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Abstract

The problem of the abc Conjecture is stated and various consequences are established.
Other known consequences are stated without proof. Topics supporting belief that the abc
Conjecture is true are discussed. The idea of good abc triples is defined and all known good
triples are stated. Some computational computer work verifying these values is discussed.
This is the first time that such brute force computations have been published.
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Chapter 1

Introduction

On its own the abc Conjecture merits much admiration. As is often the case with some of
the more intriguing problems of Number Theory, the abc Conjecture is easy to state but
yet difficult to verify. Unlike most other Number Theory problems, though, this conjecture
has many fascinating applications; one of which is a version of one of the subject’s most
celebrated problems.

Pierre de Fermat (1601 — 1665) stated his “Last Theorem” ! in the margin of his copy of
Diophantus’s Arithmetica in 1637. In one of the boldest claims by one of the brightest
individuals in the history of mathematics, Fermat wrote that he had a proof, but that he
did not have enough room to write it in the margin. It is very likely that his proof was
incomplete. Nonetheless, his innocent enough statement incited hundreds of capable (and
not so capable) individuals into feverish work for over three and one-half centuries. These
individuals made great accomplishments in mathematics; the development of Modern Al-
gebra being one of the foremost. This intriguing chapter in mathematics’ history came to
a close in 1993 with the work of Andrew Wiles. The significance of this is best summarized
in a comment by John Fraleigh regarding Wiles’ proof of Fermat’s Last Theorem: “One
wonders, with the pace of science today, whether any mathematician could now make a
mathematical conjecture whose status (true, false, or undecidable) could not be established,
despite intense effort by the best mathematicians, for another 350 years”.

Though it may be the case that the abc Conjecture is one such conjecture, it is too early
to tell. As we will see, much has been accomplished, yet the conjecture’s certainty or un-
certainty is not in sight. The interesting connection, though, is that the abc Conjecture
implies a weaker (yet significant) form of Fermat’s Last Theorem (see Conjecture 3.1).

The abc Conjecture was posed in 1985 by both J. Oesterlé and D.W. Masser. Oesterlé was
motivated by a conjecture of Szpiro regarding elliptic curves. A little later, Masser was mo-
tivated by considering an analogous statement over Z of Mason’s Theorem for polynomials.
We will see both Szpiro’s conjecture (Conjecture 3.4) and Mason’s Theorem (Theorem 2.1).

g™ 4+ y™ = 2™ has no nontrivial solutions in Z for n > 3.






Chapter 2

The Problem Stated

2.1 The abc Conjecture

First we begin with a defintion:

Definition 2.1 (The radical of a positive integer).
For n € P, suppose n = p1°! - - - p° where the p;’s are distinct prime numbers and the e;’s
are positive integers. We then define the radical of n to be:

r(n) =py - pr with r(1) = 1.
In other words, r(n) is the greatest square-free factor of n.

Now we concern ourselves with the hypotheses. We will be considering non-trivial triples
of integers (a, b, c) such that a + b = ¢ and ged(a, b, c) = 1. Obviously, any sum of the form
a + b = ¢ can be rearranged so that a,b,c¢ > 0, hence we will assume all elements of our
triples are positive.

Oesterlé originally stated the conjecture in the form

_ _ logmax(lal,[bl,lc]) __ _ loge
L= L(a’b’c) - log r(abc) ~ logr(abc)

and considered whether the L’s are bounded. We will consider this more extensively in
Chapter 5.1.

Masser refined the statement into its more common form, namely: for each ¢ > 0 there
exists a positive universal constant u(e) * such that
max(|al, [b], |c]) = ¢ < p(e)r(abe) .

We now state two Lemmas that will be repeatedly quite useful.

Lemma 2.1.
Under the hypotheses of the abc Conjecture, v is a muliplicative function 2.

!The literature commonly refers to this constant as C(g).
2By definition of a multiplicative function, it is already the case that the elements involved have ged =
1. The redundancy is for emphasis.



Proof.
Obvious.

Lemma 2.2.
For alln € P, r(n) < n.

Proof.
Obvious

O

It is worthwhile to emphasize the importance of the ¢ in Masser’s version of the abc Con-
jecture. We will do this by using an example developed by Wojtek Jastrzebowski and Dan
Spielman as reported by Serge Lang [8]. We show that there does not exist a p such that
¢ <u - r(abe) for all a,b, and ¢ meeting the hypotheses.

For an example, consider a, = 3%" —1,b, = 1, and ¢, = 32" where n € P. Note that the
values meet the conditions of the hypotheses of the abc Conjecture. First,

Claim 2.1.
27|(32" — 1)
Proof.

For n =1, 2[(3%2 —1).
Assume true for k, i.e. 2¥(32" —1). So

32— 32"2
=(3¥)? -1
= 3% -1)EY 4

Since
2k((32" — 1)
and
2(3%° + 1)
then

2k‘+1’(32k+1 _ 1)
Hence, by induction, the claim is established.

Proposition 2.1.
The € in the abc Conjecture is essential.

(difference of two squares)

(induction hypothesis)

(viz., 32" 4 1is even)

(2.5)



Proof.
For contradiction, assume there exists p such that ¢, < p - r(anbncy) for the above condi-
tions.

So
maX(|an|7 |bn|7 |Cn|) = 32” (27)
< p-r(apbpen) (by assumption) (2.8)
=p-r(3%" —1]-1-3%") (2.9)
=pu-3-7(32" —1) (by Lemma 2.1) (2.10)
2n 1
L3 <2n 3 - ) (by Claim 2.1) (2.11)
37" —1
<p-3-2- o (by Lemma 2.2) (2.12)

(One may regard the fraction in statement (2.12) as the product of all factors of 32" — 1
different from 2).

Multiplying both sides by 2" and dividing by 3%":

32" -1

(2.13)

Letting n — oo the inequality fails and we get the contradiction establishing the necessity
of the e.

O

Before we close this section, we state a remark that the reader may find useful while con-
templating later material.

Remark 2.1.
In the abc Conjecture, p(e) varies inversely with the choice of €.

2.2 The Polynomial Analogue of the abc Conjecture

Before we consider some of the consequences of the abc Conjecture, let us take a look at one
of the conjecture’s influences. Recall from the Introduction that Mason’s Theorem inspired
Masser. Hence we shall state Mason’s Theorem.

First, a definition:

Definition 2.2 (The radical of a polynomial).
Let p(t) be a polynomial whose coefficients belong to an algebraically closed field of charac-
teristic 0. Put



ng(p) = the number of distinct zeros of p(t).
In other words, no(p) counts the zeros of p(t) by giving them each a multiplicity of one.
With this definition, we may now state:

Theorem 2.1 (Mason’s Theorem). 3

Let a(t), b(t), and c(t) be polynomials whose coefficients belong to an algebraically closed field
of characteristic 0. Suppose a(t), b(t), and c(t) are relatively prime and that a(t) + b(t) =
c(t). Then

max deg{a(t),b(t),c(t)} < ng(a(t)-b(t)-c(t)) — 1.

