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A1 Define a growing spiral in the plane to be a sequence of points with integer coordinates
P0 = (0, 0), P1, . . . , Pn such that n ≥ 2 and:

The directed line segments P0P1, P1P2, . . . , Pn−1Pn are in successive coordinate directions
east (for P0P1), north, west, south, east, etc.

The lengths of these line segments are positive and strictly increasing.
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How many of the points (x, y) with integer coordinates 0 ≤ x ≤ 2011, 0 ≤ y ≤ 2011 cannot
be the last point, Pn, of any growing spiral?

A2 Let a1, a2, . . . and b1, b2, . . . be sequences of positive real numbers such that a1 = b1 = 1 and
bn = bn−1an − 2 for n = 2, 3, . . . . Assume that the sequence (bj) is bounded. Prove that

S =

∞∑
n=1

1

a1 · · · an

converges, and evaluate S.

A3 Find a real number c and a positive number L for which

lim
r→∞

rc
∫ π/2
0 xr sinx dx∫ π/2

0 xr cosx dx
= L.
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A4 For which positive integers n is there an n × n matrix with integer entries such that every
dot product of a row with itself is even, while every dot product of two different rows is odd?

A5 Let F : R2 → R and g : R → R be twice continuously differentiable functions with the
following properties:

F (u, u) = 0 for every u ∈ R;

for every x ∈ R, g(x) > 0 and x2g(x) ≤ 1;

for every (u, v) ∈ R2, the vector ∇F (u, v) is either 0 or parallel to the vector 〈g(u),−g(v)〉.
Prove that there exists a constant C such that for every n ≥ 2 and any x1, . . . , xn+1 ∈ R, we
have

min
i 6=j
|F (xi, xj)| ≤

C

n
.

A6 Let G be an abelian group with n elements, and let

{g1 = e, g2, . . . , gk} ( G

be a (not necessarily minimal) set of distinct generators of G. A special die, which randomly
selects one of the elements g1, g2, . . . , gk with equal probability, is rolled m times and the
selected elements are multiplied to produce an element g ∈ G.

Prove that there exists a real number b ∈ (0, 1) such that

lim
m→∞

1

b2m

∑
x∈G

(
Prob(g = x)− 1

n

)2

is positive and finite.
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B

B1 Let h and k be positive integers. Prove that for every ε > 0, there are positive integers m
and n such that

ε <
∣∣h√m− k

√
n
∣∣ < 2ε.

B2 Let S be the set of all ordered triples (p, q, r) of prime numbers for which at least one rational
number x satisfies px2 + qx + r = 0. Which primes appear in seven or more elements of S?

B3 Let f and g be (real-valued) functions defined on an open interval containing 0, with g nonzero
and continuous at 0. If fg and f/g are differentiable at 0, must f be differentiable at 0?

B4 In a tournament, 2011 players meet 2011 times to play a multiplayer game. Every game is
played by all 2011 players together and ends with each of the players either winning or losing.
The standings are kept in two 2011 × 2011 matrices, T = (Thk) and W = (Whk). Initially,
T = W = 0. After every game, for every (h, k) (including for h = k), if players h and k tied
(that is, both won or both lost), the entry Thk is increased by 1, while if player h won and
player k lost, the entry Whk is increased by 1 and Wkh is decreased by 1.

Prove that at the end of the tournament, det(T + iW ) is a non-negative integer divisible by
22010.

B5 Let a1, a2, . . . be real numbers. Suppose there is a constant A such that for all n,

∫ ∞
−∞

(
n∑
i=1

1

1 + (x− ai)2

)2

dx ≤ An.

Prove there is a constant B > 0 such that for all n,

n∑
i,j=1

(
1 + (ai − aj)

2
)
≥ Bn3.

B6 Let p be an odd prime. Show that for at least (p + 1)/2 values of n in {0, 1, 2, . . . , p− 1},

p−1∑
k=0

k!nk is not divisible by p.
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