and whenever m,n ≥ N . Keeping n fixed and taking the limit
as m goes to infinity yield

|fn(x)− f(x)| ≤ ε

whenever n ≥ N and for all x ∈ [0, 1]. Thus we are led to

d(fn, f) ≤ ε

for n ≥ N . That is lim
n→∞

d(fn, f)→ 0.

The proof is complete.

Solution 7.3.15.
(1) To show that x 7→ ex is not a polynomial we use a contradiction

argument. Assume that x 7→ ex is a polynomial of degree m,
say, i.e. for some real a0, a1, · · · , am we have

ex = a0 + a1x+ · · ·+ amx
m.

It is known from the course of calculus that x 7→ ex is Cm+1

(it is in fact C∞). Hence by differentiating (m+1)-times both
sides of the previous displayed equation we get

(ex)(m+1) = ex = (a0 + a1x+ · · ·+ amx
m)(m+1) = 0

which is of course absurd. Thus the exponential function can-
not be a polynomial.

(2) Of course Pn(x) =
(
1 + x

n

)n (for n ≥ 1) is a polynomial se-

quence (
N∑

n=0

xn

n!
is another polynomial sequence converging to

ex). So, it only remains to show that d(Pn, e
x)→ 0 as n→∞

and by uniqueness of the limit ex is the only limit of (Pn) (see
the remark below for a comment on this). Let us show now
Pn → ex in (X, d). To this end, we calculate sup

x∈[0,1]
|Pn(x)− ex|.

We can write

sup
x∈[0,1]

|Pn(x)− ex| ≤ e1 sup
x∈[0,1]

|Pn(x)e
−x − 1|.



7.3. SOLUTIONS TO EXERCISES 229

Studying the function Pn(x)e
−x−1 on [0, 1] allows us to write

0 ≤ |Pn(x)e
−x − 1| ≤ 1− Pn(1)e

−1 = 1−
(
1 +

1

n

)n

e−1.

Taking the supremum and passing to the limit as n→∞ yield

0 ≤ d(Pn, e
x) ≤ e

(
1−

(
1 +

1

n

)n

e−1

)
→ 0.

Remark. We would like to give a comment on this an-
swer. We did not consider this reasoning, i.e. the use of the
uniqueness of the limit, as a correct one in the True or False
section for the "integral metric".

The reason here differs from the other one. The minimum
one suggests for the integral metric to be well-defined is that
the functions be Riemann-integrable (in such case the limit is
not unique as we do not have a distance) whilst in this case
(the supremum metric) what one suggests is that at least the
functions be bounded and d in this case remains a metric.
Hence the limit is unique.

(3) Take any continuous function f which is not a polynomial (ex,
sin x,...etc) and hence f 6∈ X. By the well-known Weierstrass
theorem (see also the next chapter) we know that there is
a polynomial sequence (Pn)n converging uniformly to f , i.e.
Pn → f with respect to d. Hence (Pn)n is Cauchy but con-
verging to f which is outside X. Thus (X, d) is not complete.

Solution 7.3.16.
(1) This a simple consequence of Test 5.
(2) A is not closed and hence it is not closed.
(3) Let (xn) be a Cauchy sequence in (A, d′), i.e.

∀ε > 0, ∃N ∈ N, ∀n,m ∈ N (n,m ≥ N ⇒ d′(xn, xm) = | lnxn−ln xm| < ε).

We immediately see that (ln xn) becomes a Cauchy sequence in
usual R which is obviously complete. Thus there exists some
y ∈ R such that | lnxn − y| → 0 as n→∞. Set x = ey. Then
x > 0, i.e. x ∈ A. Besides,
d′(xn, x) = | ln xn − ln x| = | lnxn − y| → 0 as n→∞.

(4) We show that id : (A, d) → (A, d′) is a homeomorphism. The
bijectivity of id is evident. It is continuous since the loga-
rithm function is continuous on (0,∞) (from basic real analy-
sis!). The inverse function id−1 = id : (A, d′) → (A, d) is also
continuous as the exponential function is in [0,∞).
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(5) We deduce from the previous answers that completeness is not
a topological property.

