See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/305142435

Some Properties of the Harmonic Quadrilateral

Article • January 2016

Citations
0

1 author:

Florentin Smarandache
University of New Mexico Gallup Campus
2,836 PUBLICATIONS $\mathbf{1 5 , 0 4 0}$ CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects: Project Maxwell-Dirac isomorphism View project
\square Decision making in rough neutrosophic environment View project

Some Properties of the Harmonic Quadrilateral

Professor Ion Patrascu, National College "Fraţii Buzeşti", Craiova, Romania
Professor Florentin Smarandache, University of New Mexico, USA

Abstract

In this article, we review some properties of the harmonic quadrilateral related to triangle simedians and to Apollonius circles.

Definition 1. A convex circumscribable quadrilateral $A B C D$ having the property $A B \cdot C D=B C \cdot A D$ is called harmonic quadrilateral.

Definition 2. A triangle simedian is the isogonal cevian of a triangle median.
Proposition 1. In the triangle $A B C$, the cevian $A A_{1}, A_{1} \in(B C)$ is a simedian if and only if $\frac{B A_{1}}{A_{1} C}=\left(\frac{A B}{A C}\right)^{2}$. For Proof of this property, see infra.

Proposition 2. In an harmonic quadrilateral, the diagonals are simedians of the triangles determined by two consecutive sides of a quadrilateral with its diagonal.

Proof. Let $A B C D$ be an harmonic quadrilateral and $\{K\}=A C \cap B D$ (see Fig. 1). We prove that $B K$ is simedian in the triangle $A B C$.
From the similarity of the triangles $A B K$ and $D C K$, we find that:
$\frac{A B}{D C}=\frac{A K}{D K}=\frac{B K}{C K}$ (1).
From the similarity of the triangles $B C K$ şi $A D K$, we conclude that:
$\frac{B C}{A D}=\frac{C K}{D K}=\frac{B K}{A K}$ (2).
From the relations (1) and (2), by division, it follows that:
$\frac{A B}{B C} \cdot \frac{A D}{D C}=\frac{A K}{C K}$ (3).
But $A B C D$ is an harmonic quadrilateral; consequently,

$$
\frac{A B}{B C}=\frac{A D}{D C}
$$

substituting this relation in (3), it follows that:
$\left(\frac{A B}{B C}\right)^{2}=\frac{A K}{C K} ;$
as shown by Proposition $1, B K$ is a simedian in the triangle $A B C$. Similarly, it can be shown that $A K$ is a
 simedian in the triangle $A B D$, that $C K$ is a simedian
in the triangle $B C D$, and that $D K$ is a simedian in the triangle $A D C$.
Remark 1. The converse of the Proposition 2 is proved similarly, i.e.:
Proposition 3. If in a convex circumscribable quadrilateral a diagonal is a simedian in the triangle formed by the other diagonal with two consecutive sides of the quadrilateral, then the quadrilateral is an harmonic quadrilateral.

Remark 2. From Propositions 2 and 3 above, it results a simple way to build an harmonic quadrilateral. In a circle, let a triangle $A B C$ be considered; we construct the simedian of A, be it $A K$, and we denote by D the intersection of the simedian $A K$ with the circle. The quadrilateral $A B C D$ is an harmonic quadrilateral.

Proposition 4. In a triangle $A B C$, the points of the simedian of A are situated at proportional lengths to the sides $A B$ and $A C$.

Proof. We have the simedian $A A_{1}$ in the triangle $A B C$ (see Fig. 2). We denote by D and E the projections of A_{1} on $A B$, and $A C$ respectively.
We get:
$\frac{B A_{1}}{C A_{1}}=\frac{\text { Area }_{\Delta}\left(A B A_{1}\right)}{\text { Area }_{\Delta}\left(A C A_{1}\right)}=\frac{A B \cdot A_{1} D}{A C \cdot A_{1} E}$.
Moreover, from Proposition 1, we know that

$$
\frac{B A_{1}}{A_{1} C}=\left(\frac{A B}{A C}\right)^{2} .
$$

Substituting in the previous relation, we obtain that:
$\frac{A_{1} D}{A_{1} E}=\frac{A B}{A C}$.
On the other hand, $D A_{1}=A A_{1}$. From $B A A_{1}$ and $A_{1} E=A A_{1} \cdot \sin \widehat{C A A_{1}}$, hence:
$\frac{A_{1} D}{A_{1} E}=\frac{\sin \overrightarrow{B A} \overline{A_{1}}}{\sin \overrightarrow{C A} \overline{A_{1}}}=\frac{A B}{A C}$
If M is a point on the simedian and $M M_{1}$ and $M M_{2}$ are its projections on $A B$, and $A C$ respectively, we have:
$M M_{1}=A M \cdot \sin \widehat{B A A_{1}}, \quad M M_{2}=A M \cdot \sin \widehat{C A A_{1}}$, hence:

$$
\frac{M M_{1}}{M M_{2}}=\frac{\sin \widehat{B A A_{1}}}{\sin \bar{C} \widehat{A A_{1}}} .
$$

