Nine-point circle, pedal circle and cevian circle

Ngo Quang Duong

August 30, 2015

Abstract

This paper contains some results around nine-point circle, pedal circle, cevian circle and their intersections. These are results, solutions that found by many people who interested in geometry. My contribution is just a little. Writing this, I want to make a collection, as detail as I can of these circles. I am just a normal student with great love for geometry, especially plane geometry, I am sure that I can't do this alone. I really want to say thanks to Mr. Tran Quang Hung - my teacher, Nguyen Van Linh, Telv Cohl, Tran Minh Ngoc, Luiz Gonzalez, who inspired me so much. One more thing, now I am seniors of high school, many pressure is coming so this is may be the last great paper in this year. Today, finally I finish this work. I hope all of you love this.

1 Common points of nine-point circle, pedal circle, cevian circle other than Poncelet point

1.1 Nine-point circle and pedal circle

Theorem 1. (Fontene's first theorem) $\triangle A B C$ and a point $P . \triangle A^{\prime} B^{\prime} C^{\prime}, \triangle D E F$ are pedal triangles of the circumcenter and P wrt $\triangle A B C$. EF,FD,DE intersects $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ at X, Y, Z. Then $D X, E Y, F Z$ are concurrent at a common point of $\odot(D E F)$ and $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right)$.

Proof. Let O be circumcenter of $\triangle A B C$.
Lemma 2. Orthopole of P is also the anti-Steiner point of $O P$ wrt $\triangle A^{\prime} B^{\prime} C^{\prime}$.
Let T be the anti-steiner point of $O P, A_{1}, B_{1}, C_{1}$ are reflections of T in $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$. Then A_{1}, B_{1}, C_{1} lie on $O P$.

$$
\left(A_{1} B^{\prime}, A_{1} C^{\prime}\right)=\left(T C^{\prime}, T B^{\prime}\right)=\left(A^{\prime} C^{\prime}, A^{\prime} B^{\prime}\right)=(A C, A B)=\left(A B^{\prime}, A C^{\prime}\right)
$$

$\Rightarrow A_{1}$ lies on the circle that has diameter $O A$, so $A A_{1} \perp O P$. Similarly, $B B_{1}, C C_{1} \perp O P$. We also have the lines that pass through A_{1}, B_{1}, C_{1} and pendicular to $B C, C A, A B$, respectively are concurrent at T. Then T is the orthopole of $O P$ wrt $\triangle A B C$.

Figure 1

Back to the main proof.
Let D^{\prime} be the reflection of D in $B^{\prime} C^{\prime} \Rightarrow A D^{\prime} \| B C$. Then $A^{\prime}, A, E, F, P, A_{1}$ are concyclic.

$$
\left(A_{1} X, A_{1} D^{\prime}\right)=\left(A_{1} X, A_{1} F\right)+\left(A_{1} F, A_{1} D^{\prime}\right)=\left(C^{\prime} X, C^{\prime} F\right)+\left(A F, A D^{\prime}\right)=\left(C^{\prime} B^{\prime}, C^{\prime} A\right)+(B A, B C)=0
$$

$\Rightarrow A_{1}, D^{\prime}, X$ are collinear. Since D, T are the reflections of D^{\prime}, T in $B^{\prime} C^{\prime}$ then $D X$ pass through T. Cause D^{\prime}, A_{1}, E, F are concyclic:

$$
\overline{X T} \cdot \overline{X D}=\overline{X D^{\prime}} \cdot \overline{X A_{1}}=\overline{X E} \cdot \overline{X F}
$$

Hence, the pedal circle of P wrt $\triangle A B C$ passes through T.
Similarly, $E Y, F Z$ pass through T.
Theorem 3. (Fontene's second theorem) Given a line that passes through circumcenter of $\triangle A B C$, a point P varies on it then pedal circle of P wrt $\triangle A B C$ always passes through a fixed point

From the proof of Fontene's first theorem, the pedal circle of P wrt $\triangle A B C$ passes through the orthopole of that line wrt $\triangle A B C$ - which is a fixed point.

Corollary 4. (Nguyen Van Linh) Let O^{\prime} be circumcenter of $\triangle D E F$, then O^{\prime} is orthocenter of $\triangle X Y Z$.

Figure 2
Proof. According to Fontene's first theorem, $D X, E Y, F Z$ pass through T on $(D E F)$. So, just simply by Brocard's theorem, O^{\prime} is orthocenter of $\triangle X Y Z$.

Theorem 5. (Fonterne's third's theorem) Pedal circle of P wrt $\triangle A B C$ is tangent to nine-point circle of $\triangle A B C$ if and only if P, P^{\prime} (isogonal conjugate of P wrt $\triangle A B C$) and circumcenter of $\triangle A B C$ are collinear.

Proof. Let T^{\prime} be anti-Steiner point of $O P^{\prime}$ wrt $\triangle A^{\prime} B^{\prime} C^{\prime}$ and $\triangle D^{\prime} E^{\prime} F^{\prime}$ is pedal triangle of P^{\prime} wrt $\triangle A B C$. Since P, P^{\prime} are isogonal conjugate points wrt $\triangle A B C$ so $D, E, F, D^{\prime}, E^{\prime}, F^{\prime}$ are concyclic. Hence T^{\prime} is a common point other than T of $\odot(D E F)$ and nine-point circle of $\triangle A B C$. So pedal circle of P wrt $\triangle A B C$ is tangent to nine-point circle of $\triangle A B C$ if and only if $T \equiv T^{\prime}$, or equivalently, anti-Steiner point of $O P$ coincides with anti-Steiner point of $O P^{\prime}$ wrt $\triangle A^{\prime} B^{\prime} C^{\prime} \Leftrightarrow P, O, P^{\prime}$ are collinear.

Figure 3. McCay cubic
Note. When P coincides with incenter or excenters, we get the famous Feuerbach's theorem. Furthermore, locus of P that P, O, P^{\prime} are collinear is McCay cubic, it has barycentric equation:

$$
x\left(c^{2} y^{2}-b^{2} x^{2}\right)\left(b^{2}+c^{2}-a^{2}\right)+y\left(a^{2} z^{2}-c^{2} x^{2}\right)\left(c^{2}+a^{2}-b^{2}\right)+z\left(b^{2} x^{2}-a^{2} y^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)=0
$$

This cubic has many interesting properties, such as: pedal triangle and circumcevian triangle of P on McCay cubic wrt $\triangle A B C$ are homothetic. Until now, new properties of McCay cubic are still being found. Because of the framework of this paper, author won't mention in detail so reader can see more properties of McCay cubic in Reference.