Solution 7.3.17.
(1) Let f be such a function. By the mean value theorem applied

to f on [x, y] (x, y ∈ [a, b]) we have

∃c ∈ (x, y) : f(y)− f(x) = (y − x)f ′(c)

and by the hypothesis on the derivative of f

|f(y)− f(x)| ≤M |y − x|,
i.e. f is a contraction.

(2) Transform the given equation to

1

32
x4 +

x3

2
− x− 1

4
= 0 or

1

32
x4 +

x3

2
− 1

4
= x.

Set f(x) = 1
32
x4 + x3

2
− 1

4
. Then it can easily be shown that

|f ′(x)| ≤ 25

64
< 1 for all x ∈

[
0,

1

2

]
.

Thus the given equation has a root between 0 and 1
2
.

Solution 7.3.18.
(1) Set g = fn. Since g is a contraction, there exists a unique

x ∈ X such that g(x) = x. Now

d(x, f(x)) = d(g(x), f(x)) = d(g(x), (f ◦ g)(x))
= d(g(x), (g ◦ f)(x))
≤Md(x, f(x)) since g is a a contraction.

Since M < 1, we immediately see that f(x) = x. Thus, if fn

is a contraction (then it admits a unique fixed point), then f
has the same fixed point. To show its uniqueness, assume y is
another fixed point of f . Then y is necessarily a fixed point
for fn for

fn(y) = fn−1(f(y)) = fn−1(y) = · · · = f(y) = y.

But the fixed point of fn is unique and hence x = y and thus
the proof is over.

(2) • Define cos x : [0, π
2
] → [0, 1]. Then this function cannot

be a contraction since | cos x−0|
x−π

2
tends to 1 as x tends to π

2
.

Hence It cannot be bounded above by some k < 1!.



7.3. SOLUTIONS TO EXERCISES 231

Remark. Although cosx is not a contraction, α cos x is
always one whenever 0 ≤ α < 1.

Let g(x) = cos(cosx). Then f ′(x) = sin x sin(cosx).
Then

sup
0≤x≤π

2

f ′(x) ≤ sin(cosx) ≤ sin 1 < 1.

Thus the mean value theorem gives for all x and y

| cos2 x− cos2 x| ≤ sin 1|x− y|,
i.e. cos2 is a contraction and so by the first question cosx
has a unique fixed point.
• The way of finding the fixed point is well described in

the proof of the fixed point theorem. We start with a
point x0. Then we calculate successively x2 = cosx1,
x3 = cosx2,...etc. If we start with x1 = 0.7 in radians and
not degrees! We already knew roughly where the root
would be graphically! Otherwise we could have started
by any value in (0, 1). Then

x2 =cos(x1) = 0.7648,

x3 =cos(x2) = 0.7215,

x4 =cos(x3) = 0.7508 · · ·
and we carry on until this process stabilizes at x18 =
0.7391, accurate to four decimal places (this is a little
slow and other methods give here a better result like New-
ton’s).

Solution 7.3.19.
(1) Let x, y ∈ X. Then x, y ≥ 1 and hence

|f(x)− f(y)| = |x− y|
∣∣∣∣
1

2
− 1

xy

∣∣∣∣ .

But

0 <
1

xy
≤ 1 and so

∣∣∣∣
1

2
− 1

xy

∣∣∣∣ ≤
1

2
.

Therefore,

∀x, y ∈ X : |f(x)− f(y)| ≤ 1

2
|x− y|.
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(2) Assume there is x ∈ X such that f(x) = x. Then
x

2
+

1

x
= x or x2 = 2

and the previous equation clearly does not hold for any x ∈ X
since ±

√
2 6∈ Q!

(3) It does not contradict the fixed point theorem since X is not
complete (why?) even if f is a contraction. Therefore, the
fixed point is not guaranteed to exist anymore. This tells us
that the hypothesis on the space being complete cannot be
merely dropped.

Solution 7.3.20.
(1) Let x, y ≥ 1. We could use similar estimates to those in the

previous exercise, but it is important here to show that 1 is
the best constant. To achieve this aim, we use the mean value
theorem, which, applied to f on [x, y] gives

∃c ∈ (x, y) : f(x)− f(y) = f ′(c)(x− y).

