A Baire Category Approach to the Existence of Solutions of Multivalued Differential Equations in Banach Spaces

By

F. S. De Blasi and G. Pianigiani

(Università degli Studi, Firenze, Italy)

§ 1. Introduction.

Let X be a real Banach space. Let \mathcal{B} be the set of all closed convex bounded subsets of X which have nonempty interior. In this note we study the solution sets of the multivalued differential equations

(1.1)
$$\dot{x} \in F(t, x) \quad x(t_0) = x_0 \quad \left(\cdot = \frac{d}{dt} \right),$$

$$\dot{x} \in \partial F(t, x) \qquad x(t_0) = x_0.$$

Here, F is a mapping from an open subset of $\mathbb{R} \times X$ into \mathscr{B} and $\partial F(t, x)$ denotes the boundary of F(t, x).

Our main result states that, if X is reflexive and F continuous in the Hausdorff metric, then (1.2) has at least one solution. We obtain this as an immediate consequence of a more general theorem which establishes that almost all (in the sense of the Baire category) solutions of (1.1) are actually solutions of (1.2).

If X has finite dimension, our existence result is a special case of Filippov's theorem [5]; but it is new when X is infinite dimensional. In this case most existence theorems refer to equation (1.1) and are obtained under compactness assumptions on F ([1], [3]). Further properties of multivalued differential equations (1.1) with nonconvex $F(t, x) \subset \mathbb{R}^n$ can be found in [7].

We adapt here a method used by Cellina [2] in the study of a differential inclusion in R.

Denote by \mathcal{M}_F (resp. $\mathcal{M}_{\partial F}$) the set of all solutions of (1.1) (resp. (1.2)). We shall prove, first of all, that \mathcal{M}_F is nonempty and that, under the metric of uniform convergence, is a complete metric space. We show, next, that $\mathcal{M}_{\partial F}$ can be expressed as a countable intersection of open dense subsets of \mathcal{M}_F . Thus $\mathcal{M}_{\partial F}$ is a dense G_{∂} -subset of \mathcal{M}_F , hence it is nonempty and (1.2) has solutions.

When F is single valued, (1.1) and (1.2) reduce to the same ordinary differential equation which, as is well known, has not necessarily solutions if F is only continuous and X is an infinite dimensional space ([6], [9]). This shows that for con-

tinuous F, in infinite dimensional Banach spaces, the existence of solutions of (1.2) can fail, without the assumption that F(t, x) have nonempty interior.

§ 2. Notations and main results.

Let X be a real Banach space with norm $|\cdot|$. In any Banach space we denote by S(u, r) the open ball with centre at u and radius r>0. We put $S=S(0, 1)\subset X$. For any set $A\subset X$, ∂A stands for the boundary of A.

Denote by \mathcal{K} (resp. \mathcal{B}) the space of all nonempty subsets of X which are bounded (resp. closed convex bounded with nonempty interior). \mathcal{K} is endowed with the Hausdorff pseudometric

$$h(A, B) = \inf\{t > 0 \mid A \subset B + tS, B \subset A + tS\}, \quad A, B \in \mathcal{K}.$$

As well known, h becomes a metric when is restricted to \mathscr{B} . For any $x \subset X$ and $A \subset X$, $A \neq \phi$, we set $d(x, A) = \inf\{|x-a| | a \in A\}$. In the space $\mathbb{R} \times X$ we use the norm $|(t, x)| = \max\{|t|, |x|\}, (t, x) \in \mathbb{R} \times X$.

Let F be a continuous mapping from a nonempty open subset of $\mathbb{R} \times X$ into \mathscr{B} . Let (t_0, x_0) be in the domain of F. We wish to prove the existence of (local) solutions of (1.1) and (1.2). To this end, if we consider the restriction of F to a nonempty open subset of its domain, say $\Omega_2 = J_{2a} \times D_{2R}$, where $J_{2a} = (t_0 - 2a, t_0 + 2a)$ and $D_{2R} = S(x_0, 2R)$, we can assume without loss of generality, that:

(*) F is a continuous mapping from Ω_2 into \mathcal{B} and satisfies h(F(t, x), 0) < M for each $(t, x) \in \Omega_2$.

By a solution of (1.1) (resp. (1.2)) we mean any function $x: [t_0, T] \rightarrow X (t_0 < T)$ which is Lipschitzean, has derivative a.e. and satisfies (1.1) (resp. (1.2)) for almost all $t \in [t_0, T]$.