Proposition 6. (AoPS) Simson line of T wrt $\triangle D^{\prime} E^{\prime} F^{\prime}$ is parallel to $O P$.
Proof. At first, we introduce a lemma.
Lemma 7. (Telv Cohl) (O) is a fixed circle and $B C$ is a fixed chord of $(O), P$ is a fixed point. A varies on $(O) . \triangle D E F$ is pedal triangle of P wrt $\triangle A B C, T$ is orthopole of $O P$ wrt $\triangle A B C$ then $\angle(D F, D T)$ is a fixed when A varies on (O).

Figure 4
Proof of this lemma is given also by Telv Cohl.
Let C_{1}, F^{\prime} be orthogonal projections of C on $O P, P F$. From the proof of Fontene's first theorem above,
we have: $F^{\prime} C_{1}, A^{\prime} B^{\prime}, D E, T F$ are concurrent at Z.

$$
\begin{aligned}
(F D, F T) & =(F D, F P)+(F P, F T) \\
& =(B D, B P)+\left(F^{\prime} Z, F^{\prime} P\right)\left(\triangle Z F F^{\prime} \text { is isoceles }\right) \\
& =(B C, B P)+\left(F^{\prime} C_{1}, F^{\prime} P\right) \\
& =(B C, B P)+\left(C C_{1}, C P\right) \\
& =(B C, B P)+(O P, P C)+\frac{\pi}{2} \\
& =\text { constant }
\end{aligned}
$$

Now, back to the main problem. Let U, V be orthogonal projections of T on $E^{\prime} F^{\prime}, F^{\prime} D^{\prime}$.

Figure 5

$$
\begin{aligned}
(U V, U T) & =\left(E^{\prime} D^{\prime}, E^{\prime} T\right) \\
& =\left(E^{\prime} D, E^{\prime} T\right)+\left(E^{\prime} D^{\prime}, E^{\prime} E\right)+\left(E^{\prime} E, E^{\prime} D\right) \\
& =(F D, F T)+(P C, P E)+(F E, F D) \\
& =(B C, B P)+(O P, P C)+\frac{\pi}{2}+(P C, P E)+(F E, F P)+(F P, F D) \\
& =(B C, B P)+(O P, P C)+(C P, C A)+(A C, A P)+(B P, B C) \\
& =(O P, A P)
\end{aligned}
$$

Since $A P \perp E^{\prime} F^{\prime}, T U \perp E^{\prime} F^{\prime}$ then $A P \| T U$.
$\Longrightarrow U V \| O P \Leftrightarrow$ Simson line of T wrt $\triangle D^{\prime} E^{\prime} F^{\prime}$ is parallel to $O P$.
Proposition 8. (Tran Quang Hung) A line that passes through D and parallel to $P A$ intersects the A-altitude of $\triangle A B C$ at $D^{\prime \prime} . E^{\prime \prime}, F^{\prime \prime}$ are determined similarly.
Prove that the circles that have diameter $D D^{\prime \prime}, E E^{\prime \prime}, F F^{\prime \prime}$ pass through T.

Figure 6
Proof(based on Nguyen Van Linh's). Since $A D^{\prime \prime}\|P D, A P\| D D^{\prime \prime}$ then $A P D D^{\prime \prime}$ is a parallelogram. \Rightarrow Midpoint of $A P$ is reflection of midpoint of $D D^{\prime \prime}$ in intersection of $A D, P D^{\prime \prime}$, which is midpoint of $A D$ and lies on $B^{\prime} C^{\prime} . \Rightarrow \odot\left(D D^{\prime \prime}\right)$ is reflection of $(P A)$ in $B^{\prime} C^{\prime}$ so $B^{\prime} C^{\prime}$ is radical axis of $\odot\left(D D^{\prime \prime}\right)$ and $\odot(A P)$.
Let consider three circles $\odot\left(D D^{\prime \prime}\right), \odot(P A), \odot(D E F)$:
$B^{\prime} C^{\prime}$ is radical axis of $\odot\left(D D^{\prime \prime}\right)$ and $\odot(P A)$.
$E F$ is radical axis of $\odot(P A)$ and $\odot(D E F)$.
So X is radical center of $\odot\left(D D^{\prime \prime}\right), \odot(P A), \odot(D E F)$. Since D lies on $\odot(D E F), \odot\left(D D^{\prime \prime}\right), X D$ is radical axis of $\odot(D E F), \odot\left(D D^{\prime \prime}\right)$. Furethermore, from Fontene's first theorem, T, X, D are collinear, T lies on $X D$ so T lies on $\left(D D^{\prime \prime}\right)$. Similarly, $\odot\left(E E^{\prime \prime}\right), \odot\left(F F^{\prime \prime}\right)$ pass through T.

Proposition 9. (Tran Quang Hung) Given $\triangle A B C$, let P be an arbitrary point, $\triangle D E F$ be the pedal triangle of P wrt $\triangle A B C . \mathcal{R}$ is radius of $\odot(D E F)$.
P^{\prime} is the isogonal conjugate of P wrt $\triangle A B C . D_{1}, E_{1}, F_{1}$ are reflections of P in $D, E, F, P D_{1}, P E_{1}, P F_{1}$ intersect $\odot\left(D_{1} E_{1} F_{1}\right)$ at $D_{2}, E_{2}, F_{2} \neq D_{1}, E_{1}, F_{1}$. Then $A D_{2}, B E_{2}, C F_{2}$ are concurrent at a point on $\odot\left(P^{\prime} ; 2 \mathcal{R}\right)$.

In this problem, we introduce 2 proofs.
Proof 1(by Nguyen Van Linh).

Figure 7
Let N be midpoint of $P P^{\prime}$. It is well-known that N is circumcenter of $\triangle D E F$ so $N D=\mathcal{R}$. From Thales's theorem, $P^{\prime} D_{1}=2 N D=2 \mathcal{R}$. Similarly, $P^{\prime} E_{1}=P^{\prime} F_{1}=2 \mathcal{R}$ so D_{1}, E_{1}, F_{1} lie on $\odot\left(P^{\prime}, 2 \mathcal{R}\right)$.

$$
\left.\begin{array}{rl}
\mathcal{H}_{P}^{2}: \odot(D E F) & \rightarrow \odot\left(D_{1} E_{1} F_{1}\right) \\
& A, B, C, P^{\prime}
\end{array} \rightarrow D_{3}, E_{3}, F_{3}, P^{\prime \prime}\right) ~ \$
$$

