
CANADIAN MATHEMATICAL OLYMPIAD 2011

PROBLEMS AND SOLUTIONS

(1) Consider 70-digit numbers n, with the property that each of the digits 1, 2, 3, . . . , 7
appears in the decimal expansion of n ten times (and 8, 9, and 0 do not appear). Show
that no number of this form can divide another number of this form.

Solution. Assume the contrary: there exist a and b of the prescribed form, such that
b ≥ a and a divides b. Then a divides b− a.

Claim: a is not divisible by 3 but b− a is divisible by 9. Indeed, the sum of the digits
is 10(1 + · · · + 7) = 280, for both a and b. [Here one needs to know or prove that an
integer n is equivalent of the sum of its digits modulo 3 and modulo 9.]

We conclude that b−a is divisible by 9a. But this is impossible, since 9a has 71 digits
and b has only 70 digits, so 9a > b > b− a. �

(2) Let ABCD be a cyclic quadrilateral whose opposite sides are not parallel, X the inter-
section of AB and CD, and Y the intersection of AD and BC. Let the angle bisector
of ∠AXD intersect AD,BC at E,F respectively and let the angle bisector of ∠AY B

intersect AB,CD at G,H respectively. Prove that EGFH is a parallelogram.

Solution. Since ABCD is cyclic, ∆XAC ∼ ∆XDB and ∆Y AC ∼ ∆Y BD. There-
fore,

XA

XD
=

XC

XB
=

AC

DB
=

Y A

Y B
=

Y C

Y D
.

Let s be this ratio. Therefore, by the angle bisector theorem,

AE

ED
=

XA

XD
=

XC

XB
=

CF

FB
= s,

and
AG

GB
=

Y A

Y B
=

Y C

Y D
=

CH

HD
= s.

Hence, AG
GB

= CF
FB

and AE
ED

= DH
HC

. Therefore, EH||AC||GF and EG||DB||HF . Hence,
EGFH is a parallelogram. �

(3) Amy has divided a square up into finitely many white and red rectangles, each with sides
parallel to the sides of the square. Within each white rectangle, she writes down its width
divided by its height. Within each red rectangle, she writes down its height divided by
its width. Finally, she calculates x, the sum of these numbers. If the total area of the
white rectangles equals the total area of the red rectangles, what is the smallest possible
value of x?
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Solution. Let ai and bi denote the width and height of each white rectangle, and let
ci and di denote the width and height of each red rectangle. Also, let L denote the side
length of the original square.

Lemma: Either
∑

ai ≥ L or
∑

di ≥ L.

Proof of lemma: Suppose there exists a horizontal line across the square that is
covered entirely with white rectangles. Then, the total width of these rectangles is at
least L, and the claim is proven. Otherwise, there is a red rectangle intersecting every
horizontal line, and hence the total height of these rectangles is at least L. �

Now, let us assume without loss of generality that
∑

ai ≥ L. By the Cauchy-Schwarz
inequality,

(

∑ ai

bi

)

·
(

∑

aibi

)

≥
(

∑

ai

)2

≥ L2.

But we know
∑

aibi =
L2

2
, so it follows that

∑ ai
bi

≥ 2. Furthermore, each ci ≤ L, so

∑ di

ci
≥

1

L2
·
∑

cidi =
1

2
.

Therefore, x is at least 2.5. Conversely, x = 2.5 can be achieved by making the top half
of the square one colour, and the bottom half the other colour. �

(4) Show that there exists a positive integer N such that for all integers a > N , there exists
a contiguous substring of the decimal expansion of a that is divisible by 2011. (For
instance, if a = 153204, then 15, 532, and 0 are all contiguous substrings of a. Note that
0 is divisible by 2011.)

Solution. We claim that if the decimal expansion of a has at least 2012 digits, then
a contains the required substring. Let the decimal expansion of a be akak−1 . . . a0. For
i = 0, . . . , 2011, Let bi be the number with decimal expansion aiai−1 . . . a0. Then by
pidgenhole principle, bi ≡ bj mod 2011 for some i < j ≤ 2011. It follows that 2011
divides bj − bi = c · 10i. Here c is the substring aj . . . ai+1. Since 2011 and 10 are
relatively prime, it follows that 2011 divides c. �

(5) Let d be a positive integer. Show that for every integer S, there exists an integer n > 0
and a sequence ǫ1, ǫ2, . . . , ǫn, where for any k, ǫk = 1 or ǫk = −1, such that

S = ǫ1(1 + d)2 + ǫ2(1 + 2d)2 + ǫ3(1 + 3d)2 + · · ·+ ǫn(1 + nd)2.

Solution. Let Uk = (1 + kd)2. We calculate Uk+3 − Uk+2 − Uk+1 + Uk. This turns
out to be 4d2, a constant. Changing signs, we obtain the sum −4d2.

Thus if we have found an expression for a certain number S0 as a sum of the desired
type, we can obtain an expression of the desired type for S0 + (4d2)q, for any integer q.
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It remains to show that for any S, there exists an integer S′ such that S′ ≡ S

(mod 4d2) and S′ can be expressed in the desired form. Look at the sum

(1 + d)2 + (1 + 2d)2 + · · ·+ (1 +Nd)2,

where N is “large.” We can at will choose N so that the sum is odd, or so that the sum
is even.

By changing the sign in front of (1 + kd)2 to a minus sign, we decrease the sum by
2(1+kd)2. In particular, if k ≡ 0 (mod 2d), we decrease the sum by 2 (modulo 4d2). So

If N is large enough, there are many k < N such that k is a multiple of 2d. By
switching the sign in front of r of these, we change (“downward”) the congruence class
modulo 4d2 by 2r. By choosing N so that the original sum is odd, and choosing suitable
r < 2d2, we can obtain numbers congruent to all odd numbers modulo 4d2. By choosing
N so that the original sum is even, we can obtain numbers congruent to all even numbers
modulo 4d2. This completes the proof. �
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