Proof.
We have
a+b=c (2.14)
Dividing both sides by c¢:
a b
—4+-=1 2.15
s (2.15)
Putting f = ¢ and g = IE’, we have:
f+rg=1 (2.16)
Differentiating we get:
f'+4d =0 (2.17)
Rewrite as:
f g
L f4+Z.g=0 2.18
7 p (2.18)
g f
Z.g=—=-f 2.19
; 7 (2.19)
So
.4
g

Observe that a = f - cand b= g - ¢, hence

(2.21)

|

a

31t is essential that the reader realizes the similarities between Mason’s Theorem and Masser’s version of
the abc Conjecture.



Substituting (2.20) into (2.21)

_r
f

b
-= (2.22)
g

Now suppose R(t) is a rational function with p; representing the distinct roots of the
numerator and denominator. Then

R(t) = H(t — p;i)? where the ¢; € Z (2.23)

>0 if t — p; is in the numerator
Notice: ¢; is the multiplicity of the root p; where ¢; { pi

<0 ift— p;isin the denominator

(2.24)
Thus
R()=) a- tR_(t;i (2.25)
Hence
R/(t) _ q;
o Z —s (2.26)

The advantage of (2.26) is that the multiplicity of each distinct root is now exactly one.
Now suppose

a(t) = [T, = @)™, b(e) = [ (= ;) and e(t) = T, (¢ — 2™ (2.27)

Then by (2.22) and (2.26),

I i r
9 N _z _ ZZ tr—nozi - zk t—lfyk (2 28)
- T n; T .
T A S s

A common denominator for the numerator and denominator of (2.28) is (since a, b, and ¢
are relatively prime)

D(t) = [ (¢ =) TL e =5 - T[, (¢ = w) (2.29)
where

deg(D(t)) = no(abe) (2.30)

Now we make the observation that

f' g
deg <7> = —o00, if b=0; deg <E> = —o0, if a=0; (2.31)



and

deg <f7/> = deg (%) =—lifanorb=0. (2.32)
Hence
deg <D . f7/> and deg (D . %) < np(abe) — 1. (2.33)

(Note that in (2.31), (2.32), and (2.33) we needed the hypothesis that the polynomials have
coefficients in a field of characteristic 0. This will also be used in (2.37), (2.38), and (2.39).)

By (2.22) we get

b_ (2.34)

Hence

—a‘<D-f7/>:b‘<D-%> (2.35)

ol (p-2) (2.36)

Since (a,b) =1

Thus by (2.33)

deg(a) < no(abe) — 1 (2.37)
A similar argument yields
deg(b) < no(abc) — 1 (2.38)
As well
deg(c) < max {deg(a), deg(b)} (2.39)
So, by (2.37), (2.38), and (2.39):
max deg{a(t), b(t), ¢(t)} < no(a(t) - b(t) - ¢(t)) — 1. (2.40)
0

Having established Mason’s Theorem we get



Corollary 2.1 (Fermat’s theorem for polynomials).

Let x(t), y(t), and z(t) be relatively prime polynomials whose coefficients belong to an al-
gebraically closed field of characteristic 0 such that at least one of them has degree > 0.
Then

z(t)" +y)" = 2(t)"
has no solution for n > 3.

Proof.
By Mason’s Theorem we have

deg(z(t)") = n - deg(z(t)) < deg(x(t)) + deg(y(t)) + deg(2(t)) — 1.
By successively replacing the z(t) on the LHS with y(¢) and z(¢) and summing we get
n[deg(x(t) + deg(y(t)) + deg(z(t))] < 3[deg(z(t)) + deg(y(t)) + deg(z(t))] — 3

This is an obvious contradiction for n > 3. |

Remark 2.2.
Fermat’s theorem for polynomials fails if char p > 0.

For an example, let f(z) =x+ 1, g(z) = z, and h(xz) = 1 be polynomials whose coefficients
are in a field of char p > 0. Then f(z)? = g(x)P + h(z)P.
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Chapter 3

Consequences of the abc
Conjecture

3.1 Specific Consequences

This chapter states some of the conjecture’s fascinating implications. We begin with one
of the more interesting ones. As stated in the Introduction, the abc Conjecture implies a
weaker form of Fermat’s Last Theorem. This is due to the p(e).

Conjecture 3.1 (The Asymptotic Fermat Problem). !
Then there exists N € Z such that for n > N,

wn + yn — ZTL’
where ged(x,y,z) =1, has only trivial solutions in the integers.

Theorem 3.1.
The abc Conjecture implies the Asymptotic Fermat Problem.

Notation (z(t) < y(t)).
We will use the symbol < to mean the following:
For functions x(t) and y(t)

z(t) < y(t) means 3 C € R, C > 0 such that z(t) < C -y(t) for all t.
Another way to state this is that in big oh notation x(t) < y(t) means x(t) = O(y(t)).

Proof of Theorem 3.1.

Again, we may make the appropriate rearrangements in the sum so that all integers are
positive.

By the abc Conjecture:

| 2™ |< p (%) cr(zyz)'S < | ayz |1+% (3.1)

9 € £
[y 1< (5) - rlay2) 5 < Jayz | (3:2)

In the wake of Andrew Wiles’ accomplishment, this conjecture may be labeled a corollary or, more aptly,
an academic corollary.

11



and

| 2" < (%) cr(zyz) s < | ayz |5, (3.3)

Hence
la™ [y || 2 = ayz P < (Jayz |5 = | aye PR (3.4)

Thus for | zyz |> 1 we get n bounded. Otherwise, | zyz |< 1 and at least one of the integers
must be 0. O

It is worthwhile to note the role of the u(¢) in the previous proof. In particular, our choice
of ¢ determines the value of the N.

The abc Conjecture also implies the following classical conjecture. Before we state the
conjecture, we establish the necessary definition.

Definition 3.1 (Wieferich Condition).
A prime p € Z satisfies the Wieferich Condition iff 2P~ # 1 mod p?.

Conjecture 3.2 (Infinity of Primes Satisfying the Wieferich Condition).
There exist infinitely many primes p satisfying the Wieferich Condition.

Theorem 3.2.
The abc Conjecture implies that an infinity of primes satisfy the Wieferich Condition.

It will be helpful to employ the set S := {p | p is prime and 2P~! # 1 mod p?}. But before
we prove the theorem, we first establish the following claim:

Claim 3.1.
Let n € P and p be a prime such that 2" =1 mod p but 2" # 1 mod p>. Then p € S.

Proof of Claim 35.1.

Put d = ord(2) in U(Z/pZ) where | U(Z/pZ) | =p —1 Hence d | (p — 1) and d | n.

Write n = dr for some r € Z. So 2" # 1 mod p? = 2% # 1 mod p?.

Now write p — 1 = dm for some m € Z. d < p—1, .. m < p—1 < p. Also, p prime
= (m,p) = 1.

Since d = ord(2) in U(Z/pZ), 2% = 1 mod p.

Hence 3 k € Z such that pk = 2% — 1 < 2¢ = 1 + pk.

Since 2¢ # 1modp?, it follows that p { k.

So 2P~1 = (29)™ = 1™ mod p = 1 mod p.

But
op—1 _ 2dm — (2d)m — (1 —l—pk)m _ <m> 1m(pk)0 + <m> 1m_1(pk)1 + Z <m> 1m—i(pk)i
0 1 =\
divisib;; by p2
= 1+ mpk(modp?)
£ 1(modp?) (since p{k and ptm)
. p € S and the claim is established. O

12



The following proof is due to Silverman.

Proof of Theorem 3.2.