Proposition 2.1. Let F satisfy (*). Then (1.1) has at least one solution $x: [t_0, T] \to X$, where $0 < T - t_0 < \min\{a, R/M\}$. Moreover, if X is reflexive, the uniform limit of solutions is a solution of (1.1).

Denote by \mathcal{M}_F (resp. $\mathcal{M}_{\partial F}$) the set of all solutions of (1.1) (resp. (1.2)) which are defined on $[t_0, T]$. If X is reflexive, by Proposition 2.1, \mathcal{M}_F is a nonempty closed subset of the Banach space $C([t_0, T], X)$. Consequently, \mathcal{M}_F is a nonempty complete metric space under the metric induced by the norm of uniform convergence of $C([t_0, T], X)$.

Our purpose is to show that $\mathcal{M}_{\partial F}$ is a dense G_{δ} -subset of \mathcal{M}_{F} . To this end, for any $\theta > 0$, we set

$$\mathcal{N}_{\theta} = \left\{ x \in \mathcal{M}_{F} \middle| \int_{t_{0}}^{T} d(\dot{x}(s), \partial F(s, x(s))) ds < \theta \right\}.$$

Since $(t, x) \rightarrow \partial F(t, x)$ is a continuous mapping from Ω_2 into \mathcal{K} and \dot{x} is measurable, the function under the integral is measurable.

Proposition 2.2. Let F satisfy (*). Then, for any $\theta > 0$, the set \mathcal{N}_{θ} is dense in \mathcal{M}_{F} . If, in addition, X is reflexive, the set \mathcal{N}_{θ} is open in \mathcal{M}_{F} .

By virtue of Propositions 2.1 and 2.2 we obtain immediately the following

Theorem 2.3. Let X be a reflexive real Banach space. Let F satisfy (*). Then the set $\mathcal{M}_{\partial F}$ is a dense G_{δ} -subset of \mathcal{M}_{F} and hence, in particular, $\mathcal{M}_{\partial F}$ is nonempty.

Proof. Let $\theta_1 > \theta_2 > \cdots$ be such that $\theta_n \to 0$ as $n \to +\infty$. By Proposition 2.1 \mathcal{M}_F is a complete metric space and, by Proposition 2.2, the sets \mathcal{N}_{θ_n} are open and dense in \mathcal{M}_F . Therefore

$$\mathcal{N} = \bigcap_{n=1}^{\infty} \mathcal{N}_{\theta_n}$$

is a dense G_{δ} -subset of \mathcal{M}_F and so \mathcal{N} is nonempty. Since $\mathcal{N} = \mathcal{M}_{\partial F}$, the theorem is proved.

§ 3. Proof of Proposition 2.1.

Suppose that F satisfies (*). Let us introduce the following function $\sigma: \Omega_2 \to \mathbf{R}$ defined by

$$\sigma(t, x) = \frac{1}{2} \sup \{r > 0 \mid \text{there is } y \in F(t, x) \text{ such that } S(y, r) \subset F(t, x) \}.$$

Since F is continuous and takes values in \mathcal{B} , it follows that σ is continuous and positive [4, Lemma 3.1].

We denote by $L^p([t_0, T], X)$, $1 \le p < +\infty$, the Banach space of all (strongly measurable functions $u: [t_0, T] \to X$ such that

$$\int_{t_0}^T |u(t)|^p dt < +\infty,$$

equipped with norm

$$\left(\int_{t_0}^T |u(t)|^p dt\right)^{1/p}.$$

We set $\Omega_1 = J_a \times D_R$ where, $J_a = (t_0 - a, t_0 + a)$ and $D_R = S(x_0, R)$.

Proof of Proposition 2.1. Let $v_0 \in F(t_0, x_0)$ be such that $d(v_0, \partial F(t_0, x_0)) > \sigma(t_0, x_0)$. Let $t_1 = \sup \{t_0 \le \tau \le T \mid d(v_0, \partial F(t, x_0 + (t - t_0)v_0)) > 0$, for each $t \in [t_0, \tau]\}$. Define $x_1 : [t_0, t_1] \rightarrow X$ by

$$x_1(t) = x_0 + (t - t_0)v_0, \quad t \in [t_0, t_1].$$

Note that $(t, x_1(t)) \in \Omega_1$ for $t \in [t_0, t_1]$. Now, suppose that $x_n : [t_{n-1}, t_n] \to X$, $n \ge 1$, has been defined and satisfies $(t, x_n(t)) \in \Omega_1$ for each $t \in [t_{n-1}, t_n]$. Let $v_n \in F(t_n, x_n(t_n))$ be such that $d(v_n, \partial F(t_n, x_n(t_n))) > \sigma(t_n, x_n(t_n))$. Let $t_{n+1} = \sup \{t_n \le \tau \le T \mid d(v_n, \partial F(t_n, x_n(t_n))) > 0\}$ for each $t \in [t_n, \tau]$. Then, define $t_n = t_n = t_n$.