We now need to check that sup
x≥1
|f ′(x)| = 1 which we leave to

the reader. Hence

∀x, y ≥ 1 : |f(x)− f(y)| < |x− y|.
(2) It is plain that

∀x ≥ 1 : f(x) 6= x.

(3) It does not contradict the fixed point theorem since f is not
a contraction despite the fact that X is complete (hence the
fixed point is not guaranteed to exist anymore). This shows
the importance of the contraction hypothesis.

This example does not contradict the result of Exercise
5.3.27 either because [1,∞) is not compact.

Solution 7.3.21.
(1) Suppose that (X ′, d′) is complete and let us show that (X, d)

is in its turn complete. Let (xn) be a Cauchy sequence in X.
Then d(xn, xm)→ 0 as n,m→∞ and so

lim
n,m→∞

d′(f(xn), f(xm)) = 0.

This means that (f(xn)) is Cauchy in X ′, assumed complete,
and hence it must converge to some y ∈ X ′ = f(X). But there
exists one x ∈ X such that y = f(x). Thus

d′(f(xn), y) = d′(f(xn), f(x)) = d(xn, x)→ 0
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as n goes to infinity. Thus (X, d) is complete.
(2) The proof of the other implication is very similar to the pre-

vious one and we leave it to the reader.

Solution 7.3.22. Both examples are in the setting of R endowed
with the usual topology (R is complete).

(1) Let An = [n,∞). Then each An is closed, non-empty and de-
creasing (with respect to ⊂). However, we see that

⋂∞
n=1An =

∅ which is not a contradiction for d(An) 6→ 0 as n→∞.
(2) Consider An = (1, 1+ 1

n
]. Then (An) is decreasing and verifies

d(An) → 0 as n goes to infinity. However,
∞⋂

n=1

An = ∅. This

is also not a contradiction for An is not closed.

Solution 7.3.23. Recall that a metric space is compact iff it is
complete and totally bounded. We already know that [a, b] is complete
for it is closed in R which is complete. We need only show that it is
totally bounded. Let ε > 0. Choose n such that 2

n
≤ ε. Consider now

the cover {Bn} defined as

B0 =

[
a, a+

1

n

)
, Bi =

(
xi −

1

n
, xi +

1

n

)
and Bn =

(
b− 1

n
, b

]
.

We may easily check that the diameter of Bn, designated by δ, is less
than or equal to 2

n
. So [a, b] is totally bounded.

Solution 7.3.24.
(1) Assume R is countable. Hence it can be written as

R = {x1, x2, · · · , xn, · · · } =
∞⋃

n=1

Cn where Cn = {xn}.

In R the set Cn is closed and
◦
Cn = ∅. Since R is complete,

Baire’s theorem tells us that
∞⋃

n=1

◦
Cn must be dense but this is

clearly not the case as one can clearly see that this union is
the empty set. Thus R is not countable, as required.

(2) As for R \Q we know that Q is countable. Now assume that
R\Q is also countable. Then Q∪R\Q = R would be countable
and this contradicts the uncountability of R. Thus R \ Q is
not countable.

Solution 7.3.25. The proof is based on the Baire’s theorem which,
an equivalent version of it, states that if X is a complete metric space,
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then the countable intersection of open and dense sets in X is dense in
X.

Since C is closed in usual R, it is complete. Assume that C does
not have any isolated points, that is, it posses limit points only. Let
x ∈ C. Since C is separated, {x} is closed in C and so C \ {x} is open
in C. Set Ux = C \ {x}. Since C does not have any isolated point,
Ux = C, that is, Ux is dense in C. According to Baire’s theorem, the
intersection of Ux (x ∈ C) must be dense in C. But

⋂

x∈C
Ux = ∅

which is never dense in C. We hence conclude that C does not have
any isolated point.