Suppose S is finite. Write 2" — 1 = u,v, where V p; | up, p; € S and each py | vy, pr ¢ S.
S finite = u,, is bounded. Suppose p | v,,. By the claim, 2" = 1 mod p?, i.e. p? | (2" — 1).
oo P2 | Uy (since 2% — 1 = u,vy). But pfu,, . p? | vn.

Since (2" — 1) + 1 = 2", by the abc Conjecture

|27 — 1 |= upvn < pu(e) - r(upvp) e (3.5)
< () - (unvq )1+ (3.6)
< (upvn2)tTe (3.7)
g un1+€ . UTL 1;5 (38)
1+e
<vp 2 (3.9)
Therefore
Uy Uy, K vn%. (3.10)
Multiplying both sides by vn% Syt
1—¢ -1
v 2 <L Uy . (3.11)
Hence
2
VU K Up o1 (3.12)
= a finite number of v, (3.13)
contradiction as n — oo. (3.14)

O

Regarding the Wieferich Condition, there are only two known exceptions. Moreover, by
the Lang-Trotter conjectures, the probibilty that 2P~! = 1 + pk(modp?) for a fixed residue
class k& mod p should be O( %) Hence, for fixed x, the number of primes p < z such that
2P~ =1+ pk(modp?) should be O < %) = O(loglog z); i.e. most primes should satisfy
the Wieferich Condition.

Conjecture 3.3 (Hall’s Original Conjecture).
Let u, v be relatively prime? nonzero integers such that u® —v? # 0. Then

|0 =02 > | u |2

Theorem 3.3.
The abc Conjecture implies Hall’s Original Conjecture.

The following proof is due to Lang.

2Qriginally the assumption that u and v be relatively prime was not made. This is remedied by removing
any common factor and then proceeding as dictated in the proof.

13



Proof.
Note that we could equivalently state that v? = u? +¢, t € Z, has a bound for ¢.? In partic-
ular, the abc Conjecture would imply that |u| < |t|2+€. We prove a more general statement:

Fix nonzero a,b € Z and let m,n € P be such that mn > m + n. Put

a-u"+b-0" =k (3.15)
Fix ¢/ > 0. By the abc Conjecture
u|™ < Juv - (k)| (3.16)
A similar argument yields
o™ < Juw - (k)| (3.17)

Without loss of generality, now suppose

la - u™| < |b-0"|. (3.18)

Then
lu| < || (3.19)

Subsituting into (3.17)

o < o (R) [ = o] TR ()1 (3.20)

Hence
| () (o) (3.21)

Thus
lv| < ’["(k‘)”””*”(r’;(l::;e)l()lﬂ‘s,) < ]gmnf?:rgij()us’), (3.22)
3.23)

(Note that we needed Lemma 2.2, namely: r(k) < k.)

By (3.19),
_ mQ+e) o
ju] < ()Tt (324
n(1+e)
— r(k) mn—(m+n)(1+€’) . (325)
__mQ+eh)
< kmnf(m+n)(l+e’) X (326)

3Note that the abc Conjecture, if true, improves Baker’s bound for this situation.

14



Having established the general case, we may establish the implication of Hall’s Conjecture.

Piclz € s1;ch that e = 11_251,, ie & = 12+5€ Put m =3 and n = 2.
By (3.26),
2+42¢’ 2¢’
lu| < kims = k2o (3.27)
Thus
ST G2 _ - () (3.28)
Substituting for &’
ju]77 < k=255 <k, (3.29)
O

Recall from the Introduction that Oesterle was inspired by a conjecture of Szpiro. Hence
we shall consider Szpiro’s Conjecture. First, some preliminaries.

Since we are considering fields of characteristic 0 we may assume that our elliptic curves
have Weierstrass equations of the form

E:y?=2°—ux+v (3.30)
where u,v € Z. Given this we identify the disciminant of E, namely
A = 16(4u® — 270?)

and D := 4u® — 27v? is the discrimanant of the cubic polynomial. Also, we will want to
indentify the conductor of E, namely for prime p € Z

E):= prf”

where
0 if the reduction of E is non-singular

=11 if the reduction of E is multiplicative
2+ 0, if the reduction of E is additive

and ¢, is a bounded constant independent of the curve with 4, = 0 if p > 5.
Before we continue, it is important to observe that
r(D) < ¢(E). (3.31)

Conjecture 3.4 (Original Szpiro Conjecture).
Assuming a Weierstrass equation with D the discriminant of the cubic polynomial and c(FE)
the conductor of the equation, then

|D| < (D) <« ¢(E)%*e,

(Note that Szpiro did not include the notion of r(D) in his Conjecture.)

15



Theorem 3.4.
The abc Conjecture implies the Original Szpiro Conjecture.

Proof.
Fix € > 0 and put &’ = %E. We have

du3 — 270 = D.

By the abc Conjecture (in particular, our proof of Hall’s Conjecture)

ul® < [(r(D))**"]? by (3.27) and noting that r(D) < D (3.32)
and
o] < [(r(D)*+")? by (3.22) (3.33)
Hence
|D| < r(D)%*® <« ¢(E)5+® by (3.31) (3.34)
O
Remark 3.1.

The abc Conjecture is equivalent to Szpiro’s Original Conjecture.

For the proof of the opposite implication, see [8].

3.2 Futher Consequences

In this section we list further consequences of the abc Conjecture without proof. For further
information, see [9].

Definition 3.2 (Brown Pairs).

Puairs of integers satisfying Brocard’s Problem n!+ 1 = m?

are called Brown Pairs.

Theorem 3.5.
The abc Conjecture implies that there exist only finitely many Brown Pairs.

The proof of this is in [11].

For the interested reader, the above problem has been generalized to the number of integer
solutions of the equations (z!)" 4+ 1 = y™ (see [10]) and x! + B? = y? for arbitrary B (see

[31)-

Definition 3.3 (Powerful Numbers).
Forn € P, n is said to be a powerful number if for every prime p dividing n, p? divides
n.

Erdos refers to theses numbers as k-ful numbers where the k plays the role of the 2 in
the above definition.

Conjecture 3.5 (Erdos — Mollin — Walsh Conjecture).
There do no exist three consecutive powerful integers.

16



Theorem 3.6.
The abc Conjecture implies that the set of triples of consecutive powerful integers is finite.

Conjecture 3.6 (Mordell’s Conjecture). *
Any curve of genus larger than 1 defined over a number field K has only finitely many
rational points in K.

The following is due to Elkies [4].

Theorem 3.7.
The abc Conjecture for number fields implies the Mordell Conjecture over an arbitrary
number field.

In [5] it is established that the abc Conjecture with an explict constant p(e) would give
explicit bounds on the heights of rational points in Mordell’s Conjecture.

Theorem 3.8 (Roth’s Theorem).
Fiz e > 0. For every algebraic number «, the diophantine inequality

P 1
i
has only finitely many solutions.

In 1994, E. Bombieri [1] proved that the abc Conjecture implies a stronger version of Roth’s
Theorem:

Theorem 3.9.
The abc Conjectue implies that, for the conditions of Roth’s Theorem,
P 1
o= 51> %

P

for all but a finite number of fractions Lin reduced form, where k = C(«) - (log q)_% .

(loglog q)~! for some constant C(a) depending only upon a.

For the above, the reader may also see [5].