$$x_{n+1}(t) = x_n(t_n) + (t-t_n)v_n, \quad t \in [t_n, t_{n+1}].$$

Clearly $(t, x_{n+1}(t)) \in \Omega_1$ if $t \in [t_n, t_{n+1}]$. Thus the sequence of functions $\{x_n\}$ is well defined. Denote by x the piecewise linear function which is equal to x_n on $[t_{n-1}, t_n]$, $n=1, 2, \cdots$. Observe that, by construction, $t_1 \le t_2 \le \cdots$; moreover, $t_n < t_{n+1}$ whenever $t_n < T$.

We claim that, for some n, $t_n = T$. Suppose the contrary. Then $\{t_n\}$ is strictly increasing and, since it is bounded, it has a limit \hat{t} , $\hat{t} \le T$. Set $\hat{x} = x(\hat{t})$ and fix $0 < \varepsilon < \sigma(\hat{t}, \hat{x})$. By the continuity of F and σ , there is $\delta > 0$ such that $|t - \hat{t}| < \delta/[2(M+1)]$ and $|x - \hat{x}| < \delta$ imply

$$h(\partial F(t, x), \partial F(\hat{t}, \hat{x})) < \frac{\varepsilon}{4}, \qquad |\sigma(t, x) - \sigma(\hat{t}, \hat{x})| < \frac{\varepsilon}{4}.$$

Fix n such that $|t_n - \hat{t}| < \delta/[2(M+1)]$ and $|x_n(t_n) - \hat{x}| < \delta/2$. For each $t \in [t_n, \hat{t}]$ we have $|x_n(t_n) + (t - t_n)v_n - \hat{x}| < \delta$, thus

$$d(v_n, \partial F(t, x_n(t_n) + (t - t_n)v_n)) \ge d(v_n, \partial F(t_n, x_n(t_n)))$$

$$-h(\partial F(t_n, x_n(t_n)), \partial F(\hat{t}, \hat{x})) - h(\partial F(\hat{t}, \hat{x}), \partial F(t, x_n(t_n) + (t - t_n)v_n))$$

$$> \sigma(t_n, x_n(t_n)) - \frac{\varepsilon}{4} - \frac{\varepsilon}{4} > \sigma(\hat{t}, \hat{x}) - \frac{\varepsilon}{4} - \frac{\varepsilon}{4} > 0.$$

Hence $t_{n+1} \ge \hat{t}$, which is a contradiction. Thus there is n such that $t_n = T$ and, clearly, $x: [t_0, T] \to X$ is a solution of (1.1).

Assume, now, X reflexive and let $\{z_n\}$ be a sequence of solutions of (1.1) converging uniformly to z. We want to prove that z is a solution of (1.1). In fact $\{\dot{z}_n\}$, as a bounded set contained in the reflexive Banach space $L^2([t_0, T], X)$ (see [8], p. 89), is weakly precompact. By Eberlein-Smulian's theorem a subsequence, say $\{\dot{z}_n\}$, converges weakly to a measurable function $\omega \in L^2([t_0, T], X)$; hence, by Mazur's theorem ([8], p. 36, Corollary) a sequence of convex combinations $\{\sum_{i=0}^{k_n} \alpha_i^n \dot{z}_{n+i}\}$ converges strongly to ω in $L^2([t_0, T], X)$ and so also in $L^1([t_0, T], X)$. As a consequence of this, from

$$\sum_{i=1}^{k_n} \alpha_i^n z_{n+i}(t) = x_0 + \int_{t_0}^t \left(\sum_{i=0}^{k_n} \alpha_i^n \dot{z}_{n+i}(s) \right) ds, \qquad t \in [t_0, T],$$

letting $n \rightarrow +\infty$, it follows

$$z(t) = x_0 + \int_{t_0}^t \omega(s) ds, \qquad t \in [t_0, T].$$

Since F is continuous and takes closed convex values, by a standard argument one shows that the Lipschitzean function z is a solution of (1.1). This completes the proof.

§ 4. Proof of Proposition 2.2 (\mathcal{N}_{θ} is dense).