Solution 7.3.26. We need only show that f(A) ⊂ f(A). Let
y ∈ f(A), then there exists a sequence (xn) such that xn ∈ A with
y = lim

n→∞
f(xn). Hence (f(xn))n is a Cauchy sequence in Y which is

complete. By hypothesis
d′(f(xn), f(xm)) ≥ d(xn, xm)

for all n,m and so (xn)n becomes in its turn a Cauchy sequence but in
X.

But A is closed in X and hence it is also complete. This means
that d(xn, x)→ 0 with x in A. Now, since f is continuous, one obtains

f(A) ∋ f(x) = lim
n→∞

f(xn) = y,

establishing the result.

7.4. Hints/Answers to Tests

Solution 53. No! (Why?)...

Solution 54. Use the sequence defined by xn = n...

Solution 55. Apply Baire’s theorem to [0, 1]...

Solution 56. Use Exercises 4.5.9 & 7.3.25.



CHAPTER 8

Function Spaces

8.2. True or False: Answers

(1) False! We provide a counterexample. Let

fn(x) =
1

1 + nx
, 0 < x < 1.

It can be shown that (fn) is decreasing. Also, it is plain that

lim
n→∞

1

1 + nx
= 0 = f(x)

and so f is continuous on (0, 1). Nonetheless,

sup
0<x<1

|fn(x)− f(x)| = sup
0<x<1

∣∣∣∣
1

1 + nx

∣∣∣∣ = 1 6→ 0,

i.e. the convergence is not uniform.
If, however, the (fn)s are defined on a compact set, then

this is true (Dini’s theorem).
(2) True! Let x ≤ y. Since x 7→ fn is increasing, fn(x) ≤ fn(y)

for each n. Hence

lim
n→∞

fn(x) ≤ lim
n→∞

fn(y) =⇒ f(x) ≤ f(y),

i.e. f is increasing.

Remarks.
(a) The result remains true if "decreasing" replaces "increas-

ing" and the proof is very similar.
(b) The result is no longer true if "strictly increasing" replaces

"increasing". The reader should try to give a counterex-
ample.

(3) If (fn) is a convergent sequence of bounded functions, then its
pointwise limit f need not be bounded. Let (fn) be defined as
follows

fn(x) =

{
ex, |x| ≤ n,
0, |x| > n.

235
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Then every (fn) is bounded (why?). Its pointwise limit, which
is clearly seen to be f(x) = ex, is not bounded on R.

But, if the convergence is uniform, then the uniform limit
must be bounded. we give a proof although it is similar in core
to that of Exercise 7.3.14.

Since (fn) converges uniformly to f , for all ε > 0 and in
particular for ε = 1,

∃N ∈ N, ∀n ∈ N, n ≥ N ⇒ |fn(x)− f(x)| ≤ 1 for all x ∈ R.
But all (fn)s are bounded and in particular fN is. Whence for
some positive C and all x ∈ R: |f(x)| ≤ C. Therefore, for
each x ∈ R

|f(x)| ≤ |f(x)− fN (x)|+ |fN(x)| ≤ 1 + C,

i.e. f is bounded.
(4) False! and fn(x) = xn on [0, 1] is again a counterexample.

Then (fn) converges pointwise to the nil function on [0, 1).
The convergence remains uniform on [0, a] for each 0 < a < 1
as

lim
n→∞

sup
0≤x≤a

|xn − 0| = lim
n→∞

an = 0

and we already saw above the the convergence is not uniform
on [0, 1).

(5) False! The following is a counterexample: fn(x) = (1−x)n on
(0, 1]. Details are left to the reader.

(6) Although continuity implies Riemann integrability, the result
does not hold in general (that is, we still need uniform conti-
nuity).

As a counterexample, let (fn) be defined on [0, 1] as follows

fn(x) =





4n2x, 0 ≤ x ≤ 1
2n
,

−4n2x+ 4n, 1
2n

< x < 1
n
,

0, 1
n
≤ x ≤ 1.

It is clear that (fn) converges pointwise to f(x) = 0 for all
x ∈ [0, 1]. Drawing a graph tells us that

∫ 1

0
fn(x)dx is actually

the area of a triangle of apexes (0, 0), ( 1
n
, 0) and ( 1

2n
, 2n). So

∫ 1

0

fn(x)dx =
1

n
× (2n)× 1

2
= 1.