$\odot\left(D_{1} E_{1} F_{1}\right)$ intersects $E_{3} F_{3}$ at $D_{1}^{\prime} \neq D_{1}$ then $P^{\prime \prime} D_{1}^{\prime} \perp E_{3} F_{3} . K_{a}$ is a point on the altitude $D H_{d}$ such that $K_{a} D_{3} P^{\prime \prime} D_{1}^{\prime}$ is a parallelogram. J is circumcenter of $\triangle D_{3} E_{3} F_{3}$. Then from problem $9, \odot\left(H_{d} K_{a} D_{1}^{\prime}\right)$ passes through orthopole S of $J P^{\prime \prime}$ wrt $\triangle D_{3} E_{3} F_{3} \Rightarrow K_{a} S \perp S D_{1}^{\prime}$. Since $D_{1}^{\prime} D_{2}$ is diameter of $\odot\left(D_{1} E_{1} F_{1}\right)$, $D_{2} S \perp S D_{1}^{\prime}$. Therefore, D_{2}, K_{a}, S are collinear.
From the homothecy \mathcal{H}_{P}^{2}, we get $\overrightarrow{P D_{2}}=\overrightarrow{D_{1}^{\prime} P^{\prime \prime}}=\overrightarrow{K_{a} D_{3}}$ then $D_{3} K_{a} P D_{2}$ is a parallelogram. A is midpoint of $P D_{3} \Rightarrow A$ is midpoint of $K_{a} D_{2}$, this means A, K_{a}, D_{2} are collinear.
$\Rightarrow A, D_{2}, K_{a}, S$ are collinear. So $A D_{2}$ passes through S. Similarly, $A D_{2}, B E_{2}, C F_{2}$ are concurrent at S. Proof 2. This second proof uses the same notations as the first proof.

Figure 8
Since A is circumcenter of $\triangle P E_{1} F_{1}$ and $E_{1}, F_{1}, E_{2}, F_{2}$ are concyclic
$\Rightarrow P A \perp E_{2} F_{2}$. Similarly, $P B, P C \perp F_{2} D_{2},{ }_{2} E_{2}$.
\Rightarrow Two orthologic centers of $\triangle A B C$ and $\triangle D_{2} E_{2} F_{2}$ coincide with each other. So from Sondat's theorem, $A D_{2}, B E_{2}, C F_{2}$ are concurrent. Let S be their concurrency point.

$$
\begin{aligned}
& \left(B D_{1}, B C\right)=(B C, B P)=\left(D_{2} P, D_{2} F_{2}\right)=\left(D_{2} D_{1}, D_{2} F_{2}\right)=\left(E_{2} D_{1}, E_{2} F_{2}\right) \\
& \left(C D_{1}, C B\right)=(C B, C D)=\left(D_{2} E_{2}, D_{2} P\right)=\left(D_{2} E_{2}, D_{2} D_{1}\right)=\left(F_{2} E_{2}, F_{2} D_{1}\right)
\end{aligned}
$$

Hence $\triangle D_{1} B C$ and $\triangle D_{1} E_{2} F_{2}$ are directly similar.
$\Rightarrow\left(S E_{2}, S F_{2}\right)=\left(B E_{2}, C F_{2}\right)=\left(D_{1} E_{2}, D_{1} F_{2}\right) \Rightarrow S$ lies on $\odot\left(D_{2} E_{2} F_{2}\right)$.
Remark. Let P_{D}, P_{E}, P_{F} be reflections of P in $E_{2} F_{2}, F_{2} D_{2}, D_{2} E_{2}$.
The inversion $\mathbf{I}\left(P, \overline{P D} \cdot \overline{P D_{2}}\right): B, C, D_{1}, S \rightarrow P_{E}, P_{F}, D_{2}, T$
Since B, C, D_{1}, S are concyclic, $\odot\left(D_{2} P_{E} P_{F}\right)$ passes through T. Similarly, $\odot\left(E_{2} P_{F} P_{D}\right), \odot\left(F_{2} P_{D} P_{E}\right)$ pass through T. It is well-known that $\odot\left(D_{2} P_{E} P_{F}\right), \odot\left(E_{2} P_{F} P_{D}\right), \odot\left(F_{2} P_{D} P_{E}\right)$ are concurrent at anti-Steiner point of $H P$ wrt $\triangle D_{2} E_{2} F_{2}$ where H is orthocenter of $\triangle D_{2} E_{2} F_{2}$.
Hence T, P, anti-Steiner point of $H P$ wrt $\triangle D_{2} E_{2} F_{2}$ are collinear.

1.2 Cevian circle and Nine-point circle

In this part, we use notation as follow: $\triangle A B C$ and a point $P . P A, P B, P C$ intersects $B C, C A, A B$ at $D, E, F ; X, Y, Z$ are the intersections of $(B C, E F),(C A, F D),(A B, D E) ; A^{\prime}, B^{\prime}, C^{\prime}$ are midpoint of $B C, C A, A B$.

Proposition 10. Let M be Miquel point of the complete quadrilateral $E F, F D, D E, \overline{X Y Z}$. Then M is an intersection of $\odot(D E F)$ and $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right)$.

Figure 9
Proof. $B^{\prime} C^{\prime}$ intersects $D E, D F, E F, \overline{X, Y, Z}$ at $A_{c}, A_{b}, A_{a}, X_{1}$, respectively.
We will show that $\odot\left(F A_{b} A_{a}\right)$ passes through M by ratio of power. First, from Thales's theorem:

$$
\frac{\overline{A_{a} E}}{\overline{A_{a} X}}=\frac{\overline{B^{\prime} E}}{\overline{B^{\prime} C}}
$$

Since $(E Y A C)=-1, B^{\prime}$ is midpoint of $C A$ then according to Newton's formula: ${\overline{B^{\prime} C}}^{2}=\overline{B^{\prime} E} \cdot \overline{E^{\prime} Y}$

$$
\begin{gathered}
\Rightarrow \frac{\overline{B^{\prime} E}}{\overline{B^{\prime} C}}=\frac{\overline{B^{\prime} C}}{\overline{B^{\prime} Y}}=\frac{\overline{A_{b} D}}{\overline{A_{b} Y}} \\
\frac{\mathcal{P}_{A_{a} / \odot(D E F)}}{\mathcal{P}_{A_{a} / \odot(F X Y)}}=\frac{\overline{A_{a} E} \cdot \overline{A_{a} F}}{\overline{\overline{A_{a} F} \cdot} \cdot \overline{A_{a} X}}=\frac{\overline{A_{a} E}}{\overline{A_{a} X}} \\
\frac{\mathcal{P}_{A_{b} / \odot(D E F)}}{\overline{\mathcal{P}_{A_{b} / \odot(F X Y)}}=\frac{\overline{A_{b} D} \cdot \overline{A_{b} F}}{\overline{A_{b} F} \cdot \overline{A_{b} Y}}=\frac{\overline{A_{b} D}}{\overline{A_{b} Y}}} \\
\Rightarrow \frac{\mathcal{P}_{A_{a} / \odot(D E F)}}{\mathcal{P}_{A_{a} / \odot(F X Y)}}=\frac{\mathcal{P}_{A_{b} / \odot(D E F)}}{\mathcal{P}_{A_{b} / \odot(F X Y)}}
\end{gathered}
$$

Hence $\odot(D E F), \odot(F X Y), \odot\left(F A_{a} A_{b}\right)$ are coaxial, then $\odot\left(F A_{a} A_{b}\right)$ passes through M.
Similarly, also by ratio of power, associate with Miquel's theorem, circumcircle of triangles formed by 3 in set of 6 lines $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}, E F, F D, D E$ passes through M. Therefore, $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right)$ passes through M.

