FOUR APPLICATIONS OF RCF AND LCF THEOREMS
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Abstract

In this paper are presented four new and difficult symmetric inequalities with
right convex and left concave functions, as applications of RCF-Theorem and
LCF-Theorem from [1] and [2]. Note that all the functions involved in the proposed
inequalities have more than one inflexion point.

1. Introduction

In [1] and [2], we have proved the following theorems:

Right Convex Function Theorem (RCF-Theorem). Let f(u) be a function

defined on an interval 1 cR and convex for u>s, sel. If the inequality

f(x)+ f () ++ f(x,) > nf (M)
holds forall x,Xx,,---,x, €l such that
X2=X3="'=Xn23 and MIS,

Xq+Xo 4o+ X
1 2 n>

then italso holds forall x,X,,---,x, €l such that >3,

Left Concave Function Theorem (LCF-Theorem). Let f(u) be a function
defined on an interval 1R and concave for u<s, sel. If the inequality
£ )+ F (Xp)++ F (x,) < nf (W)

holds for all x,X,,---, X, €l such that

+ X X
X1=X2="'=Xn_1SS and M:S

: Xq+ X+ kX
then italso holds for all x,X,,---, X, €l such that %ss.



Remark 1.1. The hypothesis in RCF-Theorem is equivalent to the condition
that f(x)+(n-1)f(y)>nf(s) for all x,yel such that x<s<y and

X+(n-1)y=ns.
Remark 1.2. Let g(u):w. The hypothesis in RCF-Theorem is

equivalent to the condition that g(x)<g(y) for all x,yel such that x<s<y
and x+(n-)y=ns.

Remark 1.3. The hypothesis in LCF-Theorem is equivalent to the condition
that (n-1)f(x)+ f(y)<nf(s) for all x,yel such that x<s<y and

(n-)x+y=ns.
Remark 1.4. Let g(u)=%. The hypothesis in LCF-Theorem is

equivalent to the condition that g(x)>g(y) for all x,yel suchthat x<s<y
and (n—-1)x+y=ns.

In this paper, following closely theorems above, we will prove the
following four statements.

Proposition 1.1. If a,a,,---,a, are nonnegative real numbers such that
al+3.2+--'+an=n,

then
2., .2 2
al+aj+---+al—n

1
<n-24— (1)
(8l —a)*+(a5—a,)*+ --+(a2—a,)? n-1

Proposition 1.2. If a, b, ¢ are positive real numbers such that abc =1, then

a?+b?+c?—3>18(a+b+c—ab—bc—ca). (2)

Proposition 1.3. If &, a,,---, ag are nonnegative real numbers such that
&, --ag<1, then
1- 1- 1-
a12+ a22+---+ aBZZO.
1+a)° (1+ay) (1+ag)

(3)

Proposition 1.4. If &, a,, a;, a,,a; are positive real numbers such that

&8,858,85 >1, then

1+a +1+a2 L +ay 1+ay +1+a5 <

2 2 2

2 v 2—5' (4)
l+af 1+a; l+ag 1l+a; 1+ag



2. Proofs of the proposed inequalities

Proof of Proposition 1.1. Let A=n—2+i1, A>1.Since a +a,+---+a,=n,

we may write (1) as

+-+ay

f(a)+ f (a,)+-+ f () 2nf (%) , )

where f(u)=A(u?-u)?-u?+1, u>0. The second derivative,
f"(u)=12AU’—u)+2(A-1),
shows that f(u) has two inflexion points for u>0. Since f"(u)>0 for u>1,

the function f is right convex for u>s, where
g Autapt ey
- - =
By RCF-Theorem, it suffices to prove (5) for a <l<a,=a;=---=a, and
& +a,+---+a,=n. According to Remark 1.2, this means to show that

1.

g(x)<g(y) for 0<x<1<y and x+(n-1)y=n, where

g(u):M:A(u?’_uz)_u_l_
u-1
We have
g0)-9(y) =(x=Y)[AX® +xy+y*) - A(x+y)-1]=
=n(n-1)(1-y)(Ay—n+1)?<0,
and the proof is complete. Equality occurs only if alzé and
n°-3n+3
n-2 . .
a,=ag=---=a, =1+————, or any cyclic permutation thereof.
n°-3n+3

¢

Proof of Proposition 1.2. We will show that for any real numbers x, y, z

with X+y+12Z

=0, the inequality holds

X+Yy+2

), ©)

where  f(u)=18(e"—e™¥)—e?", ueR. Replacing then x,y,z by

f(x)+ f(y)+ f(z)<3f(

Ina, Inb, Inc, respectively, the desired inequality (2) follows.
In order to prove (6), we will apply LCF-Theorem to the function f

defined on R, with s=0. From the second derivative



f"(u)=18(e"—e™¥)—4e?
it follows that f(u) has two inflexion points in R. Since f"(u)<0 for u<o0,

the function f (u) is left concave for u<s=0. According to LCF-Theorem, it
suffices to consider only the case x=y<0. This means to prove the initial

inequality for a=b<1 and a’c=1. Then, the inequality successively becomes
2a% +c?—-3>18(2a+c—a’—2ac),
2a% -3a*+1+18a%(a*-2a%+2a-1)> 0,
(a®-1)?(2a®+1)+18a%(a-1)3(a+1)=0,
(a-1)?(2a-1)?(a+1)(5a+1)>0.
The last inequality is clearly true, and the proof is completed. Equality occurs
when (a,b,c)=(,1,1), and also when (a,b,c):(%,%A) or any cyclic