The following is due to Granville [6]:

Theorem 3.10 (Squarefree Values of Polynomials).
The abc Conjecture implies that for a polynomial F(x) with integer coefficients, no repeated
roots, and content = 1, F\(n) is squarefree for infinitely many integers n.

In closing, we mention that the abc Conjecture also gives a way of counting squarefree
values of polynomials, implies that the Dirichlet L-function has no Siegel zeros, and gives
bounds for the order of the Tate-Shafarevich group. Many more implications are given in

[9].

“This is now a theorem after the work of G. Faltings (1984).
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Chapter 4

Evidence for the abc Conjecture

In this chapter, a theorem of C.L. Stewart and Kunrui Yu establishing a weak form of the
abc Conjecture is discussed.

4.1 Preliminaries

For the following, let p be a prime number and put

2 ifp>2
q= . (4.1)
3 ifp=2.
As well put
if 2
ap= 4% P> (4.2)
G ifp=2,

where (,, has the usual meaning e for m € P. Put K = Q(ap) and let D = QN K, i.e.
D is the ring of algebraic integers in K (Note: since K is a cyclotomic field, D = Z[(o)).
For c =x +iy € C, |c| = /22 + y%. Let ay,...,a, € D such that |o;| < A; for 1 <i<n
where each A; > 4. Put

A = max A;.
1<i<n

Let by,...,b, be rational integers (i.e. in Z) such that |b;| < B where B is a fixed integer
> 3. For a € K\ {0}, since D is a Dedekind domain the fractional ideal () D can be written
as a unique product of prime ideals in D, i.e. (a)D = pim ----- png. Define ordg, o = ey,.
This is the ramification index of p;. Let f, be the residue class degree of p. Lastly, put
O =a? -, —1.

Given the above, we now state some essential preliminaries. These are stated without proof;
the curious reader may see [12].

Lemma 4.1.
If [K(a'e,... 0,9 . K] = ¢""Y ordya; =0 for j =1,...,n, and © # 0, then

ordyd < (c1n)"p? -log B -loglog A -log Ay - --- -log A,

where c1 is an effectively computable postive number.
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Lemma 4.2.
For ai,...,on € P, if [Q(ar'/?,... a0, /?) : Q] = 2" and by -logay + - + by, - log oy, # 0,
then

by -log oy + - - 4 by - log | > exp(—con)™ log B(loglog A)?log Ay - - - log Ay,
where ¢y s an effectively computable positive number.

Lemma 4.3.
Let aq, ao, ..., ay be prime numbers with a1 < ag < --- < ay,. Then

(@12, 092, ,op2) 1 Q] = 27,

Let =2 and ag = {4 or ¢ =3 and o = (g as well put K = Q(ag). Then

except when q = 2, ag = (4, and a1 = 2 and in this case
[K(ao2,(1+0)2,092,...,02) : K] = 27+1.

Lemma 4.4.
Let p1 = 2, po, be the sequence of prime numbers in increasing order. Then 3 an effectively
computable constant c3 > 0 such that for every positive integer r we have

Hr pj > (7‘+3)7’+3.

Jj=1 logp; c3

4.2 The Evidence

Theorem 4.1.
There exists an effectively computable constant k such that for all a, b, and ¢ € P with
(a,b,c)=1,¢>2, anda+b=c

24_4
log c < T(abc) 3 " loglog r(abc)

The following proof is due to Stewart and Yu.

Proof.
Let ¢4, cs, ... denote effectively computable positive constants. Without loss of generality

suppose a < b. Since a + b = ¢, ged(a,b,c) = 1, and ¢ > 2, it follows that a < b < ¢ and
that r(abc) > 6. Write

e (&2
a=p-p b=qt gl and e = 591 5,9,

where p1,....0¢, Q15+, Gu, S1,-- -,y are distinct primes with ¢ > 0,u > 1,v > 1, and
e, f,g € P. Denote the largest prime dividing a by p, except when ¢ = 1 and in this
situation simply put p, = 1. Similarly denote the largest primes dividing b and ¢ by p; and
pe respectively. Then for any prime p

log ¢
log2’

max{ordya, ordyb, ord,c} < (4.3)
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Observe that

logc = Zp‘c(ordpc logp) < (HIIJ\EZX{OpoC}) -log r(abc). (4.4)

Since (a,b) = (a,c) = (b,¢) = 1, for each prime p dividing e,

ord,c = ord, <_ib> — ord, (_ib - 1> < ordp(<%>4 —1). (4.5)

We now estimate
a

4
Ord”(<3> — 1) = ordy(p - ptt g g = 1)

for each prime p dividing ¢. We do this by employing Lemma 4.1.

Put © = (%)4 —1. If p=2, we put K = Q((¢), while if p > 2 we put K = Q(({4). Define ¢
and g as in statements (4.1) and (4.2). Now let p be a prime ideal of the ring of algebraic
integers of K lying above the prime p. Thus we have

ord,® < ord,0.

For n in Lemma 4.1, put n = t+u. As well let a1, ..., a, be the primes p1,...,pt,q1,-- -, qu
arranged in increasing order, except in the case when p > 2 and «; = 2. In this situation,
take a1 = 1+ instead of a; = 2 and note that 2* = (144)%. Since p|c and (a,c) = (b,c) = 1
we have ord,o; = 0 for ¢ = 1,...,t 4+ u. Clearly © # 0. Thus, by Lemma 4.3,

1

[K(00t, 017, g ) K] = g+t
Now put
B = max{8ey,...,8¢,8f1,...,8fu}
So, by (4.3),
log ¢
B <S8 .
=8 log 2
Hence by Lemma 4.1
ord,c < ord,© < (¢4 - (t+u))™ - p? - loglog ¢ - log log r(abc) - H | blogp. (4.6)
pla
Similarly if p[b then, by considering ord,((£)* — 1), we have
ordyb < (c5 - (t +v)) - p? - loglog ¢ - log log r(abc) - H | log p (4.7)
plac
and if pla then, by considering ord,((§)* — 1), we also have
ordya < (cg - (u+v))“*" - p? - loglog ¢ - loglog r(abc) - H b log p. (4.8)
plbc
It follows from (4.4) and (4.6) that
log z t+u 2 2
Toglog ¢ <(es- (t+uw)™™ p°- Hp‘ab log p - (log r(abc))”. (4.9)

21



Since b > 5 and ¢ > 3,

1
logb > logc —log2 > %. (4.10)
But (4.4) holds if we replace ¢ by b. So from (4.7)
log c t+ 2
—_— - (t vepp” - 1 - (1 be))”. 4.11
Toglogs < (@ (t+o)™ o™ [ | logp- (logr(abe)) (4.11)

Now either a > v/b or a < vb. Hence

for a > Vb, loga> 1. logh > 08¢
{ 80=377% 8 (4.12)

atby _ a L A V2
ora<+vb, log( b)—log(1+b)<log(1+\/l;)<\/5<\/a.