However,

lim
n→∞

∫ 1

0

fn(x)dx = 1 6=
∫ 1

0

lim
n→∞

fn(x)dx =

∫ 1

0

f(x)dx = 0.
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Remark. In the Lebesgue Integration Course, we do not
even need uniform convergence for the result to hold. Many
handicaps will then be overcome, in a different context though.
This will not be discussed in the present book.

(7) False! Consider fn(x) = xn

n
defined on [0, 1]. Then it is evident

that fn converges pointwise to f(x) = 0 for every x ∈ [0, 1],
though

lim
n→∞

f ′
n(x) = lim

n→∞
xn−1 =

{
0, 0 ≤ x < 1,
1, x = 1,

6= f ′(x) = 0.

8.3. Solutions to Exercises

Solution 8.3.1.
(1) It is clear that (fn) converges pointwise to the zero function

(defined on [0, 1]). Call this limit f .
(2) We can also easily show that (fn) converges uniformly to the

f , i.e. that

lim
n→∞

sup
x∈[0,1]

|fn(x)− f(x)| = 0.

Solution 8.3.2.
(1) We have

lim
n→∞

fn(x) = lim
n→∞

enx√
n
= 0

for every x ∈ [−1, 0]. Hence (fn) converges to the zero func-
tion. Designate this limit by f .

(2) Let us verify that the convergence is uniform. We have

lim
n→∞

sup
x∈[−1,0]

|fn(x)− f(x)| = lim
n→∞

sup
x∈[−1,0]

enx√
n
= lim

n→∞
1√
n
= 0.

(3) We obviously have

f ′
n(x) =

√
nenx, ∀ − 1 ≤ x ≤ 0

which does not converge pointwise on [−1, 0] for f ′
n(0) =

√
n.

A fortiori, it does not converge uniformly.

Remark. We may show that (fn) converges pointwise to
f = 0 on [−1, 0), but it still does not converge uniformly to
the zero function on this interval.

Solution 8.3.3. We apply Dini’s theorem. Thus we have to show
that (Pn) is monotonic and it converges uniformly to |x|. We first claim
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Pn(x) ≤ |x| for all n. To prove it, we use a proof by induction. It is
clear P0(x) = 0 ≤ |x| (for all x). Assume Pn(x) ≤ |x|. Then

|x| − Pn+1(x) = |x| − Pn(x)−
1

2
(|x| − Pn(x))(|x|+ Pn(x))

=
1

2
(|x| − Pn(x))(2− |x| − Pn(x)) ≥ 0

by the induction hypothesis and x ∈ [−1, 1] hypotheses. We can easily
check that Pn(x) ≥ 0 for all n and all x. To apply Dini’s theorem, it
only remains to check that (Pn) is monotonic. It is in fact increasing
as for all n (and all x ∈ [−1, 1])

Pn+1(x)− Pn(x) ≥ 0.

Therefore, (Pn(x)) is an increasing and bounded above sequence and so
it converges (pointwise) to some f(x) (with 0 ≤ f(x) ≤ |x|). Finally,
it is clear that f(x) verifies x2 = f 2(x) or f(x) = |x|. Thus, all the hy-
potheses of Dini’s theorem are gathered, implying that (Pn) converges
uniformly to |x|.

Solution 8.3.4. The sequence (fn) converges pointwise, com-
pactly and uniformly to the function x 7→ 0.

As for (gn), it converges to x 7→ g(x) = x; pointwise and compactly,
but not uniformly.

Solution 8.3.5. To show that V is closed, we take an arbitrary
sequence, (xn) say, in V , i.e. (fn(xn)) is Cauchy in Y , and we must
show that its limit x remains in V , i.e. (fn(x)) is Cauchy in Y .

If p, q, n are positive integers, then we may write

d′(fp(x), fq(x)) ≤ d′(fp(x), fp(xn))+d′(fp(xn), fq(xn))+d′(fq(x), fq(x)).

Let ε > 0. Since (fn) is continuous at x, for some α > 0 and all n ∈ N
and all y ∈ X

d(x, y) < α =⇒ d′(fn(x), fn(y)) <
ε

3
.