Corollary 11. (Telv Cohl) Steiner line of M wrt $\triangle D E F$ passes through circumcenter O of $\triangle A B C$.
Proof. Since circumcircle of triangles formed by 3 in set of 6 lines $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}, E F, F D, D E$ passes through M then Steiner line of M wrt $\triangle D E F$ passes through orthocenters of triangles formed by 3 in those lines, which contain O - orthcenter of $\triangle A^{\prime} B^{\prime} C^{\prime}$.
Remark. Let H_{P} be orthocenter of $\triangle D E F$ then M is orthopole of $O H_{P}$ wrt $\triangle A B C$.
Proposition 12. $A H_{a}$ is the altitude of $\triangle A B C$.
$X X_{1} A_{a} H_{a}, D H_{a} A_{b} A_{c}$ are isoceles trapezoid.

Figure 10
Proof. Since $B^{\prime} C^{\prime} \| B C$ then we only have to show that $\odot\left(X X_{1} A_{a}\right)$ and $\odot\left(D A_{b} A_{c}\right)$ pass through H_{a}. From the proof of problem 11, $\odot\left(X X_{1} A_{a}\right), \odot\left(D A_{B} A_{c}\right)$ pass through M.

$$
\begin{aligned}
& \frac{\mathcal{P}_{B^{\prime} / \odot\left(X X_{1} A_{a}\right)}}{\mathcal{P}_{B^{\prime} / \odot\left(D A_{b} A_{c}\right)}}=\frac{\overline{B^{\prime} X_{1}} \cdot \overline{B^{\prime} A_{a}}}{\overline{B^{\prime} A_{b}} \cdot \overline{B^{\prime} A_{c}}}=\frac{\overline{B^{\prime} X_{1}}}{\overline{B^{\prime} A_{b}}} \cdot \frac{\overline{B^{\prime} A_{a}}}{\overline{B^{\prime} A_{c}}}=\frac{\overline{C X}}{\overline{\overline{C D}} \cdot \frac{\overline{C X}}{\overline{C D}}=\frac{C X^{2}}{C D^{2}}} \\
& \frac{\mathcal{P}_{C^{\prime} / \odot\left(X X_{1} A_{a}\right)}^{\mathcal{P}_{C^{\prime} / \odot\left(D A_{b} A_{c}\right)}}=\frac{\overline{C^{\prime} X_{1}} \cdot \overline{C^{\prime} A_{a}}}{\overline{C^{\prime} A_{b}} \cdot \overline{C^{\prime} A_{c}}}=\frac{\overline{C^{\prime} X_{1}}}{\overline{C^{\prime} A_{b}}} \cdot \frac{\overline{C^{\prime} A_{a}}}{\overline{C^{\prime} A_{c}}}=\frac{\overline{B X}}{\overline{B D}} \cdot \frac{\overline{B X}}{\overline{B D}}=\frac{B X^{2}}{B D^{2}}}{}
\end{aligned}
$$

Since $(B C D X)=-1$

$$
\Rightarrow \frac{\mathcal{P}_{B^{\prime} / \odot\left(X X_{1} A_{a}\right)}}{\mathcal{P}_{B^{\prime} / \odot\left(D A_{b} A_{c}\right)}}=\frac{\mathcal{P}_{C^{\prime} / \odot\left(X X_{1} A_{a}\right)}}{\mathcal{P}_{C^{\prime} / \odot\left(D A_{b} A_{c}\right)}}
$$

Hence $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right), \odot\left(D A_{B} A_{c}\right), \odot\left(X X_{1} A_{a}\right)$ are coaxial.

$$
\frac{\overline{A^{\prime} X}}{\overline{A^{\prime} D}}=\frac{\mathcal{P}_{B^{\prime} / \odot\left(X X_{1} A_{a}\right)}}{\mathcal{P}_{B^{\prime} / \odot\left(D A_{b} A_{c}\right)}}
$$

This is true, because:

$$
\frac{\overline{A^{\prime} X}}{\overline{A^{\prime} D}}=\frac{\overline{D X} \cdot \overline{A^{\prime} D}}{\overline{D A^{\prime}} \cdot \overline{D X}}=-\frac{\overline{X B} \cdot \overline{X C}}{\overline{D B} \cdot \overline{D C}}=\frac{B X^{2}}{B D^{2}}=\frac{\mathcal{P}_{B^{\prime} / \odot\left(X X_{1} A_{a}\right)}}{\mathcal{P}_{B^{\prime} / \odot\left(D A_{b} A_{c}\right)}}
$$

This means the second common point of $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right), \odot\left(D A_{B} A_{c}\right), \odot\left(X X_{1} A_{a}\right)$ lies on $B C$. But $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right)$ intersects $B C$ at A^{\prime}, H_{a} then H_{a} lies on $\odot\left(X X_{1} A_{a}\right), \odot\left(D A_{b} A_{c}\right)$.

Proposition 13. (Similar to Fontene's first theorem) $\odot(D E F)$ intersects $B C, C A, A B$ at $D^{\prime}, E^{\prime}, F^{\prime} \neq$ D, E, F.
$D^{\prime} A_{a}, E^{\prime} B_{b}, F^{\prime} C_{c}$ pass through M.

Figure 11
Proof. From symmetry, it is suffice to prove that D^{\prime}, A_{a}, M are collinear.

$$
\left(M A_{a}, M D^{\prime}\right)=\left(M A_{a}, M F\right)+\left(M F, M D^{\prime}\right)=\left(A_{b} A_{a}, A_{b} F\right)+\left(D F, D D^{\prime}\right)=\left(A_{b} A_{a}, D D^{\prime}\right)=0
$$

Proposition 14. L_{a}, L_{b}, L_{c} lie on the altitudes of $\triangle A B C$ such that $D^{\prime} L_{a} E^{\prime} L_{b}, F^{\prime} L_{c}$ are pendicular to $E F, F D, D E . \odot\left(D^{\prime} L_{a}\right), \odot\left(E^{\prime} L_{b}\right), \odot\left(F^{\prime} L_{c}\right)$ pass through M.