In this section we prove the first statement of Proposition 2.2 namely, that the set \mathcal{N}_{θ} is dense in \mathcal{M}_{F} .

Let F satisfy (*). For $\mu > 0$ and $(t, x) \in \Omega_2$, set

$$F_{\mu}(t, x) = \{ u \in F(t, x) \mid d(u, \partial F(t, x)) \leq \mu \},$$

$$\Phi_{\mu}(t, x) = \{ u \in F(t, x) \mid d(u, \partial F(t, x)) > \mu \},$$

$$G_{\mu}(t, x) = \{ u \in F(t, x) \mid d(u, \partial F(t, x)) = \mu \}.$$

Let $(\hat{t}, \hat{x}) \in \Omega_2$ and let $\theta < \mu < \sigma(\hat{t}, \hat{x})$. Then $F_{\mu}(\hat{t}, \hat{x})$ and $G_{\mu}(\hat{t}, \hat{x})$ are in \mathcal{K} and, $\Phi_{\mu}(\hat{t}, \hat{x})$ is a nonempty convex open bounded subset of X [4, Remark 3.3]. Furthermore, it follows from [4, Remark 3.8] that there is a neighborhood V of (\hat{t}, \hat{x}) such that the mappings $(t, x) \rightarrow \Phi_{\mu}(t, x)$ and $(t, x) \rightarrow G_{\mu}(t, x)$ (respectively, from V to the nonempty convex open bounded subsets of X and, from V to \mathcal{K}) are well defined and continuous in V.

For any $x \in \mathcal{M}_F$ and $\mu > 0$, put

$$\Delta_x^{\mu} = \{t \in [t_0, T] \mid d(\dot{x}(t), \partial F(t, x(t)) > \mu\}.$$

Lemma 4.1. Let F satisfy (*). Let $x \in \mathcal{M}_{\mathbb{F}}$ and fix $\varepsilon > 0$. Let

$$0 < \mu < \min \{ \sigma(t, x(t)) | t \in [t_0, T] \}$$

and suppose that Δ_x^μ has Lebesgue measure $m(\Delta_x^\mu) > 0$. Let $t_0 < \tau < T$ be a point of density of Δ_x^μ . Then, there exists $\lambda_0(\tau) > 0$ such that for each $0 < \lambda < \lambda_0(\tau)$ there is a function $z_{\tau,\lambda} \colon J_{\tau,\lambda} \to X$, $J_{\tau,\lambda} = [\tau - \lambda, \tau + \lambda] \subset [t_0, T]$, which is Lipschitzean, differentiable a.e. and such that

$$(4.1) z_{\tau,\lambda}(\tau \pm \lambda) = x(\tau \pm \lambda),$$

$$(4.2) |z_{\tau,\lambda}(t) - x(t)| < \varepsilon for each t \in J_{\tau,\lambda},$$

(4.3)
$$\dot{z}_{\tau,\lambda}(t) \in F_{\mu}(t, z_{\tau,\lambda}(t)) \qquad a.e. \text{ in } J_{\tau,\lambda}.$$

Proof. Let $\varepsilon > 0$. Let τ be a point of density of Δ_x^{μ} . From this and the continuity of $G_{\mu/2}$ and Φ_{μ} at $(\tau, x(\tau))$ it follows that there is $0 < \delta(\tau) < \min \{\varepsilon, a, R\}$ such that:

$$\frac{m(J_{\tau,\lambda}\backslash \Delta_x^{\mu})}{m(J_{\tau,\lambda})} < \frac{\mu}{8M} \quad \text{for each } 0 < \lambda \le \delta(\tau);$$

moreover, for each $(t, y) \in S((\tau, x(\tau)), \delta(\tau))$, the sets $G_{\mu/2}(t, y), \Phi_{\mu}(t, y)$ are respectively nonempty bounded, nonempty convex open bounded and satisfy

(4.4)
$$G_{\mu/2}(\tau, x(\tau)) \subset G_{\mu/2}(t, y) + \frac{\mu}{2} S \subset F_{\mu}(t, y),$$

$$\Phi_{\mu}(t, y) \subset \Phi_{\mu}(\tau, x(\tau)) + \frac{\mu}{8} S.$$

Fix $0 < \lambda_0(\tau) < \delta(\tau)/[8(M+1)]$. Note that for each $s \in J_{\tau,\lambda_0(\tau)}$ we have $(s, x(s)) \in S((\tau, x(\tau)), \delta(\tau)/2)$. Let $J_{\tau,\lambda}$ be any closed interval $[\tau - \lambda, \tau + \lambda]$, $0 < \lambda < \lambda_0(\tau)$. We have

$$q = \int_{J_{\tau,\lambda}} \dot{x}(s) ds = \int_{J_{\tau,\lambda} \cap A_x^{\mu}} \dot{x}(s) ds + \int_{J_{\tau,\lambda} \setminus A_x^{\mu}} \dot{x}(s) ds.$$