Taking (4) into account, we obtain that:
$\frac{M M_{1}}{M M_{2}}=\frac{A B}{A C}$.
Remark 3. The converse of the property in the statement above is valid, meaning that, if M is a point inside a triangle, its distances to two sides are proportional to the lengths of these sides. The point belongs to the simedian of the triangle having the vertex joint to the two sides.

Proposition 5. In an harmonic quadrilateral, the point of intersection of the diagonals is located towards the sides of the quadrilateral to proportional distances to the length of these sides.
The Proof of this Proposition relies on Propositions 2 and 4.
Proposition 6 (R. Tucker). The point of intersection of the diagonals of an harmonic quadrilateral minimizes the sum of squares of distances from a point inside the quadrilateral to the quadrilateral sides.

Proof. Let $A B C D$ be an harmonic quadrilateral and M any point within. We denote by x, y, z, u the distances of M to the $A B, B C, C D, D A$ sides of lenghts a, b, c, and d (see Fig. 3).
Let S be the $A B C D$ quadrilateral area.
We have:
$a x+b y+c z+d u=2 S$.
This is true for x, y, z, u and a, b, c, d real numbers.
Following Cauchy-Buniakowski-Schwarz Inequality, we get:
$\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(x^{2}+y^{2}+z^{2}+u\right.$ and it is obvious that:
$x^{2}+y^{2}+z^{2}+u^{2} \geq \frac{4 S^{2}}{a^{2}+b^{2}+c^{2}+c}$
We note that the minimum sum of squared distances is:
$\frac{4 S^{2}}{a^{2}+b^{2}+c^{2}+d^{2}}=$ const .
In Cauchy-Buniakowski-Schwarz
Inequality, the equality occurs if:
$\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{u}{d}$.
Since $\{K\}=A C \cap B D$ is the only point with this property, it ensues that $M=K$,
 so K has the property of the minimum in the statement.

Definition 3. We call external simedian of $A B C$ triangle a cevian $A A_{1}{ }^{\prime}$ corresponding to the vertex A, where $A_{1}{ }^{\prime}$ is the harmonic conjugate of the point A_{1} - simedian's foot from A relative to points B and C.

Remark 4. In Fig. 4, the cevian $A A_{1}$ is an internal simedian, and $A A_{1}{ }^{\prime}$ is an external simedian.
We have:
$\frac{A_{1} B}{A_{1} C}=\frac{A_{1}{ }^{\prime} B}{A_{1}{ }^{\prime} C}$.
In view of Proposition 1, we get that:
$\frac{A_{1}{ }^{\prime} B}{A_{1}{ }^{\prime} C}=\left(\frac{A B}{A C}\right)^{2}$.

Proposition 7. The tangents taken to the extremes of a diagonal of a circle circumscribed to the harmonic quadrilateral intersect on the other diagonal.

Proof. Let P be the intersection of a tangent taken in D to the circle circumscribed to the harmonic quadrilateral $A B C D$ with $A C$ (see Fig. 5). Since triangles PDC and PAD are alike, we conclude that:
$\frac{P D}{P A}=\frac{P C}{P D}=\frac{D C}{A D}$
From relations (5), we find that:
$\frac{P A}{P C}=\left(\frac{A D}{D C}\right)^{2}$ (6).
This relationship indicates that P is the harmonic conjugate of K with respect to A and C, so $D P$ is an external simedian from D of the triangle $A D C$.
Similarly, if we denote by P^{\prime} the intersection of the tangent taken in B to the circle circumscribed with $A C$, we get:
$\frac{P I A}{P I C}=\left(\frac{B A}{B C}\right)^{2} \quad$ (7).
From (6) and (7), as well as from the properties of the harmonic quadrilateral, we know that:
$\frac{A B}{B C}=\frac{A D}{D C}$,
which means that:
$\frac{P A}{P C}=\frac{P^{\prime} A}{P^{\prime} C}$,
hence $P=P^{\prime}$.
Similarly, it is shown that the tangents taken to A
 and C intersect at point Q located on the diagonal $B D$.