Figure 12
Proof. Like the above proposition, this can be solved easily by angle chasing.

$$
\left(M H_{a}, M D^{\prime}\right)=\left(M H_{a}, M A_{a}\right)=\left(X H_{a}, X A_{a}\right)=(B C, E F)=\left(L_{a} H_{a}, L_{a} D^{\prime}\right)
$$

$\Rightarrow M, H_{a}, D^{\prime}, L_{a}$ are concyclic.

Proposition 15. $\odot(D Y Z), \odot(E Z X), \odot(F X Y)$ intersects $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right)$ at $D_{1}, E_{1}, F_{1} \neq M$. $D D_{1}, E E_{1}, F F_{1}$ are concurrent at a point on $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right)$.

Figure 13

Proof.

$$
\left(E E_{1}, F F_{1}\right)=\left(E E_{1}, E X\right)+\left(F X, F F_{1}\right)=\left(M E_{1}, M X\right)+\left(M X, M F_{1}\right)=\left(M E_{1}, M F_{1}\right)
$$

Therefore, intersection of $E E_{1}, F F_{1}$ lies on $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right)$. Similarly, $D D_{1}, E E_{1}, F F_{1}$ are concurrent at a point on $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right)$.

Proposition 16. (Similar to Fontene's third theorem) P^{*} is the cyclocevian conjugate of P wrt $\triangle A B C$. H_{P}, H_{P}^{*} are orthocenters of cevian triangles of P, P^{*} wrt $\triangle A B C$. Then cevian circle of P wrt $\triangle A B C$ is tangent to nine-point circle of $\triangle A B C$ if and only if H_{P}, H_{P}^{*}, O are collinear.

Proof. From corollary 16, the common points of $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right), \odot(D E F)$ are anti-Steiner points of $O H_{P}$, $O H_{P}^{*}$ wrt $\triangle A^{\prime} B^{\prime} C^{\prime}$ then $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right)$ is tangent to $\odot(D E F)$ if and only if O, H_{P}, H_{P}^{*} are collinear. Now we will find locus of P such that its cevian circle is tangent to nine-point circle.
Let D_{2}, E_{2}, F_{2} be midpoints of $D X, E Y, F Z$. Then the line that passes through D_{2}, E_{2}, F_{2} is Gauss line of $E F, F D, D E, \overline{X, Y, Z}$.
In barycentric coordinates, let $P(\alpha, \beta, \gamma)$.

$$
\frac{\overline{D_{2} B}}{\overline{D_{2} C}}=-\frac{\overline{B D_{2}} \cdot \overline{B C}}{\overline{C D_{2}} \cdot \overline{C B}}=-\frac{\overline{B D B X}}{\overline{C D} \cdot \overline{C X}}=\frac{D B^{2}}{D C^{2}}=\frac{\gamma^{2}}{\beta^{2}}
$$

Similarly

$$
\frac{\overline{E_{2} C}}{\overline{E_{2} A}}=\frac{\alpha^{2}}{\gamma^{2}} \quad \frac{\overline{F_{2} A}}{\overline{F_{2} B}}=\frac{\beta^{2}}{\alpha^{2}}
$$

Then the line $\overline{D_{2}, E_{2}, F_{2}}$ has equation:

$$
\frac{x}{\alpha^{2}}+\frac{y}{\beta^{2}}+\frac{z}{\gamma^{2}}=0
$$

The cyclocevian conjugate of P has barycentric coordinate:

$$
P^{*}\left(\frac{1}{\frac{b^{2} \gamma \alpha}{\gamma+\alpha}+\frac{c^{2} \alpha \beta}{\alpha+\beta}-\frac{a^{2} \beta \gamma}{\beta+\gamma}}, \frac{1}{\frac{c^{2} \alpha \beta}{\alpha+\beta}+\frac{a^{2} \beta \gamma}{\beta+\gamma}-\frac{b^{2} \gamma \alpha}{\gamma+\alpha}}, \frac{1}{\frac{a^{2} \beta \gamma}{\beta+\gamma}+\frac{b^{2} \gamma \alpha}{\gamma+\alpha}-\frac{c^{2} \alpha \beta}{\alpha+\beta}}\right)
$$

$A P^{*}, B P^{*}, C P^{*}$ intersect $B C, C A, A B$ at $D^{\prime}, E^{\prime}, F^{\prime}, E^{\prime} F^{\prime}, F^{\prime} D^{\prime}, D^{\prime} E^{\prime}$ intersect $B C, C A, A B$ at $X^{\prime}, Y^{\prime}, Z^{\prime}$.
D_{3}, E_{3}, F_{3} are midpoints of $D^{\prime} X^{\prime}, E^{\prime} Y^{\prime}, F^{\prime} Z^{\prime}$ then similarly, the line $\overline{D_{3}, E_{3}, F_{3}}$ has equation:

$$
x\left(\frac{b^{2} \gamma \alpha}{\gamma+\alpha}+\frac{c^{2} \alpha \beta}{\alpha+\beta}-\frac{a^{2} \beta \gamma}{\beta+\gamma}\right)^{2}+y\left(\frac{c^{2} \alpha \beta}{\alpha+\beta}+\frac{a^{2} \beta \gamma}{\beta+\gamma}-\frac{b^{2} \gamma \alpha}{\gamma+\alpha}\right)^{2}+z\left(\frac{a^{2} \beta \gamma}{\beta+\gamma}+\frac{b^{2} \gamma \alpha}{\gamma+\alpha}-\frac{c^{2} \alpha \beta}{\alpha+\beta}\right)^{2}=0
$$

Since Gauss line and Steiner line of a complete quadrilateral are pendicular so O, H_{P}, H_{P}^{*} are collinear if and only if $\overline{D_{2}, E_{2}, F_{2}}$ and $\overline{D_{3}, E_{3}, F_{3}}$ are parallel:

$$
\begin{gathered}
\left|\begin{array}{cc}
\left(\frac{c^{2} \alpha \beta}{\alpha+\beta}+\frac{a^{2} \beta \gamma}{\beta+\gamma}-\frac{b^{2} \gamma \alpha}{\gamma+\alpha}\right)^{2} & \left(\frac{a^{2} \beta \gamma}{\beta+\gamma}+\frac{b^{2} \gamma \alpha}{\gamma+\alpha}-\frac{c^{2} \alpha \beta}{\alpha+\beta}\right)^{2} \\
\frac{1}{\gamma^{2}}
\end{array}\right| \\
+\left|\begin{array}{cc}
\left(\frac{a^{2} \beta \gamma}{\beta+\gamma}+\frac{b^{2} \gamma \alpha}{\gamma+\alpha}-\frac{c^{2} \alpha \beta}{\alpha+\beta}\right)^{2} & \left(\frac{b^{2} \gamma \alpha}{\gamma+\alpha}+\frac{c^{2} \alpha \beta}{\alpha+\beta}-\frac{a^{2} \beta \gamma}{\beta+\gamma}\right)^{2} \\
\frac{1}{\gamma^{2}}
\end{array}\right| \\
+\left|\begin{array}{cc}
\left(\frac{b^{2} \gamma \alpha}{\gamma+\alpha}+\frac{c^{2} \alpha \beta}{\alpha+\beta}-\frac{a^{2} \beta \gamma}{\beta+\gamma}\right)^{2} & \left(\frac{c^{2} \alpha \beta}{\alpha+\beta}+\frac{a^{2} \beta \gamma}{\beta+\gamma}-\frac{b^{2} \gamma \alpha}{\gamma+\alpha}\right)^{2} \\
\frac{1}{\alpha^{2}}
\end{array}\right|=0 \\
\Leftrightarrow\left(\frac{b^{2} \gamma \alpha}{\gamma+\alpha}+\frac{c^{2} \alpha \beta}{\alpha+\beta}-\frac{a^{2} \beta \gamma}{\beta+\gamma}\right)^{2}\left(\frac{1}{\beta^{2}}-\frac{1}{\gamma^{2}}\right)+\left(\frac{c^{2} \alpha \beta}{\alpha+\beta}+\frac{a^{2} \beta \gamma}{\beta+\gamma}-\frac{b^{2} \gamma \alpha}{\gamma+\alpha}\right)^{2}\left(\frac{1}{\gamma^{2}}-\frac{1}{\alpha^{2}}\right)+\left(\frac{a^{2} \beta \gamma}{\beta+\gamma}+\frac{b^{2} \gamma \alpha}{\gamma+\alpha}-\frac{c^{2} \alpha \beta}{\alpha+\beta}\right)^{2}\left(\frac{1}{\alpha^{2}}-\frac{1}{\beta^{2}}\right)=0 \\
\Leftrightarrow \frac{b^{2} c^{2} \alpha^{2} \beta \gamma}{(\gamma+\alpha)(\alpha+\beta)}\left(\frac{1}{\beta^{2}}-\frac{1}{\gamma^{2}}\right)+\frac{c^{2} a^{2} \beta^{2} \gamma \alpha}{(\alpha+\gamma)(\beta+\gamma)}\left(\frac{1}{\gamma^{2}}-\frac{1}{\alpha^{2}}\right)+\frac{a^{2} b^{2} \gamma^{2} \alpha \beta}{(\gamma+\alpha)(\beta+\gamma)}\left(\frac{1}{\alpha^{2}}-\frac{1}{\beta^{2}}\right)=0 \\
\Leftrightarrow b^{2} c^{2} \alpha^{3}(\beta+\gamma)^{2}(\beta-\gamma)+c^{2} a^{2} \beta^{3}(\gamma+\alpha)^{2}(\gamma-\alpha)+a^{2} b^{2} \gamma^{3}(\alpha+\beta)^{2}(\alpha-\beta)=0
\end{gathered}
$$

Hence the locus is a sextic:

$$
b^{2} c^{2} x^{3}(y+z)^{2}(y-z)+c^{2} a^{2} y^{3}(z+x)^{2}(z-x)+a^{2} b^{2} z^{3}(x+y)^{2}(x-y)=0
$$

This sextic is the isotomic of anticomplement of Grebe cubic(see [14]):

$$
a^{2} x\left(c^{2} y^{2}-b^{2} z^{2}\right)+b^{2} y\left(a^{2} z^{2}-c^{2} x^{2}\right)+c^{2} z\left(b^{2} x^{2}-a^{2} y^{2}\right)=0
$$

1.3 Intersection of pedal circle and cevian circle

Proposition 17. (Luiz Gonzalez, Telv Cohl) Given $\triangle A B C$ and a point $P . \triangle D E F$ and $\triangle X Y Z$ are pedal triangle, cevian triangle of P wrt $\triangle A B C$, respectively. H_{P} is orthocenter of $\triangle X Y Z$. Then anti-Steiner point of $P H_{P}$ wrt $\triangle X Y Z$ is a common point of $\odot(D E F)$ and $\odot(X Y Z)$.

Figure 14
Proof. A_{1}, B_{1}, C_{1} are reflections of P in $E F, F D, D E ; A_{2}$ is the reflection of P in $B C$.
It is obvious that $D A_{2}=D P=D B_{1}=D C_{1}$ so A_{2}, B_{1}, C_{1}, P are concyclic.

$$
(D E, D F, D X, D P)=-1 \Longrightarrow\left(P C_{1}, P B_{1}, P A_{2}, \perp P D\right)=-1
$$

Therefore $P B_{1} A_{2} C_{1}$ is a harmonic quadrilateral so D, X, B_{1}, C_{1} are concyclic.
It is well-known that $\odot\left(D B_{1} C_{1}\right), \odot\left(E C_{1} A_{1}\right), \odot\left(F A_{1} B_{1}\right)$ are concurrent at a point W - anti-Steiner point of $P H_{P}$ wrt $\triangle D E F$.

$$
\begin{aligned}
(W E, W F) & =\left(W E, W A_{1}\right)+\left(W A_{1}, W F\right) \\
& =\left(Y E, Y A_{1}\right)+\left(Z A_{1}, Z F\right) \\
& =\left(A C, Y A_{1}\right)+\left(Z A_{1}, A B\right) \\
& =(A C, A B)+\left(A_{1} Z, A_{1} Y\right) \\
& =(A C, A B)+(P B, P C) \\
& =(C A, C P)+(B P, B A) \\
& =(D E, D P)+(D P, D F) \\
& =(D E . D F)
\end{aligned}
$$

So W lies on $\odot(D E F)$ and $\odot(X Y Z)$.

2 Poncelet point

2.1 A proof of Poncelet point's problem

Theorem 18. (Randy Hutson). $\triangle A B C$ and a point P. Prove that pedal circle, cevian circle of P wrt $\triangle A B C$ and nine-point circle of $\triangle A B C$ are concurrent.