For each $s \in J_{\tau,\lambda} \cap \Delta_x^{\mu}$, we have $\dot{x}(s) \in \Phi_{\mu}(s, x(s)) \subset \Phi_{\mu}(\tau, x(\tau)) + (\mu/8)S$, thus

$$\int_{J_{\tau,\lambda} \cap A_x^{\mu}} \dot{x}(s) ds \in m(J_{\tau,\lambda} \cap A_x^{\mu}) \left[\Phi_{\mu}(\tau, x(\tau)) + \frac{\mu}{8} S \right]$$

$$\subset m(J_{\tau,\lambda}) \left[\Phi_{\mu}(\tau, x(\tau)) + \frac{\mu}{8} S \right] + m(J_{\tau,\lambda} \setminus A_x^{\mu}) MS$$

$$\subset m(J_{\tau,\lambda}) \left[\Phi_{\mu}(\tau, x(\tau)) + \frac{\mu}{4} S \right].$$

On the other hand,

$$\left|\int_{J_{\tau,\lambda}\setminus\Delta_x^{\mu}}\dot{x}(s)\,ds\right|\leq Mm(J_{\tau,\lambda}\setminus\Delta_x^{\mu})<\frac{\mu}{8}m(J_{\tau,\lambda}).$$

Therefore

$$q \in m(J_{\tau,\lambda})[\Phi_{\mu}(\tau,x(\tau)) + \tfrac{3}{8}\mu S]$$

and so,

$$\frac{q}{m(J_{\tau,i})} \in \Phi_{\mu}(\tau, x(\tau)) + \frac{\mu}{2} S \subset \Phi_{\mu/2}(\tau, x(\tau)).$$

Since $\Phi_{\mu/2}(\tau, x(\tau))$ is open, there are points $q_1, q_2 \in \partial \Phi_{\mu/2}(\tau, x(\tau)) = G_{\mu/2}(\tau, x(\tau))$ such that $q/m(J_{\tau,\lambda}) = \alpha q_1 + (1-\alpha)q_2$, for some $0 < \alpha < 1$. Hence, by a suitable partition of $J_{\tau,\lambda}$ in two intervals J_1 and J_2 , we have $q = q_1 m(J_1) + q_2 m(J_2)$. Set, now, $\omega_{\tau,\lambda}(s) = q_1 \chi_{J_1}(s) + q_2 \chi_{J_2}(s)$, $s \in J_{\tau,\lambda}$, where χ_{J_1} denotes the characteristic function of J_1 , i = 1, 2. Observe that $\omega_{\tau,\lambda}$ is a measurable function with values $\omega_{\tau,\lambda}(s) \in G_{\mu/2}(\tau, x(\tau))$ and satisfies

$$\int_{J_{\tau,\lambda}} \omega_{\tau,\lambda}(s) ds = \int_{J_{\tau,\lambda}} \dot{x}(s) ds.$$

Define

$$z_{\tau,\lambda}(t) = x(\tau - \lambda) + \int_{\tau-\lambda}^{t} \omega_{\tau,\lambda}(s) ds, \qquad t \in J_{\tau,\lambda}.$$

Clearly, $z_{\tau,\lambda}(\tau \pm \lambda) = x(\tau \pm \lambda)$. Furthermore, for each $t \in J_{\tau,\lambda}$, we have

$$|z_{\tau,\lambda}(t)-x(t)| \leq \int_{J_{\tau,\lambda}} |\omega_{\tau,\lambda}(s)-\dot{x}(s)| ds < 2Mm(J_{\tau,\lambda}) < \frac{\delta(\tau)}{2} < \varepsilon.$$

Since $|z_{\tau,\lambda}(t) - x(\tau)| \le |z_{\tau,\lambda}(t) - x(t)| + |x(t) - x(\tau)| < \delta(\tau)$, it follows that $(t, z_{\tau,\lambda}(t)) \in S((\tau, x(\tau)), \delta(\tau))$ and so, by (4.4),

$$\dot{z}_{\tau,\lambda}(t) = \omega_{\tau,\lambda}(t) \in G_{\mu/2}(\tau, x(\tau)) \subset F_{\mu}(t, z_{\tau,\lambda}(t)) \quad \text{a.e. in } J_{\tau,\lambda}.$$

This completes the proof.

