Another Generalization of the Sawayama's Lemma and Sawayama and Thébault's Theorem

Proposed by Dao Thanh Oai

August 5, 2016

Abstract

1 A generalization of the Sawayama lemma

Theorem 1 (Case 1). Let ABC be a triangle, Let I be the incenter of ABC. Let (O) be a circle through B, C such that A outside of (O). Let (O_A) be the circle such that (O_A) tangent to AB, (O_A) tangent to AC, and externally tangent to (O). Le P be a point in the plane, let L be a line through P and tangent to (O_A) . Let (O_1) be the circle such that (O_1) tangent with BC at D, (O_1) tangent L at E, and (O_1) tangent (O), such that (O_1) and (O_A) are not the same half plane divides by L. Then show that D, E, I are collinear

Figure 1

Theorem 2 (Case 2). Let ABC be a triangle, Let I be the incenter of ABC. Let (O) be a circle through B, C such that A inside of (O). Let (O_A) be the circle such that (O_A) tangent to AB, (O_A) tangent to AC, and tangent internaly with (O). Le P be a point in the plane, let L be a line through P and tangent to (O_A) . Let (O_1) be the circle such that (O_1) tangent with BC at D, (O_1) tangent L at E, and (O_1) tangent (O), such that (O_1) and (O_A) are the same half plane divides by L. Then show that D, E, I are collinear.

Figure 2

2 A generalization of the Sawayama-Thebault theorem

Theorem 3 (Case 1). Let ABC be a triangle. Let (O) be a circle through B, C such that A outside of (O). Let (O_A) be the circle such that (O_A) tangent to AB, (O_A) tangent to AC, and externally tangent to (O). Le P be a point in the plane, let L_1, L_2 be a line through P and tangent to (O_A) . Let $(O_1), (O_2)$ be the circle such that $(O_1), (O_2)$ tangent to L_1, L_2 respectively, and $(O_1), (O_2)$ tangent $(O), (O_1), (O_2)$ tangent to BC, such that (O_1) and (O_A) are not the same half plane divides by L_1 . such that (O_2) and (O_A) are not the same half plane divides by L_2 . The line O_1O_2 through a fixed point when P move on a line.

Figure 3

Theorem 4 (Case 2). Let ABC be a triangle. Let (O) be a circle through B, C such that A outside of (O). Let (O_A) be the circle such that (O_A) tangent to AB, (O_A) tangent to AC, and externally tangent to (O). Le P be a point in the plane, let L_1, L_2 be a line through P and tangent to (O_A) . Let $(O_1), (O_2)$ be the circle such that $(O_1), (O_2)$ tangent to L_1, L_2 respectively, and $(O_1), (O_2)$ tangent $(O), (O_1), (O_2)$ tangent to BC, such that (O_1) and (O_A) are the same half plane divides by L_1 and (O_2) and (O_A) are the same half plane divides by L_2 . The line O_1O_2 through a fixed point when P move on a given line.

Figure 4

References

- Jean-Louis Ayme, Sawayama and Thébault's Theorem, Forum Geometricorum 3 (2003) 225–229.
- [2] Dao Thanh Oai, A Generalization of Sawayama and Thébault's Theorem, International Journal of Computer Discovered Mathematics, Volume 1 Number 3 (September 2016) pp.33-35.

Dao Thanh Oai: Kien Xuong, Thai Binh, Viet Nam *E-mail address* : daothanhoai@hotmail.com.