In the former case, we use (4.4) with ¢ replaced by a together with (4.8) to conclude that

logc e 2 ,
m < (Cﬁ i (u + ’U)) “pa” Hp\bc 1ng . (log r(abc)) X (4.13)
In the latter case,
b
0<log(—; = log <az > =g1-logsy+...g,-logs, — f1-logqy — -+ — fu-logqy. (4.14)

By Lemma 4.3 we may use Lemma 4.2 to obtain a lower bound for log 7. Comparing this
with the upper bound given by (4.12) we again obtain (4.13) with ¢ replaced by c7. Put
p=u+t+v. From (4.9), (4.11), (4.13), we deduce that

2

3
(M%g) <<c8-p>2ﬂ-<papbpc>2-(Hpabclogp) (b)) (415)

By Lemma 4.4,

p Pp3
p > i p
L) < <2 I pare = (4.16)
<69 i=1 log pi p#Pa.pype 108P

with the usual convention that the empty product is 1.

Thus, by(4.15),

3
(%) < c10” - (r(abe))? - (log r(abe))*2. (4.17)

Again by Lemma 4.4 we have
c10” < (r(abc))bglc:g%7 (4.18)
and the result now follows from (4.17). O
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Recently the authors improved this estimate. In [13], the better estimate
¢ < exp(cr - (r(abc))% - (log r(abc))?

where c¢q7 is an effectively computatble positive constant is established. The method em-
ployed to improve the estimate is a p—adic linear independence measure for logarithms of
algebraic numbers. This result, due to Yu, is an ultrametric analog of an Archimedean
measure due to E.M. Matveev.

A second estimate is also established. In particular, if a,b, c are relatively prime positive
integers such that a + b = c and ¢ > 2, then

log log log rx (abc)

¢< exp(p/ : (T(abC))clz. log log r(abc)

where c1o is an effectively computable constant, r.(abc) = max{r(abc),16}, and p’ =
min{pa, pp, pe}-
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Chapter 5

Good Triples Associated with the
abc Conjecture

In this chapter, we consider the notion of good triples. We will also state the known good
triples.
5.1 Preliminaries

Recall Oesterlé’s version of the abc Conjecture, namely, under the appropriate hypotheses,
he considered

_ _ logmax(la],[bl,lc]) __ _ loge
L= L(a’b’c) - log r(abc) — logr(abc)

and asked if these L’s have a bound. It is this form of the abc Conjecture that we will be
using for the topics of this chapter.

Theorem 5.1.
The abe Congecture holds iff limsup{L} < 1.

Proof.

(=)
Assume the abc Conjecture. So

_ logmax{la], o, ]}

= 1
L(abe) log r(abc) (51
log[u(e) - r(abe) *]
by the abc Conjecture (5.2)
log r(abc)
log pu(e)

=—" 7’ 11 . .

log r(abc) Tite (5:3)

Fix € > 0. Put k = u(e).

25



We want _logk
log (abc)
log k

3
log k

< r(abc) > M = e = .

< logr(abe) >

< ¢ for all but finitely many triples (a, b, ¢)

(5.4)

(5.5)

(5.6)

This holds since, by the hypotheses of the abc Conjecture, there exist only finitely many

(a,b,c)’s such that r(a,b,c) < M.

(<)
Suppose limsup{L} < 1. This is true iff

log ¢, <1

li _
S Canbnen)
log ¢,
— 2 - <1 f 1 .
Tog (anbncn) + € for n large

Then for n > N for some N € Z:

cn < r(anbncn)tTE.

Choose constants (), pz(e), ..., un(e) such that

ci < pi(e) - r(abe)tE for all i
Let

M@=1g%ﬁm@ﬂ
Thus

en < p(€) - r{anbpen) e for all n.

Recall from Proposition 2.1 our choices for ay, b,, and ¢,, namely:
an, =3 —1,b, =1, and ¢, = 3%".
So, for these values
B log 32"
" logr(32" —1-1-32")
log 32"

" log3 + log r(32" — 1)
27l

L

log 3

2 271/
log 3 +log2 - r(3 2,:1)

2™og 3

>
~ log3+1log2+log (32" — 1) — log 2»

\)

since r(3%") <

26

-<

32" 1
2TL

)

(5.13)
(5.14)

(5.15)

(5.16)



So

2"log 3
L, > . 5.17
“log3+1log (32" —1)— (n—1)-log2 ( )
Thus for n = 3:
8-log3

Lq > 5.1
3_10g3+10g(38—1)—2-10g2 (5.18)
~ 1.255203.... (5.19)

In particular, L3 > 1.

It is easy to see that the fraction on the RHS of inequality (5.17) increases as n gets large.
Hence there are infinitely many triples (a,, by, ¢,) such that L, > 1.
We have just shown

Theorem 5.2.

The abc Congecture holds iff limsup{L,} = 1.

5.2 Good Triples

Definition 5.1 (Good Triple).

For the abc Conjecture, we say that a triple (a,b,c) is a good triple if L > 1.4.

So, by Theorem 5.2 we get

Corollary 5.1.

If the abc Conjecture holds, there are only finitely many good triples.

The following is the list (Table 5.1) of known good abc triples as of January 2, 2002:

Table 5.1: Known Good abc Triples

No. L a b C Discoverer(s)
1. 1.622912 2 310109 237 E.R.
2. 1.625991 1172 32 .5% .73 22T .23 B.W.
3. 1.623490 19 - 1307 7.292 .31 28 . 372 . 57 Je.B. & Ju.B.
4. 1.580756 283 51T . 137 28 .38 173 Je.B. & Ju.B., A.N.
5. 1.567887 1 2.37 5% .7 B.W.
6. 1.547075 73 310 211 . 29 B.W.
7. 1.544434 72 417 . 3113 111% . 132 . 79 2.3%3.5%% . 953 A.N.
8. 1.536714 53 29 . 317 . 132 11° .17 - 313 . 137 H.R. & P.M.
9. 1.522699 13- 19° 230 .5 313117 .31 A.N.
10. 1.522160 318 .23 2269 173 .29 - 31 210 .52 . 715 A.N.
11. 1.502839 239 5% . 17° 210 . 377 Je.B. & Ju.b., A.N.
12. 1.497621 52 . 7937 713 218 .37 . 132 B.W.
13. 1.492432 27 .11 32 . 1310 .17 . 151 - 4423 59 . 139° A.N.
14. 1.491590 73 21377 9412 3161037 . 127 A.N.
15. 1.489245 227 117 .19 - 2972 311 .53 .73 41 A.N.
16. 1.488865 112 39 .13 21T .53 B.W.
17. 1.482910 37 215 3% .5 B.W.
18. 1.481322 517 .19 25.3. 713 117 . 377 . 353 A.N.
19. 1.474450 1 316 .7 2% .11 -23.53% A.N.
20. 1.474137 72 210 .11 . 532 315 Je.B. & Ju.B., A.N.
21. 1.471298 37.199 118 2% .57 .73 Je.B. & Ju.B., A.N.
22. 1.465676 177 .67 219 . 1377 315 . 5% .13 . 892 H.R. & P.M.
23. 1.465520 712 217673 . 461 313 .11 197 A.N.
24. 1.461924 27 .52 75 a1 13% B.W.
Table 5.1 continued on next page
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continued from previous page
L a

No. b c Discoverer(s)

25. 1.459425 511 .31.191 28 . 713 .89 . 8592 330 . 137 . 277 K.V.

26. 1.457794 512 . 172 . 312 . 1699 2317 . 29 21932 .11.1310 .47 | AN.

27. 1.457790 3% . 512 21613 . 597 71147 113 A.N.