Lemma 4.2. Let the hypotheses of Lemma 4.1 be satisfied. Then, there is a solution $z: [t_0, T] \rightarrow X$ of (1.1) such that

$$(4.5) |z(t)-x(t)| < \varepsilon for each t \in [t_0, T],$$

(4.6)
$$\dot{z}(t) \in F_{\mu}(t, z(t))$$
 a.e. in $[t_0, T]$.

Proof. Let Δ^* be the set of the points of density of Δ_x^n . It is well known that $m(\Delta^*) = m(\Delta_x^n)$. If $m(\Delta^*) = 0$ there is nothing to prove. So let $m(\Delta^*) > 0$ and let $\tau \in \Delta^*$, $t_0 < \tau < T$. By Lemma 4.1 there is $\lambda_0(\tau) > 0$ such that for each $0 < \lambda < \lambda_0(\tau)$ there is a Lipschitzean function $z_{\tau,\lambda} : J_{\tau,\lambda} \to X$ which is differentiable a.e. and satisfies (4.1), (4.2), (4.3). Likewise in [2], consider the family of all closed intervals $J_{\tau,\lambda}$ where $\tau \in \Delta^*$, $t_0 < \tau < T$, and $0 < \lambda < \lambda_0(\tau)$. Since the intervals $J_{\tau,\lambda}$ are a Vitali's covering of Δ^* , by Vitali's theorem there is a countable subcovering of Δ^* by pairwise disjoint intervals $J_{\tau,\lambda}$ such that $m(\Delta^* \setminus \bigcup_i J_i) = 0$.

Set

$$\omega(t) = \sum_{i} \dot{z}_{\tau_{i},\lambda_{i}}(t) \chi_{J_{i}}(t) + \dot{\chi}(t) \chi_{\lceil t_{0},T \rceil \setminus \bigcup_{i} J_{i}}(t), \quad t \in [t_{0}, T] \quad \text{a.e.},$$

and define

$$z(t) = x_0 + \int_{t_0}^t \omega(s) ds, \qquad t \in [t_0, T].$$

Evidently z is Lipschitzean and $\dot{z}(t) = \omega(t)$ a.e.. Moreover z and x are equal at the end points of every interval J_i and at each $t \in [t_0, T] \setminus \bigcup_i J_i$. We prove only the first statement (the proof of the second is similar). To this end, set $J_i = [a_i, b_i]$ and denote by $\bigcup_k J_k$ the union of all intervals J_k (of the Vitali's subcovering of Δ^*) which are contained in $[t_0, a_i]$. We have

$$z(a_i) = x_0 + \sum_k \int_{J_k} \omega(s) ds + \int_{[t_0, a_i] \setminus \bigcup_k J_k} \omega(s) ds$$
$$= x_0 + \sum_k \int_{J_k} \dot{z}_{\tau_k, \lambda_k}(s) ds + \int_{[t_0, a_i] \setminus \bigcup_k J_k} \dot{x}(s) ds.$$

Thus

$$z(a_i) = x_0 + \sum_{k} \int_{J_k} \dot{x}(s) ds + \int_{[t_0, a_i] \setminus \bigcup_k J_k} \dot{x}(s) ds = x(a_i)$$

and since, clearly, $z(b_i) = x(b_i)$ the statement is proved. Therefore

$$z(t) = \begin{cases} z_{\tau_i, \lambda_i}(t), & t \in J_i, \quad i = 1, 2, \cdots \\ x(t), & t \in [t_0, T] \setminus \bigcup_i J_i \end{cases}$$

and so, by (4.2), we obtain (4.5). Furthermore,

$$\dot{z}(t) = \begin{cases} \dot{z}_{\tau_i, \lambda_i}(t), & t \in J_i \text{ a.e., } i = 1, 2, \cdots \\ \dot{x}(t), & t \in [t_0, T] \setminus \bigcup_i J_i \text{ a.e..} \end{cases}$$

Since $m(\Delta^*\backslash\bigcup_i J_i)=0$ and the set $\Delta^*\subset\Delta^\mu_x$ satisfies $m(\Delta^\mu_x\backslash\Delta^*)=0$, there is a set $\hat{J}\subset [t_0,T]$ of measure zero such that $\Delta^\mu_x\subset\hat{J}\cup(\bigcup_i J_i)$. Thus, for almost all $t\in [t_0,T]\setminus\bigcup_i J_i$, we have $t\notin\Delta^\mu_x$, hence $\dot{x}(t)\in F_\mu(t,x(t))$. On the other hand, for almost all $t\in J_i$ we have $\dot{z}(t)=\dot{z}_{\tau_i,\lambda_i}(t)\in F_\mu(t,z_{\tau_i,\lambda_i}(t))=F_\mu(t,z(t))$. Therefore z satisfies (4.6) and the lemma is proved.