Proof(based on Tran Minh Ngoc's). $A^{\prime}, B^{\prime}, C^{\prime}$ are midpoints of $B C, C A, A B$.
$\triangle D E F$ and $\triangle X Y Z$ are pedal triangle and cevian triangle of P wrt $\triangle A B C$.
By using the inversion that has center P, we get new problem:
$\triangle A B C$ and a point $P . \triangle D E F$ is the antipedal triangle of P wrt $\triangle A B C$.
$A^{\prime}, B^{\prime}, C^{\prime}$ are the points on $\odot(P B C), \odot(P C A), \odot(P A B)$ such that $P B A^{\prime} C, P C B^{\prime} A, P A C^{\prime} B$ are harmonic quadrilateral.
$A P, B P, C P$ intersect $\odot(P B C), \odot(P C A), \odot(P A B)$ at $D, E, F \neq P$. Prove that $\odot(D E F), \odot(X Y Z)$, $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right)$ are concurrent.
Let $D^{\prime}, E^{\prime}, F^{\prime}$ be the reflections of P in $E F, F D, D E . \quad A_{1}, B_{1}, C_{1}$ are midpoints of $P A^{\prime}, P B^{\prime}, P C^{\prime}$. O_{a}, O_{b}, O_{c} are circumcenters of $\triangle P B C, \triangle P C A, \triangle P A B$.

Figure 15
$P B A^{\prime} C$ is a harmonic quadrilateral, then tangent lines of $\odot(P B C)$ at B, C intersect each other at a point A_{2} on $P A^{\prime}$.
$\Rightarrow B, C, O_{a}, A_{1}$ lie on a circle that has diameter $O_{a} A_{2}$. From the homothety $\mathcal{H}_{(P, 2)}, E^{\prime}, F^{\prime}, D, A^{\prime}$ are concyclic.

Figure 16
Since $D^{\prime}, E^{\prime}, F^{\prime}$ are reflections of P in $E F, F D, D E$, then $\odot\left(D E^{\prime} F^{\prime}\right), \odot\left(E F^{\prime} D^{\prime}\right), \odot\left(F D^{\prime} E^{\prime}\right)$ are concurrent at antisteiner point T of P wrt $\triangle D E F$.
We show that $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right), \odot(X Y Z)$ pass through T.

Figure 17
$B^{\prime} C P A, C^{\prime} A P B$ are harmonic quadrilateral, then:

$$
E\left(B^{\prime} P C A\right)=F\left(C^{\prime} P B A\right)=-1 \Leftrightarrow E\left(D_{1} P D F\right)=F\left(D_{1} P D E\right)
$$

Hence D, P, D_{1} are collinear.

$$
\begin{aligned}
\left(A^{\prime} B^{\prime}, A^{\prime} C^{\prime}\right) & =\left(A^{\prime} B^{\prime}, A^{\prime} P\right)+\left(A^{\prime} P, A^{\prime} C^{\prime}\right) \\
& =\left(F_{1} D_{1}, F_{1} P\right)+\left(E_{1} P, E_{1} D_{1}\right) \\
& =\left(D_{1} F_{1}, D_{1} E_{1}\right)+\left(P E_{1}, P F_{1}\right) \\
& =\left(D_{1} F_{1}, D_{1} E_{1}\right)+(P E, P F)
\end{aligned}
$$

$$
\begin{aligned}
\left(T B^{\prime}, T C^{\prime}\right) & =\left(T B^{\prime}, T D^{\prime}\right)+\left(T D^{\prime}, T C^{\prime}\right) \\
& =\left(E B^{\prime}, E D^{\prime}\right)+\left(F D^{\prime}, F C^{\prime}\right) \\
& =\left(D_{1} F_{1}, E D^{\prime}\right)+\left(F D^{\prime}, D_{1} E_{1}\right) \\
& =\left(D_{1} F_{1}, D_{1} E_{1}\right)+\left(D^{\prime} F, D^{\prime} E\right) \\
& =\left(D_{1} F_{1}, D_{1} E_{1}\right)+(P E, P F)
\end{aligned}
$$

$\Rightarrow\left(A^{\prime} B^{\prime}, A^{\prime} C^{\prime}\right)=\left(T B^{\prime}, T C^{\prime}\right)$, then $A^{\prime}, B^{\prime}, C^{\prime}, T$ are concyclic.

Figure 18
Let $\triangle D_{2} E_{2} F_{2}$ be the anticomplementary triangle of $\triangle D E F$. It is obvious that X, Y, Z are orthogonal projections of P on $E_{2} F_{2}, F_{2} D_{2}, D_{2} E_{2}$. Let I be circumcenter of $\triangle D_{2} E_{2} F_{2}$, then according to Fontene's theorem, $\odot(X Y Z)$ passes through orthopole of $I P$ wrt $\triangle D_{2} E_{2} F_{2}$. But, orthopole of $I P$ wrt $\triangle D_{2} E_{2} F_{2}$ is also the anti-Steiner point of $I P$ wrt $\triangle D E F$. This implies that $\odot(X Y Z)$ passes through T.
Hence $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right), \odot(D E F), \odot(X Y Z)$ are concurrent.
Note that, in the inverse problem, the concurrency of $\odot\left(D E^{\prime} F^{\prime}\right), \odot\left(E F^{\prime} D^{\prime}\right), \odot\left(F D^{\prime} E^{\prime}\right), \odot(D E F)$, $\odot\left(A^{\prime} B^{\prime} C^{\prime}\right)$ was found by Nguyen Van Linh. That is the main idea of the proof by Tran Minh Ngoc.

Another proof by Michael Rolinek and Le Anh Dung was published to Forum Geometricorum.

2.2 Problems

Proposition 19. Nine-point circles of $\triangle A B C, \triangle P B C, \triangle P C A, \triangle P A B$, pedal circles of P, A, B, C wrt $\triangle A B C, \triangle P B C, \triangle P C A, \triangle P A B$, respectively and cevian circle of P wrt $\triangle A B C$ are concurrent.

The above proof implies this property.
Proposition 20. P^{\prime}, P^{*} are isogonal conjugate and cyclocevian conjugate of P wrt $\triangle A B C$.
i) Poncelet point of A, B, C, P^{\prime} is T.
ii) Poncelet point of A, B, C, P^{*} is M.

Proposition 21. (Luiz Gonzalez and Cosmin Pohoata) Given $\triangle A B C$ and a point $P . \triangle D E F$ is pedal triangle of P wrt $\triangle A B C . P D, P E, P F$ intersect $\odot(D E F)$ at $X, Y, Z, A_{1}, B_{1}, C_{1}$ are midpoints of $P A, P B, P C$.
Then $X A_{1}, Y B_{1}, Z C_{1}$ pass through Poncelet point of A, B, C, P.
This is a homothetic corollary of proposition 9.
Proposition 22. Poncelet point is center of rectangular hyperbola that passes through A, B, C, P, H where H is orthocenter of $\triangle A B C$.

Figure 19
Proof. From Feuerbach's conic theorem, $\triangle A B C$ is inscribed in rectangular hyperbola \mathcal{H} then nine-point circle of $\triangle A B C$ passes through center of \mathcal{H}, then nine-point circle of $\triangle A B C, \triangle P B C, \triangle P C A, \triangle P A B$ are concurrent at center of the rectangular hyperbola passes through A, B, C, H, P.
To end this paper, I present a hard and difficult problem.