28. 1.457482 3109 - 1317 522 . 89 25 . 112 . 197 . 977 T.S.

29. 1.457066 32 .52 2% . 173 . 317 710 . 257 A.N.

30. 1.456203 225 .19 3.51°.1033 117 . 13% . 477 A.N.

31. 1.455673 1 25 .3.52 7% B.W.

32. 1.455126 32 .11° 235 19° . 13883 Je.B. & Ju.B.

33. 1.455024 232 .31° 225 . 7. 1093 319 .52 . 192 . 29 T.S.

34. 1.454435 78 . 2707 210 510 593 318 . 117 .43 T.S. & A.R.

35. 1.453343 13% 2.3%. 77,119 .23 57 . 1037 . 2399 A.N.

36. 1.452613 219 .13 . 103 711 311 .55 . 112 B.W.

37. 1.451344 3% .7 50 . 67 220 Je.B. & Ju.B., A.N.
38. 1.450858 35 .73 213233 .59 55 . 19° Je.B. & Ju.B.

39. 1.450026 1 3% .53 .77 .23 213 11T .13 .41 A.N.

40. 1.449651 1 3.5 472 218 .79 G.F.

41. 1.447977 117 . 43 59 .72 . 13% .97 2% .3.737 A.N.

42. 1.447743 89 711 220 .33 .53 A.N.

43. 1.447591 317 221 .55 . 23.7993 472 . 307° T.S.

44. 1.446873 4097 221 11° .17 .19 - 397 35 .75 . 139 T.S.

45. 1.446246 32.57 .79 229 .13 117 - 192 A.N.

46. 1.445064 2. 1372 58 3.19% Je.B. & Ju.B., A.N.
47. 1.444596 31T . 5% . 4229 17° . 23% . 313 232 .72 . 1093 T.S. & A.R.

48. 1.444199 219263 83 - 167° 5% . 297 H.R. & P.M.

49. 1.443502 22 . 11% .17 517 . 13577 3%.239 .71 A.N.

50. 1.443307 1 2127 .53 35 .72 .43 B.W.

51. 1.443284 32.19° 511 217373 Je.B. & Ju.B., A.N.
52. 1.442014 25 . 112 .19 515 . 372 a7 37 . 71T 743 A.N.

53. 1.441814 316232 213292 . 373 59 . 117 .13 A.N.

54. 1.441519 73 . 295 . 1517 2% . 518 .97 . 919 327 . 137 A.N.

55. 1.441441 3173 2.17-41° 3.57 .70 A.N.

56. 1.440969 3% . 237 31° 215 .53 .7 Je.B. & Ju.B., A.N.
57. 1.440264 235 .72 177 .19 327 . 1072 515 . 372 . 2311 A.N.

58. 1.439063 1 2% .37 . 547 58 . 72 B.W.

59. 1.438357 1 19 - 509° 219 3% 59 Je.B. & Ju.B.

60. 1.436180 2.13° 76 1732 313 . a72 A.N.

61. 1.435006 210 7 57 3% .13 B.W.

62. 1.433956 119 - 43 2% .23% 47 . 2772 51T .72 137 A.N.

63. 1.433464 25 .31 50 . 710 . 237 119 . 691 - 1433 A.N.

64. 1.433452 55 . 8111 19127 . 29 21933 177 . 2332 A.N.

65. 1.433043 3172 35 .59 25 . 237 .53 Je.B. & Ju.B., A.N.
66. 1.432904 22T 7% .17 . 82097 512 . 7432 A.N.

67. 1.432143 317 . 67 77 . 11° . 2272 . 547 217 .57 . 17° T.S.

68. 1.431815 617 . 149 223 .13 . 29° 3% .5.71. 732 T.S.

69. 1.431623 177 . 793 . 211 229 .23 . 292 519 A.N.

70. 1.431260 227 .75 326 .11.19.139 52 .13% . 43T . 179 A.N.

71. 1.431183 21T 39 .73 . 113 .19 29 . 2777 K.V.

72. 1.431092 29 . 1972 595 . 73 3% .57 .72.31° A.N.

73. 1.430418 193 2.5% 192 .11937 39 .13 A.N.

74. 1.430176 35 .72 .13 . 1272 258 .61 . 137 511 . 195 Je.B. & Ju.B.

75. 1.429873 29 .37.97° 5°.7.897 320 177 . 3323 A.N.

76. 1.429552 37 .29 70 . 432 227 .13 A.N.

77. 1.429007 321 72115 . 199 2.13% .17 A.N.

78. 1.428908 732 21T 117133 311 .55 . 7.17 Je.B. & Ju.B.

79. 1.428402 517 .11 35 .75 . 132 . 251 221 . 237 A.N.

80. 1.428323 11 73 1672 2. 317 Je.B. & Ju.B., A.N.
81. 1.427566 73 11° . 1577 22 . 31075 Je.B. & Ju.B., A.N.
82, 1.427488 617 220 . 413 . 832 322 .5.19 - 167 A.N.

83. 1.427115 310 78 .23 29 . 50972 A.N.

84. 1.426753 31 25 . 510 . 192 3.7° 115 . 417 Je.B. & Ju.B., A.N.
85. 1.426565 3 55 27 B.W.

86. 1.423381 52 .11 133 - 14832 229 .32 Je.B. & Ju.B., A.N.
87. 1.422083 17 - 197 3% . 510 .72 . 293 213137 . 613 K.V.

88. 1.421828 27 .59 512 .19 33 . 117 . 17° Je.B. & Ju.B., A.N.
89. 1.421575 57 11° . 137 215 . 72 17 A.N.

90. 1.421371 67 - 2635 310 .59 . 235 210 .76 132 . 413 T.S.

91. 1.421008 29 . 373 .89 39 .57 .31 103° A.N.

92. 1.420437 78 .19 215 .52 . 372 3. 177 A.N.

93. 1.420320 313 221 5T 1997 78 . 832 . 1307 A.N.

94. 1.420232 217310 43 . 461 11° . 297 . 83 . 3972 520 T.S.

95. 1.420036 233 39 .57 .31 27 .73 .13 . 17% A.N.

96. 1.419292 197 . 372 3T .51 .79 28 315 . 732 A.N.

97. 1.418919 72 217 . 1817 38 .8097 Je.B. & Ju.B., A.N.
98. 1.418233 13 - 3499 239 3% . 51T . 139 Je.B. & Ju.B.

99. 1.417633 55 . 1609 29 .31 135 15237 Je.B. & Ju.B.

100. | 1.416793 39 . 43% 513 . 5323 27 .73 .23° A.N.