Remark 5. a. The points P and Q are the diagonal poles of $B D$ and $A C$ in relation to the circle circumscribed to the quadrilateral.
b. From the previous Proposition, it follows that in a triangle the internal simedian of an angle is consecutive to the external simedians of the other two angles.
Proposition 8. Let $A B C D$ be an harmonic quadrilateral inscribed in the circle of center O and let P and Q be the intersections of the tangents taken in B and D, respectively in A and C to the circle circumscribed to the quadrilateral. If $\{K\}=A C \cap B D$, then the orthocenter of triangle $P K Q$ is O.
Proof. From the properties of tangents taken from a point to a circle, we conclude that $P O \perp B D$ and $Q O \perp A C$. These relations show that in the triangle $P K Q, P O$ and $Q O$ are heights, so O is the orthocenter of this triangle.
Definition 4. The Apollonius circle related to the vertex A of the triangle $A B C$ is the circle built on the segment $[D E]$ in diameter, where D and E are the feet of the internal, respectively ,external bisectors taken from A to the triangle $A B C$.
Remark 6. If the triangle $A B C$ is isosceles with $A B=A C$, the Apollonius circle corresponding to vertex A is not defined.

Proposition 9. The Apollonius circle relative to the vertex A of the triangle $A B C$ has as center the feet of the external simedian taken from A.
Proof. Let O_{a} be the intersection of the external simedian of the triangle $A B C$ with $B C$ (see Fig. 6). Assuming that $m(\hat{B})>m(\hat{C})$, we find that $m(\widehat{E A B})=\frac{1}{2}[m(\hat{B})+m(\hat{C})]$.
O_{a} being a tangent, we find that $m\left(\widehat{O_{a} A B}\right)=m(\hat{C})$.
Withal, $m\left(E A O_{a}\right)=\frac{1}{2}[m(\hat{B})-m(\hat{C})]$ and $m\left(A E O_{a}\right)=\frac{1}{2}[m(\hat{B})-m(\hat{C})]$.
It results that:
$O a E=O a A$;
onward, $E A D$ being a right angled triangle, we obtain:
$O a A=O a D$,
hence O_{a} is the center of Apollonius circle corresponding to the vertex A.
Proposition 10. Apollonius circle relative to the vertex A of triangle $A B C$ cuts the circle circumscribed to the triangle following the internal simedian taken from A.
Proof. Let S be the second point of intersection of Apollonius circles relative to vertex A and the circle circumscribing the triangle $A B C$.

Because $O_{a} A$ is tangent to the circle circumscribed in A, it results, for reasons of symmetry, that $O_{a} S$ will be tangent in S to the circumscribed circle.
For triangle $A C S, O_{a} A$ and $O_{a} S$ are external simedians; it results that $C O_{a}$ is internal simedian in the triangle $A C S$, furthermore, it results that the quadrilateral $A B S C$ is an harmonic quadrilateral.
Consequently, $A S$ is the internal simedian of the triangle $A B C$ and the property is proven.
Remark 7. From this, in view of Fig. 5, it results that the circle of center Q passing through A and C is an Apollonius circle relative to the vertex A for the triangle $A B D$.
This circle (of center Q and radius $Q C$) is also an Apollonius circle relative to the vertex C of the triangle $B C D$.
Similarly, the Apollonius circles corresponding to vertexes B and D and to the triangles ABC, and ADC respectively, coincide; we can formulate the following:
Proposition 11. In an harmonic quadrilateral, the Apollonius circles - associated with the vertexes of a diagonal and to the triangles determined by those vertexes to the other diagonal - coincide.
Radical axis of the Apollonius circles is the right determined by the center of the circle circumscribed to the harmonic quadrilateral and by the intersection of its diagonals.
Proof. Referring to Fig. 5, we observe that the power of O towards the Apollonius circles relative to vertexes B and C of triangles $A B C$ and $B C U$ is:
$O B^{2}=O C^{2}$.
So O belongs to the radical axis of the circles.
We also have $K A \cdot K C=K B \cdot K D$, relatives indicating that the point K has equal powers towards the highlighted Apollonius circles.

References.

[1] Roger A. Johnson - Advanced Euclidean Geometry, Dover Publications, Inc. Mineola, New York, USA, 2007.
[2] F. Smarandache, I. Patrascu - The Geometry of Homological Triangles, The Education Publisher, Inc. Columbus, Ohio, USA, 2012.
[2] F. Smarandache, I. Patrascu - Variance on Topics of plane Geometry, The Education Publisher, Inc. Columbus, Ohio, USA, 2013.

