Another Generalization of the Sawayama's Lemma and Sawayama and Thébault's Theorem

Proposed by Dao Thanh Oai

August 5, 2016

Abstract

1 A generalization of the Sawayama lemma

Theorem 1 (Case 1). Let $A B C$ be a triangle, Let I be the incenter of $A B C$. Let (O) be a circle through B, C such that A outside of (O). Let $\left(O_{A}\right)$ be the circle such that $\left(O_{A}\right)$ tangent to $A B,\left(O_{A}\right)$ tangent to $A C$, and externally tangent to (O). Le P be a point in the plane, let L be a line through P and tangent to $\left(O_{A}\right)$. Let $\left(O_{1}\right)$ be the circle such that $\left(O_{1}\right)$ tangent with $B C$ at $D,\left(O_{1}\right)$ tangent L at E, and $\left(O_{1}\right)$ tangent (O), such that $\left(O_{1}\right)$ and $\left(O_{A}\right)$ are not the same half plane divides by L. Then show that D, E, I are collinear

Figure 1

Theorem 2 (Case 2). Let $A B C$ be a triangle, Let I be the incenter of $A B C$. Let (O) be a circle through B, C such that A inside of (O). Let $\left(O_{A}\right)$ be the circle such that $\left(O_{A}\right)$ tangent to $A B,\left(O_{A}\right)$ tangent to $A C$, and tangent internaly with (O). Le P be a point in the plane, let L be a line through P and tangent to $\left(O_{A}\right)$. Let $\left(O_{1}\right)$ be the circle such that $\left(O_{1}\right)$ tangent with $B C$ at $D,\left(O_{1}\right)$ tangent L at E, and $\left(O_{1}\right)$ tangent (O), such that $\left(O_{1}\right)$ and $\left(O_{A}\right)$ are the same half plane divides by L. Then show that D, E, I are collinear.

Figure 2

2 A generalization of the Sawayama-Thebault theorem

Theorem 3 (Case 1). Let $A B C$ be a triangle. Let (O) be a circle through B, C such that A outside of (O). Let $\left(O_{A}\right)$ be the circle such that $\left(O_{A}\right)$ tangent to $A B,\left(O_{A}\right)$ tangent to $A C$, and externally tangent to (O). Le P be a point in the plane, let L_{1}, L_{2} be a line through P and tangent to $\left(O_{A}\right)$. Let $\left(O_{1}\right),\left(O_{2}\right)$ be the circle such that $\left(O_{1}\right),\left(O_{2}\right)$ tangent to L_{1}, L_{2} respectively, and $\left(O_{1}\right),\left(O_{2}\right)$ tangent $(O),\left(O_{1}\right),\left(O_{2}\right)$ tangent to $B C$, such that $\left(O_{1}\right)$ and $\left(O_{A}\right)$ are not the same half plane divides by L_{1}. such that $\left(O_{2}\right)$ and $\left(O_{A}\right)$ are not the same half plane divides by L_{2}. The line $O_{1} O_{2}$ through a fixed point when P move on a line.

Figure 3

Theorem 4 (Case 2). Let $A B C$ be a triangle. Let (O) be a circle through B, C such that A outside of (O). Let $\left(O_{A}\right)$ be the circle such that $\left(O_{A}\right)$ tangent to $A B,\left(O_{A}\right)$ tangent to $A C$, and externally tangent to (O). Le P be a point in the plane, let L_{1}, L_{2} be a line through P and tangent to $\left(O_{A}\right)$. Let $\left(O_{1}\right),\left(O_{2}\right)$ be the circle such that $\left(O_{1}\right),\left(O_{2}\right)$ tangent to L_{1}, L_{2} respectively, and $\left(O_{1}\right),\left(O_{2}\right)$ tangent $(O),\left(O_{1}\right),\left(O_{2}\right)$ tangent to $B C$, such that $\left(O_{1}\right)$ and $\left(O_{A}\right)$ are the same half plane divides by L_{1} and $\left(O_{2}\right)$ and $\left(O_{A}\right)$ are the same half plane divides by L_{2}. The line $O_{1} O_{2}$ through a fixed point when P move on a given line.

Figure 4

References

[1] Jean-Louis Ayme, Sawayama and Thébault's Theorem, Forum Geometricorum 3 (2003) 225-229.
[2] Dao Thanh Oai, A Generalization of Sawayama and Thébault's Theorem, International Journal of Computer Discovered Mathematics, Volume 1 Number 3 (September 2016) pp.33-35.

Dao Thanh Oai: Kien Xuong, Thai Binh, Viet Nam
E-mail address : daothanhoai@hotmail.com.