Table 5.1 continued on next page
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continued from previous page
No. L a b c Discoverer(s)
101. | 1.416438 417 . 33941 312197 223 .59 .29 Je.B. & Ju.B.
102. | 1.416078 322 .37 . 204749 28 . 527 13%7.31% . 1037 . 113 A.N.
103. | 1.416051 3.5%.599 11 -23% 222 . 593 Je.B. & Ju.B., A.N.
104. | 1.415633 21623 39 .5% . 117 . 312 .43 1911 .59 . 7207 A.N.
105. | 1.415561 73 513181 27 .3.11.137.19° A.N.
106. | 1.415273 3.23% 513 .31 2. 7% .1993 H.R. & P.M.
107. | 1.415090 | 2% .52 .713.132 . 463 3% . 4312 1172 . 3897 . 6841 A.N.
108. | 1.414503 31T . 5% 7.11° .43 217173 X.G.
109. | 1.414352 37 . 511 . 72 25T . 112 29° . 73 - 4197 - 1039 A.N.
110. 1.413698 28 . 5. 137 312 13° Je.B. & Ju.B., A.N.
111. | 1.413279 52 37 . 133 28 . 13772 Je.B. & Ju.B., A.N.
112. | 1.413166 35 . 1575 . 283 2310 230 .52 112 .13 Je.B. & Ju.B., A.N.
113. | 1.412893 13 - 733 39 .55 .89° 21972315 . 467 K.V.
114. | 1.412681 5 311 210173 B.W.
115. | 1.411682 793 35 .7.11-13° 218433 A.N.
116. | 1.411615 3132 . 1049 239 . 297 . 107 193 . 139° Je.B. & Ju.B., A.N.
117. | 1.410830 13- 297 3.710 . 197 25 5. 432 1397 A.N.
118. | 1.410683 672 . 2399 313 . 1073 26 . 515 Je.B. & Ju.B.
119. | 1.410044 213313 7113 13- 29 - 435 . 673 520 .17 A.N.
120. | 1.409742 512 22 . 32T . 437 . 52859 710133 177 . 1512 A.N.
121. | 1.408973 72 83° 22 . 312 17109 Je.B. & Ju.B., A.N.
122. | 1.408866 212 315 . 192 . 732 . 3343 5.41% .193° A.N.
123. | 1.408577 2.7-11-13° 23 . 437 . 4497 316 . 537 . 972 T.S. & A.R.
124. | 1.407787 27 .13 73 415 . 181 31T . 5. 675 A.N.
125. | 1.407404 32 .233 237 . 2937 21552135 . 317 A.N.
126. | 1.407208 241 21237 50 . 1181 118 . 132 Je.B. & Ju.B.
127. | 1.407051 37 . 163 2% .11% .17 512 Je.B. & Ju.B., A.N.
128. | 1.406524 79 32 .57 .13 216197 .67 N.E. & J.K.
129. | 1.406420 2193673 517 .197 - 281 132 . 2510 A.N.
130. | 1.406097 216 .41 . 71 315 .72 197 A.N.
131. | 1.406080 13% . 193 2. 1112 .1123 - 76081 358 . 397 A.N.
132. | 1.406079 572 132 . 437 21T .3 Je.B. & Ju.B., A.N.
133. | 1.405785 133 29 . 372 32 .57 A.N.
134. | 1.405443 2271 .35 5. 195 . 592 710 167 A.N.
135. | 1.404484 631 226 . 5. 297 3% . 710 .37 A.N.
136. | 1.404264 1 39 .72 197 27 .57 .19 A.N.
137. | 1.403980 512 . 227 28 .3.73.237 .41 11-19° - 67° A.N.
138. | 1.403958 37 .103 28 112 135 412 47 517 . 533 A.N.
139. | 1.403482 3%.13 25 . 11.197 . 733 52 . 711 A.N.
140. | 1.402864 5. 67° - 1272 - 19219 1318 .37 . 277 2. 315 .72 3110 A.N.
141. | 1.402737 3%7.19.61-1732 211 710 52 . 1497 . 503 - 929° K.V.
142. | 1.402183 312 . 5% 79 . 312 29 115 . 571 A.N.
143. | 1.401993 3.517. 199 72115 177 41 230 . 137 A.N.
144. | 1.401979 233 .5 39 .76 .317 .97 112193 . 1277 A.N.
145. | 1.401419 310 .57 401 135 . 473 229 . 312 T.S. & A.R.
146. | 1.401291 222 7-67° - 137 3.57.13% . 3532 T.S.
147. | 1.401261 3% . 1172 .47 . 3597 1713 221 .57 . 27492 K.V.
148. | 1.401156 229 .7 32 .312 . 737 . 349 515 . 532 A.N.
149. | 1.400812 231 . 712 7171231 2% .57 . 117 . 297 A.N.
150. | 1.400588 137 175 . 463 221 . 732 A.N.
151. | 1.400317 217 . 313 5 7.29% . 712 117 137 .53 A.N.
152. | 1.400262 518 . 6359 32 . 475 . 733 271970 . 79 A.N.
Discovers of the Known Good abc Triples
Initials Name(s)
Je.B. & Ju.B. Jerzy Browkin and Juliusz Brzezinski
G.F. Gerhard Frey
N.E. & JK. Noam Elkies and Joe Kanapka
A.N. Abderrahmane Nitaj
H.R. & P.M. Herman te Riele and Peter Montgomery
E.R. Eric Reyssat
T.S. & AR. Traugott Schulmeiss and Andrej Rosenheinrich
B.W. Benne M.M. de Weger
K.V. Kees Visser
X.G. Xiao Gang
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5.3 Computations Regarding Good Triples

It seems that the values of the good triples displayed in Table 5.1 were discovered by means
of various algorithms. Hence a brute force approach was taken to confirm that the stated
values were indeed all possible good triples over a particular interval. Initially a program
was written in Matlab but was found to be too inefficient. With the aid of Joel Mejeur (now
with the Department of Defense) and Michael Saum (University of Tennessee, Knoxville),
a program was written in C and then run in parallel (using MPI) on a cluster of between
24 and 30 Intel 450 MHz Pentium III computers. Initially the program checked for good
triples over the intervals 1 < a < 100,000 and a < b < 100,000. Running time for this case
was approximately four and one-half days. Note that runs covering even larger intervals are
underway and results will be summarized in a future paper.

Results (Good Triples for 1 < a,b < 100,000 (Initial Run)).

a=1, b = 2400, L =1.455673 (No. 31) (5.20)
a=1, b= 4374, L = 1.567887 (No. 5) (5.21)
a=3, b= 125, L = 1.426565 (No. 85) (5.22)
a =37, b = 32768, L = 1.482910 (No. 17) (5.23)
a = 343, b = 59049, L = 1.547075 (No. 6) (5.24)
a = 7168, b = 78125, L = 1.435006 (No. 61) (5.25)

(No. -) refers to the number in Table 5.1.
It is worthwhile to point out that (5.22) is the good abc triple with the smallest ¢ value.