Proposition 23. (Francesco Sala) P, Q are isogonal conjugate wrt $\triangle A B C$. X is Poncelet point of A, B, C, P.
$\triangle Q_{A} Q_{B} Q_{C}$ is pedal triangle of Q wrt $\triangle A B C . P X$ intersects $\odot\left(Q_{A} Q_{B} Q_{C}\right)$ at Y.
Then Steiner line of Y wrt $\triangle Q_{A} Q_{B} Q_{C}$ is parallel to orthotransversal of P wrt $\triangle A B C$.
Proof. An important step in the solution of this problem is using the following lemma.
Lemma 24. (Telv Cohl) Let H_{Q} be orthocenter of $\triangle Q_{A} Q_{B} Q_{C}$. Then $H_{Q} Q \perp$ orthotransversal of P wrt $\triangle A B C$

Figure 20
Telv Cohl also proved this lemma.
Let the orthotransversal intersects $B C, C A, A B$ at D, E, F.
Let $P_{A}^{\prime}, P_{B}^{\prime}, P_{C}^{\prime}, Q_{A}^{\prime}, Q_{B}^{\prime}, Q_{C}^{\prime}$ be the antipode of $P_{A}, P_{B}, P_{C}, Q_{A}, Q_{B}, Q_{C}$ in $\odot\left(P_{A} P_{B} P_{C}\right)$.
Let ℓ_{A} be the line through Q_{A}^{\prime} and parallel to $B C$ (define ℓ_{B} and ℓ_{C} similarly).

Let D^{\prime} be a point on ℓ_{A} such that $Q D^{\prime} \| Q_{B} Q_{C} . P D^{\prime}$ intersects $H_{Q} Q_{A}$ at D^{*} $\Rightarrow D^{\prime}, D^{*}, Q_{A}, P_{A}^{\prime}$ are concyclic, then $\overline{Q D^{\prime}} \cdot \overline{Q D^{*}}=\overline{Q Q_{A}} \cdot \overline{Q P_{A}^{\prime}}=\mathcal{P}_{Q / \odot\left(Q_{A} Q_{B} Q_{C}\right)}$. Similarly, we have:

$$
\overline{Q E^{\prime}} \cdot \overline{Q E^{*}}=\overline{Q F^{\prime}} \cdot \overline{Q F^{*}}=\mathcal{P}_{Q / \odot\left(Q_{A} Q_{B} Q_{C}\right)}
$$

Since D^{*}, E^{*}, F^{*} lie on $\odot\left(H_{P} P\right)$ so by inversion, $D^{\prime}, E^{\prime}, F^{\prime}$ are collinear on the line that pendicular to $H_{Q} Q$.
Furthermore, D^{\prime} is reflection of D in center N of $\triangle P_{A} P_{B} P_{C}$ so $Q H_{Q} \perp$ orthotransversal of P wrt $\triangle A B C$.
Back to the main problem
A_{1}, B_{1}, C_{1} are midpoints of $P A, P B, P C$ then by proposition $21, A_{1} Q_{A}^{\prime}, B_{1} Q_{B}^{\prime}, C_{1} Q_{C}^{\prime}$ pass through X. $\triangle P_{A} P_{B} P_{C}$ is circumcevian triangle of P wrt $\triangle Q_{A}^{\prime} Q_{B}^{\prime} Q_{C}^{\prime}$, then according to remark in proposition $9, Y$ is anti-Steiner point of $P H_{Q}^{\prime}$ wrt $\triangle Q_{A}^{\prime} Q_{B}^{\prime} Q_{C}^{\prime}$ where H_{Q}^{\prime} is orthocenter of $\triangle Q_{A}^{\prime} Q_{B}^{\prime} Q_{C}^{\prime}$.
Since $\triangle Q_{A} Q_{B} Q_{C}$ is reflection of $\triangle Q_{A}^{\prime} Q_{B}^{\prime} Q_{C}^{\prime}$ in center of $\odot\left(P_{A} P_{B} P_{C}\right)$ then Y is reflection of antiSteiner point of $H_{Q} Q$ wrt $\triangle Q_{A} Q_{B} Q_{C}$ in center of $\odot\left(P_{A} P_{B} P_{C}\right)$. Hence Steiner line of Y wrt $\triangle Q_{A} Q_{B} Q_{C}$ is pendicular to $H_{Q} Q$.
In the last words of this paper, I want to say, around these circles, these intersections still have so many interesting problems. I tried my best to collect the problems that in my capability. I hope that we can return to this topic in other time.

References

[1] Fontene Theorems, Wolfram Mathworld www.mathworld.wolfram.com/FonteneTheorems.html
[2] Bocanu Marius, On Fontene's Theorems
[3] Leonhard Euler, Simson line wrt pedal triangle www.artofproblemsolving.com/community/c6h290991
[4] Tran Quang Hung(Buratinogigle), 5 circles concurrent www/artofproblemsolving.com/community/c6h302763
[5] Tran Quang Hung(Buratinogigle), Intersect on circle www.artofproblemsolving.com/community/c6h325489
[6] Nguyen Van Linh(livetolove212), A Property of Fontene's theorem www.artofproblemsolving.com/community/c6h316265
[7] Telv Cohl, Poncelet point and Cyclocevian www.artofproblemsolving.com/community/c6h612012p5075922
[8] Telv Cohl, Intersection of Pedal circles www.artofproblemsolving.com/community/q1h1103807p4990100
[9] Michael Rolinek and Le Anh Dung, The Miquel points, pseudocircumcenter, and Euler-Poncelet point of a complete quadrilateral, Forum Geom, 14 (2014) 145-153
[10] Luiz Gonzalez and Cosmin Pohoata, On the intersections of the incircle and the cevian circumcircle of the incenter, Forum Geom, 12 (2012) 141-148
[11] Telv Cohl, An old problem without elementary proof, post 7 www.artofproblemsolving.com/community/c6h577497
[12] Feuerbach's conic theorem, Wolfram Mathworld www.mathworld.wolfram.com/FeuerbachsConicTheorem.html
[13] Francesco Sala(SalaF), A Steiner line parallel to an orthotransversal. artofproblemsolving.com/community/u2458533h1084046p5217776
[14] Bernard Gilbert, A Sextic, message 2675
https://vn-mg61.mail.yahoo.com/neo/launch?.rand=fdo2nm94k3hqf

Email address: tenminhladuong@gmail.com, Yahoo adress: minhtenladuong@yahoo.com, AoPS account: A-B-C