But d(xn, x)→ 0, and hence there exist n′ ∈ N for which d(xn′, x) < α.
Therefore,

d′(fq(xn′), fq(x)) <
ε

3
and d′(fp(xn′), fp(x)) <

ε

3

for all p, q ≥ n′. We also observe that (fn′) is Cauchy, so

∃n′′ ≥ n′, ∀p, q ∈ N : (p, q ≥ n′′ =⇒ d′(fp(xn′), fq(xn′)) <
ε

3
).

Thus it becomes clear that

∀ε > 0, ∃n′′ ∈ N : ∀p, q ∈ N : ((p, q ≥ n′′ =⇒ d′(fp(x), fq(x)) < ε),
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(fn(x)) is Cauchy, i.e. x ∈ V so that V is closed.

Solution 8.3.6.
(1) Since k is continuous on the compact [0, 1]2, it is uniformly

continuous. This implies that

∀ξ > 0, ∃α > 0, ∀x, y, t ∈ [a, b] : (|x−t| < α =⇒ |k(x, y)−k(t, y)| < ξ).

But (fn) is bounded, hence

∃M ≥ 0 : ∀x ∈ [0, 1] : |fn(x)| ≤ M.

Let x be fixed. Let ε > 0. Set ξ = ε
M

. Since k is uniformly
continuous, we may find α > 0 such that |x− t| < α such that

|k(x, y)− k(t, y)| < ξ =
ε

M

|Kfn(x)−Kfn(t)| ≤
∫ 1

0

|k(x, y)− k(t, y)||fn(y)|dy

≤M
∫ 1

0

|k(x, y)− k(t, y)|dy

≤M
∫ 1

0

ε

M
dy

≤ε,

i.e. (Kfn) is equicontinuous at each x ∈ [0, 1], hence it is so
on [0, 1].

(2) Set (Kfn) = H . The set H(x) is bounded for each x. Hence
its closure is a closed and bounded set in usual R, so H(x) is
compact. By Ascoli theorem (Kfn) is relatively compact.

Solution 8.3.7. Since all the moments are worth zero, so is their
sum and hence ∫ b

a

f(x)p(x)dx = 0

where p(x) = anx
n + · · ·+ a1x+ a0 is any polynomial with real coeffi-

cients. Now, the function f , being continuous on the compact set [a, b],
is bounded and hence for some positive C and all x ∈ [a, b]: |f(x)| ≤ C.
By the Weierstrass theorem, for every ε > 0, there exists a polynomial
q such that

|f(x)− q(x)| < ε
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for all x ∈ [a, b]. By the above observation,
∫ b

a
f(x)q(x)dx = 0 too and

hence we have

0 ≤
∫ b

a

f 2(x)dx =

∫ b

a

(f 2(x)− f(x)q(x))dx

=

∫ b

a

f(x)(f(x)− q(x))dx

=

∣∣∣∣
∫ b

a

f(x)(f(x)− q(x))dx

∣∣∣∣ (why?)

≤
∫ b

a

|f(x)||f(x)− q(x)|dx

<Cε.

Since this is true for all ε, we immediately deduce that
∫ b

a
f 2(x)dx = 0

which, combined with the fact that f 2 is continuous and positive, yield
f 2(x) = 0 for all x ∈ [a, b] and thus f = 0.

Solution 8.3.8. Set

d∞(f, g) = sup
x∈[0,1]

|f(x)− g(x)| for all f, g ∈ C([0, 1],R).

First remember that we have to find a dense and countable set
in C([0, 1],R). Let f ∈ C([0, 1],R). If we come to show that for
every ε > 0, there exists a polynomial q with rational coefficients such
that d∞(f, g) < ε, then Exercise 1.2.4 (which tells us that the set
of polynomials with rational coefficients is countable) will allow us to
conclude that C([0, 1],R) is separable.