permutation thereof.
L4

Proof of Proposition 1.3. According to Lemma 2.1 and Lemma 2.2 below, it
suffices to consider the case where all a,<3 and aja,---ag=1. We will show

that for all x; <In3 such that x; +X, +---+Xg =0, the inequality holds

f0)+ £ () ++-+ 1 (o) <51 (L2709 ™

u

where f(u) :1_—e
1+

nex Replacing then each x by Ina;, the required
e

inequality (3) follows.
We will prove (7) by applying RCF-Theorem to the function f defined

on I=(—,In3], with s=0. Taking derivatives, we get
e¥(8e"—e2-3)
(L+e")*

£(u)=

which shows that f has two inflexion point in R. We first have to show that
f(u) is convex for s<u<In3; this means that f"(u)>0 for 0<u<In3 or,

equivalently, 8t—t>~3>0 for 1<t<3. This is true since
8t—t2-3>8t-3t-3=5t-3>0.

According to RCF-Theorem, it suffices to prove the inequality (7) for
0<X,=X3=---=X%3<In3 and X +X,+--+%3=0; that is, to prove the initial



inequality (3) for 1<a,=a;=---=83<3 and @aa,---ag=1. Thus, we must

show that
l-a_ 70-b) 0
(1+a)®> (1+h)?

for 1<b<3 and ab’=1. Taking into account that

l-a b'(p’'-]
(1+a)? (b’ +1)? "’

we have to show that

b’ (b +b%+b*+b3+b2+b+1)
6 15 14 13,12 2 —720.
(b°—b°+b*—b3+b%—b+1)

Since
b8 —b°+b* —b3+b?—b+1=b*(b2—b+1)—(b-1)(b%+1) <b*(b>—b+1)
it suffices to prove the inequality

b6+b5+b4+b3+b2+b+1_
b(b>—b+1)?

720.

This inequality is equivalent to (b—1)>0, which is clearly true. Equality in
the given inequality occurs if and only if a,=a,=---=a5=1.

Lemma 2.1. If the inequality (3) holds for any 0<a;<3 such that
aa,---ag=1, then it holds for any 0<a; <3 such that aa,---a3<1.

Proof. Assume that 0<a <3 and &aa,---ag<l. Always there are eight

positive numbers b; such that bb,---bg=1 and a <b <3 for i=12,--8.
8
According to the hypothesis, the inequality holds Z 1-b 5 >0. Since the

ia (1+hy)
. 1-x - , X—3
function f(x)= > has the derivative f'(x)= 7<0 for x€[0,3),
1+x) +X)

f(x) is strictly decreasing on [0,3]. Therefore, & L b
(L+a)?  (L+b)?

subscripts i, and hence
8

Z 13 228: S Y

= (L+a)” T A+b)®




Lemma 2.2. If the inequality (3) holds for any 0<a <3 such that
8a,---ag<1, then it holds for any a; >0 such that a,a,---ag<1.

Proof. Assume that all a >0, and @&a,---ag<1l. Define the numbers
Xl’ XZ’.”’ X8 as

a; , for ,<3
a1 ' for a,>3

1-x  1-g
L+%)?  (+a)?
Since 0<x<3 and xX,---Xg<a&a,---ag<1, from the hypothesis we have
8 8

for all i.

It is easy to show that 0<x; <3, x <& and

>, 1_Xi2 >0, and hence 1_ai2 >0

i1 (1+%) i1 (1+3)
n

Remark 2.1. If n=9, then the inequality Z(ll_ai)z >0 is not true for any
i=1 d+a;

n
positive numbers a; with Haizl. Indeed, for a,=a;=---=a43=3, the
i=1

inequality becomes a12 —1>0, which is false.
(1+a)

¢

Proof of Proposition 1.4. According to Lemma 2.3 and Lemma 2.4 below

(which can be proved in the same way as the preceding Lemma 2.1 and
Lemma 2.2), it suffices to consider the case where all aiZ\/E—l and

a,8,8,8;=1. In this case, the inequality can be proved by applying

u
LCF-Theorem to the function f(u)= Lre defined on 1=[In(y2-1),),

1+e2

with s=0. The second derivative

el(1-4ev-6e? +4e¥ 1)
(1+e?4)3

f(u)

shows that f has four inflexion point in R. Finally, we have to prove the
inequality for \2-1<a =a,=a,=a,<1 and aa,a53,a;=1; that is
4(1+a) 1+b

0 <5
1+a?  1+b?

for /2-1<a<1and a*h=1. Since



1+b a*(l+at 1+a* 2 4
2 g and 851 4 232
1+b 1+a 1+a® 1+a” (1+a“)

we get
Al+a) 1+b Al+a) 4a*
5 >5 _
1+a®  1+b? 1+a? (1+a?)?
1-4a+6a®-4ad+at  (1-a)’
(1+a%)(1+a%) 1+ad)1+a%)

which completes the proof. Equality holds only if & =a,=a;=a,=a;=1.

Lemma 2.3. If the inequality (4) holds for any aiZ\/E—l such that
88,858,485 =1, then it holds for any a >+2-1 such that aa,a,a,a5>1.

Lemma 2.4. If the inequality (4) holds for any aizx/i—l such that
8,a,8,8,85>1, then it holds for any a, >0 such that aja,a;a,a;>1.
1+ai

n
Remark 2.2. If n=6, then the inequality » =
i:11+ai

<6 is not true for any

n
. : 1
positive numbers a; with | |ai=1. Indeed, for a2=a3:a4:a5:a6:5, the
i=1
1+a1

inequality becomes <0, which is false.

1+a;
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