Results (Further Good Triples for 1 < a,b < 1,000,000 (Further Run)). !

a=5, b= 177147, L =1.412681 (No. 11/) (5.26)
a=1, b = 512000, L = 1.443307 (No. 50) (5.27)
a =121, b = 255879, L = 1.488865 (No. 16) (5.28)
a = 338, b = 390625, L = 1.445064 (No. 46) (5.29)
a = 2197, b = 700928, L = 1.405785 (No. 133) (5.30)

5.4 Program Listings

5.4.1 abc-mpi.c

/ /
/* abc-mpi.c */
/% */
/* Written by J. Mejeur (May 2002) */
/* Revised by M. Saum (July 2002) */
/ /

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <mpi.h>
#include <getopt.h>
#include <sys/time.h>

1This is a work in process. With some improvements we have hope of extending the ranges to 10,000,000.
The interested reader may also see [7] regarding similar unpublished work by Joe Kanapka.
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struct
struct

timeval t_start, t_stop;
timezone tz_dummy;

int get_primes(int n, unsigned int *primes);

inline

unsigned int get_r(unsigned int n, unsigned int *primes, int num_primes);

unsigned int gcd(unsigned int a, unsigned int b);

double

diff_time(struct timeval *, struct timeval *);

int main(int argc, char **xargv) {
unsigned int a, b, c, i;
double *rs;
unsigned int num_primes;
unsigned int max=10000, min;
unsigned int *primes;
double L;
char filename[256];
FILE *fp=NULL;

int count=0;
int rank=0, size;

/*

Set up MPI communication */

MPI_Comm world;

MPI_Init(&argc, &argv);
world = MPI_COMM_WORLD;
MPI_Comm_rank(world, &rank);
MPI_Comm_size(world, &size);

/*

Get command line options */

min=0;
while(1) {

}

/*
/*
/*
/*
/*

c=getopt(argc, argv, "l:m:");

if (c==-1)
break;

switch(c) {

case ’1’:
min=(unsigned int) atoi(optarg);
break;

case ’m’:
max=(unsigned int) atoi(optarg);
break;

Prime numbers calculated up to 2*max + 1 */
to ensure that prime factorization can */
occur with ¢ (=a+b). */
Primes calculated only on master (rank=0) */
and sent to all slave processors via MPI. */

if (rank==0) {

gettimeofday(&t_start,&tz_dummy) ;
primes=calloc(2*max+1, sizeof(unsigned int));

printf ("Generating list of primes\n");
fflush(stdout);
nu.m_primes=get_primes(2*max+1 N primes) H
printf ("Found %d primes.\n", num_primes);
fflush(stdout);

for(a=1ja<sizeja++) {
MPI_Send(&num_primes, 1, MPI_INT, a, 100, world);
MPI_Send(primes, num_primes, MPI_UNSIGNED, a, 101, world);

} else {

}

/*
/*
/*
/*
/*

rs

MPI_Recv(&num_primes, 1, MPI_INT, O, 100, world, MPI_STATUS_IGNORE);
primes=calloc(num_primes, sizeof(unsigned int));
MPI_Recv(primes, num_primes, MPI_UNSIGNED, O, 101, world, MPI_STATUS_IGNORE);

rs array contains log of radical for each number 1..2*max+1l */
rs array calculated on each processor. No need to send via */
MPI, as send traffic could be very large. A good assumption */
is that all processors participating in the MPI VM are of */
same order of magnitude speed wise. */
= calloc(2*max+1,sizeof (double));

for(i=1;i<=2%max+1;i++)

rs[i-1] = log(get_r(i,primes,num_primes));

if (rank==0) {

}

/*
/*

sprintf (filename, "abc.out.%d", rank);

fp=fopen(filename, "w");

gettimeofday (&t_stop,&tz_dummy) ;

fprintf(fp,"Time to gen primes and send = %g\n", diff_time(&t_start,&t_stop));
fflush(fp);

Main loop. Each processor starts with different a, increments */
by number of processors each time. */

for (a=rank+1;a<=max;a+=size) {

if (rank==0) {
fprintf (fp,"rank(%d) : working on a=)d\n",rank, a);
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108 fflush(fp);

109 s

110

111 count++;

112 if (a<=min)

113 for (b=min;b<max;b++) {

114 /* No need to calculate gcd if both a,b divisible by same small prime */
115 ifC 1O 1(@k2) && '(%2) ) 11 1(ak3) && '(b%3) ) || ( '(a%kb) && !'(%B) ) || C '(ak7) && '(b%7) ) ) ) {
116 if(ged(a, b) == 1) {

117 c=a+b;

118

119 L=log((double)c) / (rsla-1l+rs[b-1l+rs[c-11);
120

121 if(L > 1.4) {

122 printf (" ([%d]:%d,%d,%f)\n", rank,a, b, L);
123 fflush(stdout);

124 ¥

125 ¥

126 ¥

127 s

128

129

130 if (a>min)

131 for(b=a;b<=max;b++) {

132 /* No need to calculate gcd if both a,b divisible by same small prime */
133 ifC 1O 1(@%k2) && '(%2) ) 1] ( 1(ak3) && '(b%3) ) || ( '(a%kb) && !'(%B) ) || C '(a%7) && '(b%7) ) ) ) {
134 if( ged(a, b) == 1) {

135 c = at+b;

136

137 L=log((double)c) / (rsla-1l+rs[b-1l+rs[c-11);
138

139 if (L > 1.4) {

140 printf (" ([%d]:%d,%d,%f)\n", rank,a, b, L);
141 fflush(stdout);

142 ¥

143 ¥

144 ¥

145 s

146

147 s

148

149 /* Ensure all slave processors are done computing */

150 MPI_Barrier(world);

151

152 if (rank==0) {

153 gettimeofday (&t_stop,&tz_dummy) ;

154 fprintf(fp,"\nTotal Time = %g\n", diff_time(&t_start,&t_stop));
155 fclose(fp);

156 printf ("\n\n");

157 s

158

159 /* MPI Cleanup and shutdown */

160 MPI_Finalize();

161

162 return 0;

163 s

5.4.2 util.c

#include <stdlib.h>
#include <stdio.h>
10 #include <math.h>

1 / /
2 /* util.c */
3 /* */
4 /* Written by J. Mejeur (May 2002) */
5 /* Revised by M. Saum (July 2002) */
6 / /
7
8
9

11

12 unsigned int gcd(unsigned int a, unsigned int b) {
13 /* recursive routine to calculate gcd(a,b) */
14

15 int r;

16

17 r = (bla);

18 if (r==0)

19 return a;

20 return gcd(r, a);

21 }

22

23 unsigned int get_primes(int n, unsigned int *primes) {
24 /* Routine taken and altered from Octave’s list_primes.m */
25

26 unsigned int count;

27 int i, p;

28 int a, d;

29 int is_prime, is_unknown;

30

31 if (n==2) {

32 primes[0]=2;
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33
34
35

realloc(primes, sizeof(unsigned int));
return 1;

¥

primes[0]=2;
primes[1]=3;

count=2;
i=3;
p=5;

while(p<n) {

is_prime = 1;
is_unknown = 1;
d = 3;
while(is_unknown) {
a = floor ( p / (float)d);
if (a<=4d) {
is_unknown = 0;

¥

if ( (a*xd) == p) {
is_prime = 0;
is_unknown = 0;

if (is_prime) {
primes[count] = p;
count++;
s
p+=2;
s

realloc( primes, count*sizeof(unsigned int));

return count;

}

inline unsigned int get_r(unsigned int n, unsigned int *primes, int num_primes) {

/* Check the list of primes to see if it is good.
* If k still equals 1, the number must have been
* prime, therefore set k to just be the number */

int i;
unsigned int k;

k=1;
for(i=0;i<num_primes;i++) {
if (primes[i] > n)
break;
else if ( (nprimes[i])==0 )
k=k*primes[i];

¥
if (k==1) {
k=n;
¥
return k;
¥
/

/* FUNCTION diff_time(t1,t2)

/

double diff_time(struct timeval * t_1, struct timeval * t_2) {
double diff;

diff = (double) ((t_2->tv_sec+t_2->tv_usec/1.0E6)
- (t_1->tv_sec+t_1->tv_usec/1.0E6));

return (diff);
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*/

/* Returns a decimal value (in secs) of elapsed time between t1 and t2 */

/
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