Since f is continuous on [0, 1], there exists -by means of the Weier-
strass theorem- a polynomial p such that d∞(f, p) < ε. If all the
coefficients of p are rational, then we have our polynomial. Otherwise,
p will have irrational coefficients (not necessarily all). So if we assume
p has degree n, then

p(x) = αnx
n + · · ·+ α1x+ α0 =

n∑

i=0

αix
i

where not all αi (i = 0, 1, . . . ;n) are rational. Now, it is clear that
every interval centered at αi with length 2ε contains a rational βi (and
hence |αi− βi| < ε for each i). Thus we have recovered a polynomial q
with rational coefficients βi written as

q(x) = βnx
n + · · ·+ β1x+ β0 =

n∑

i=0

βix
i.
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Therefore, it only remains to approximate p(x) by q(x) (in the
supremum distance). We have for all x in [0, 1]

|p(x)− q(x)| ≤
n∑

i=0

|βi − αi|xi < ε(n+ 1)

which implies that d∞(p, q) < ε(n+ 1). Thus
d∞(f, q) ≤ d∞(f, p) + d∞(p, q) < ε(n+ 1) + ε = ε(n+ 2)

and the proof is complete (those who are superstitious may play with
the epsilons in the beginning so that they get one nice epsilon in the
end!).

8.4. Hints/Answers to Tests

Solution 57. The sequence (fn) converges pointwise to 1
1−x

on
(−1, 1)...The convergence is not uniform on (−1, 1) but it is so on
[−a, a] where a < 1.

Solution 58. The given sequence converges uniformly to the
function defined by f(x) = x...

Solution 59. f is continuous (why?)...

Solution 60. Yes (prove it!)...
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Algebraic number, 7

Baire space, 85
Basis (or base), 27
Boundary (see also Frontier), 27
Bounded function, 11

Cauchy sequence, 83
Clopen set (metric space), 10
Clopen set (topological space), 24
Closed

set (topological space), 23
ball, 10
function, 46
set (metric space), 10

Closure, 25
Compact, 61
Compactification, 73
Comparable topologies, 25
Complete, 83
Component, 76
Connected, 75
Continuous function (metric space),

11
Continuous function (topological

space), 45
Contraction, 85
Convergence

(metric space), 47
(topological space), 47
(on) compacta, 96
pointwise, 95
uniform, 95

Cover, 61

Dense, 26
Diagonal, 55

Diameter, 11

Equicontinuity, 97
Equivalent metrics, 13
Extended real line, 28

First countable, 41
Fixed point, 85
Frontier (see also boundary), 27

Graph (of a function), 47

Hausdorff (see also separated), 25
Homeomorphism, 45

Inequality
Cauchy-Schwarz, 16
triangle, 9
Hölder, 15
Minkowski, 15

Interior, 25
Interval, 75
Isolated point, 25
Isometry, 12

Lebesgue number, 74
Limit point, 25
Limit point compactness, 62
Locally compact, 63
Locally connected, 82

Metric
a metric, 9
space, 9
discrete, 9
Hausdorff, 72
Supremum metric, 16
usual, 9

Metrizable, 24
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Moving bump, 54

Neighborhood, 24
Net, 59
Nowhere dense, 27

Open
set (topological space), 23
ball, 10
cover, 61
elementary, 29
function, 46
partition, 75
set (metric space), 10

Path, 77
Path-connected, 77
Projection, 55

Relatively compact, 62

Second countable, 41
Separable, 27
Separated (see also Hausdorff), 25
Sequential compactness, 64
Sequential continuity, 48
Set

derived, 25
bounded, 11
Cantor, 4
convex, 77
countable, 3
infinite, 3
uncountable, 3

Sphere, 10
Subalgebra, 97
Subcover, 61

Theorem
Arzelà-Ascoli, 98
Baire, 84
Cantor, 84
Dini, 96
Heine, 64
Tychonoff, 64

Topological property, 46
Topological space, 23
Topologically equivalent metrics, 13
Topology

a topology, 23
co-countable, 35
co-finite, 35
coarser, 24
discrete, 23
finer, 24
indiscrete, 23
K-topology, 37
lower limit, 37
product, 29
quotient, 29
subspace, 28
upper limit, 37
usual, 23

Total boundedness, 65
Transcendental number, 7

Uniform continuity, 12
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