Now we are ready to prove that \mathcal{N}_{θ} is dense in \mathcal{M}_{F} .

Proof of Proposition 2.2 (\mathcal{N}_{θ} is dense). Let $x \in \mathcal{M}_{F}$ and fix $\varepsilon > 0$. By Lemma 4.2 there is $z \in \mathcal{M}_{F}$ satisfying (4.5) and (4.6). By (4.6), $d(\dot{z}(t), \partial F(t, z(t)) \le \mu$ a.e. and so $z \in \mathcal{N}_{\theta}$ provided $\mu < \theta/(T - t_{0})$. Since $|z(t) - x(t)| < \varepsilon$ for each $t \in [t_{0}, T]$, the set \mathcal{N}_{θ} is dense in \mathcal{M}_{F} .

§ 5. Proof of Proposition 2.2 (\mathcal{N}_{θ} is open).

In this section we prove the second statement of Proposition 2.2, namely that (if X is reflexive) the set \mathcal{N}_{θ} is open in \mathcal{M}_{F} .

By a simple application of Lebesgue's covering lemma it is easy to prove the following

Lemma 5.1. Let F satisfy (*). Let K be a compact subset of Ω_1 . Let $\varepsilon > 0$. Then there is $\delta > 0$ ($\delta < \min\{a, R\}$) such that for each $(t, u) \in K$ and all $(s, v) \in S((t, u), \delta)$ we have

$$F(s, v) \subset F(t, u) + \varepsilon S$$

Lemma 5.2. Let $A \in \mathcal{B}$. If $u_1, u_2, \dots, u_n \in A$ and $\sum_{i=1}^n \alpha_i = 1, \alpha_i \geq 0$, then

$$d\left(\sum_{i=1}^{n} \alpha_{i} u_{i}, \partial A\right) \geq \sum_{i=1}^{n} \alpha_{i} d(u_{i}, \partial A).$$

Proof. We observe that, for any $v \in A$, $d(v, \partial A) = \sup \{\beta \ge 0 \mid v + \beta S \subset A\}$. Let $\varepsilon > 0$. For each $i = 1, 2, \dots, n$, there is $\beta_i > d(u_i, \partial A) - \varepsilon$, $\beta_i \ge 0$, such that $u_i + \beta_i S \subset A$. Since A is convex

$$A \supset \sum_{i=1}^{n} \alpha_i (u_i + \beta_i S) = \sum_{i=1}^{n} \alpha_i u_i + \left(\sum_{i=1}^{n} \alpha_i \beta_i\right) S,$$

which implies

$$d\left(\sum_{i=1}^{n}\alpha_{i}u_{i},\partial A\right)\geq\sum_{i=1}^{n}\alpha_{i}\beta_{i}>\sum_{i=1}^{n}\alpha_{i}d(u_{i},\partial A)-\varepsilon.$$

Since ε is arbitrary, the lemma is proved.

Proof of Proposition 2.2 (M₀ is open). It is enough to prove that the set

$$\widetilde{\mathcal{N}}_{\theta} = \left\{ x \in \mathcal{M}_F \middle| \int_{t_0}^T d(\dot{x}(t), \partial F(t, x(t))) dt \ge \theta \right\}$$

is closed in \mathcal{M}_F .

Indeed, suppose that $\{x_n\}\subset \tilde{\mathcal{N}}_{\theta}$ converges uniformly to $x\in \mathcal{M}_F$. Let $\varepsilon>0$. Set $K=\{(t,x(t))|t\in [t_0,T]\}$ and let δ correspond (to ε and K) according to Lemma 5.1. There is n_0 such that for each $m\geq n_0$ and all $t\in [t_0,T]$ we have $(t,x_m(t))\in S((t,x(t)),\delta)\subset \Omega_2$. Hence, by Lemma 5.1,

$$\dot{x}_m(t) \in F(t, x_m(t)) \subset F(t, x(t)) + \varepsilon S, \quad t \in [t_0, T], \quad m \ge n_0$$

On the other hand, since X is reflexive and $\{x_n\}$ converges uniformly to x, by the argument of Proposition 2.1 it follows that a subsequence, say $\{\dot{x}_n\}$, converges weakly to \dot{x} in $L^2([t_0, T], X)$. Hence a sequence of convex combinations $\{\sum_{i=0}^{k_n} \alpha_i^n \dot{x}_{n+i}\}$ converges strongly to \dot{x} in $L^2([t_0, T], X)$ and so, in particular, in $L^1([t_0, T], X)$.

We have

$$\int_{t_0}^T d(\dot{x}(t), \partial F(t, x(t))) dt \ge \int_{t_0}^T d(\dot{x}(t), \partial [F(t, x(t)) + \varepsilon S]) dt - \varepsilon (T - t_0)$$

$$\ge \int_{t_0}^T d\left(\sum_{i=0}^{k_n} \alpha_i^n \dot{x}_{n+i}(t), \partial [F(t, x(t)) + \varepsilon S]\right) dt$$

$$- \int_{t_0}^T \left|\sum_{i=0}^{k_n} \alpha_i^n \dot{x}_{n+i}(t) - \dot{x}(t)\right| dt - \varepsilon (T - t_0).$$

Let $n \ge n_0$. Then, by virtue of (5.1) and Lemma 5.2, we have

162

$$\int_{t_0}^T d\left(\sum_{i=0}^{k_n} \alpha_i^n \dot{x}_{n+i}(t), \partial [F(t, x(t)) + \varepsilon S]\right) dt$$

$$\geq \sum_{i=0}^{k_n} \alpha_i^n \int_{t_0}^T d(\dot{x}_{n+i}(t), \partial [F(t, x(t)) + \varepsilon S]) dt$$

$$\geq \sum_{i=0}^{k_n} \alpha_i^n \int_{t_0}^T d(\dot{x}_{n+i}(t), \partial F(t, x_{n+i}(t))) dt.$$

Therefore, since $x_{n+i} \in \tilde{\mathcal{N}}_{\theta}$, we obtain

$$\int_{t_0}^T d(\dot{x}(t), \, \partial F(t, x(t))) dt \ge \theta - \int_{t_0}^T \left| \sum_{i=0}^{k_n} \alpha_i^n \dot{x}_{n+i}(t) - \dot{x}(t) \right| dt - \varepsilon (T - t_0).$$

Let $n \to +\infty$. Since $\{\sum_{i=0}^{k_n} \alpha_i^n \dot{x}_{n+i}\}$ converges to \dot{x} in $L^1([t_0, T], X)$ and ε is arbitrary, it follows that $x \in \tilde{\mathcal{N}}_{\theta}$. Thus $\tilde{\mathcal{N}}_{\theta}$ is closed, hence \mathcal{N}_{θ} is open and the proof of Proposition 2.2 is complete.

Acknowledgement. The authors are indebted to G. S. Goodman for some helpful discussions.

References

- [1] Castaing, C., Valadier, M., Équations différentielles multivoques dans les espaces vectoriels localement convexes, Rev. Française Informat. Recherche Opérationnelle, 3 (1969), 3-16.
- [2] Cellina, A., On the differential inclusion $\dot{x} \in [-1, 1]$, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., Sez. VIII, 69 (1980), 1-6.
- [3] Daures, J. P., Contribution à l'étude des équations différentielles multivoques dans les espaces de Banach, C.R. Acad. Sc. Paris Sér. A-B, 270 (1970), 769-772.
- [4] De Blasi, F. S., Dianigiani, G., Remacks on Hausdorff continuous multifunctions and selection, (preprint).
- [5] Filippov, A. F., The existence of solutions of generalized differential equations, Math. Notes, 10 (1971), 608-611.
- [6] Godunov, A. N., The Peano's theorem in Banach spaces (Russian), Funkcional. Anal. i Priložen, 9 (1974), 59-60.
- [7] Hermes, T., The generalized differential equation $\dot{x} \in R(t, x)$, Advances in Math. 4 (1970), 149–169.
- [8] Hille, E. and Phillips, R. S., Functional analysis and semigroups, American Mathematical Society, Colloquium Publications, XXXI, Providence, 1957.
- [9] Yorke, J. A., A continuous differential equation in Hilbert space without existence, Funkcial. Ekvac., 13 (1970), 19-21.

nuna adreso; Istituto Matematico "U. Dini" Università degli Studi Viale Morgagni 67/A I-50134 Firenze Italy

(Ricevita la 7-an de julio, 1981) (Reviziita la 6-an de octobro, 1981)