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§1. Introduction.

Let X be a real Banach space. Let & be the set of all closed convex bounded
subsets of X which have nonempty interior. In this note we study the solution sets
of the multivalued differential equations

(1.1) Ye F(t,x)  x(t)=x, (-:i),

(1.2) x e 0F(t, x) x(t)) = x,.

Here, F is a mapping from an open subset of R X X into Z and dF(t, x) denotes the
boundary of F(, x).

Our main result states that, if X is reflexive and F continuous in the Hausdorff
metric, then (1.2) has at least one solution. We obtain this as an immediate con-
sequence of a more general theorem which establishes that almost all (in the sense of
the Baire category) solutions of (1.1) are actually solutions of (1.2).

If X has finite dimension, our existence result is a special case of Filippov’s
theorem [5]; but it is new when X is infinite dimensional. In this case most existence
theorems refer to equation (1.1) and are obtained under compactness assumptions
on F ([1], [3]). Further properties of multivalued differential equations (1.1) with
nonconvex F(t, x)C R™ can be found in [7].

We adapt here a method used by Cellina [2] in the study of a differential inclu-
sion in R. ,

Denote by ., (resp. #,,) the set of all solutions of (1.1) (resp. (1.2)). We
shall prove, first of all, that .#, is nonempty and that, under the metric of uniform
convergence, is a complete metric space. We show, next, that .#,, can be ex-
pressed as a countable intersection of open dense subsets of #,. Thus #;, is a
dense G,-subset of ., hence it is nonempty and (1.2) has solutions.

When F is single valued, (1.1) and (1.2) reduce to the same ordinary differential
equation which, as is well known, has not necessarily solutions if F is only con-
tinuous and X is an infinite dimensional space ([6], [9]). This shows that for con-
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tinuous F, in infinite dimensional Banach spaces, the existence of solutions of (1 2)
can fail, without the assumption that F(z, x) have nonempty interior.

§2. Notations and main results.

Let X be a real Banach space with norm |-|. In any Banach space we denote
by S(u, r) the open ball with centre at u and radius r>0. We put S=5(0, )CX.
For any set AC X, 04 stands for the boundary of A.

Denote by & (resp. #) the space of all nonempty subsets of X which are
bounded (resp. closed convex bounded with nonempty interior). 2 is endowed
with the Hausdorff pseudometric

h(A, B)=inf {t>0|ACB+1S, BC A4S}, A,Be X .

As well known, % becomes a metric when is restricted to #. For any xC X and 4
X, A#¢, we set d(x, A)=inf {|{x—a||a e A}. In the space R X X we use the norm
[(¢, x)|=max {|¢], | x|}, (¢, x) e R X X.

Let F be a continuous mapping from a nonempty open subset of R X X into Z.
Let (#,, x,) be in the domain of F. We wish to prove the existence of (local) solu-
tions of (1.1) and (1.2). To this end, if we consider the restriction of F to a nonempty
open subset of its domain, say Q,=J,,X D,, where J,,=(t,—2a, t,+2a) and D,,=
S(x,, 2R), we can assume without loss of generality, that: | :

(x) F is a continuous mapping from £, into & and satisfies A(F(¢, x), 0)<<M for
each (¢, x) € £2,.

By a solution of (1.1) (resp. (1.2)) we mean any function x: [t,, T]—X (£,<T)
which is Lipschitzean, has derivative a.e. and satisfies (1.1) (resp. (1.2)) for almost all
telt, TI.

Proposition 2.1. Let F satisfy (x). Then (1.1) has at least one solution x: [t,, T]
—X, where 0< T—t,<min {a, RIM}. Moreover, if X is reflexive, the uniform limit
of solutions is a solution of (1.1).

Denote by .4, (resp. M ,5) the set of all solutions of (1.1) (resp. (1.2)) which
are defined on [t,, T]. If X is reflexive, by Proposition 2.1, .4 is a nonempty closed
subset of the Banach space C([t,, T], X). Consequently, .# is a nonempty complete
metric space under the metric induced by the norm of uniform convergence of
C(Ito, T, X).

Our purpose is to show that .#,, is a dense G;-subset of .# .. To this end, for
any >0, we set..

e {xé My j j d((5), 9GS, x(s)j)ds<a}.
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Since (¢, x)—0F (¢, x) is a continuous mapping from £, into ¢ and X is measurable,
the function under the integral is measurable.

Proposition 2.2. Let F satisfy (x). Then, for any § >0, the set A, is dense in
M . 1If, in addition, X is reflexive, the set N, is open in M .

By virtue of Propositions 2.1 and 2.2 we obtain immediately the following

Theorem 2.3. Let X be a reflexive real Banach space. Let F satisfy (x). Then
the set M,y is a dense G,-subset of M and hence, in particular, M ,5 is nonempty.

Proof. Let 6,>6,> --- be such that §,—0 as n—-+4oco. By Proposition 2.1
M  is a complete metric space and, by Proposition 2.2, the sets .4#7,, are open and
dense in #,. Therefore

N =) N,

is a dense G;-subset of .#, and so 4" is nonempty. Since A" =.#,,, the theorem is
proved. '

§3. Proof of Proposition 2.1.

Suppose that F satisfies (x). Let us introduce the following function ¢: 2,—R
defined by

o(t, x)=1 sup {r>0]|there is y e F(¢, x) such that S(y, r) CF(t, x)}.

Since F is continuous and takes values in &%, it follows that ¢ is continuous and
positive [4, Lemma 3.1].

We denote by L?([t,, T], X), 1<p <+ oo, the Banach space of all (strongly
measurable functions u: [¢,, T]—X such that

f ()7 dt< + oo,

equipped with norm

(LT oL dt)l/p.

We set 2,=J,X D, where, J,=(t,—a, t,+a) and D,=S(x,, R).

Proof of Proposition 2.1. Let v, e F(t,, x,) be such that d(v,, 3F(t,, x,)) >a(ty, Xo)-
Let t,=sup {t, <7 < T|d(vy, OF(t, X, + (t—1)v,)) >0, for each te[t,7]}. Define
x,: [4, t,]>X by ‘
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xl(t):'xl)—i'(t—‘to)vo, te [to, tl]’

Note that (¢, x,(t)) € 2, for t e [t,, t,]. Now, suppose that x,:[¢,_,, t,]>X, n>1, has
been defined and satisfies (¢, x,(¢)) e 2, for each te[t,_, 1,]. Let v, e F(7,, x,(2,))
be such that d(v,, 0F(t,, x,(t,)>a(t,, x,(,)). Let ¢, ,=sup{t,<<T|d(v,, oF(t,
x,(t,)+(t—t)v,)) >0 for each ¢ ¢ [t,, z]}. Then, define x,,,,:[t,, ¢, J—>X by

xn+1(t):xn(tn)+(t_tn)vn7 4 € [tn’ tn+1]'

Clearly (¢, x,,,(?)) e 2, if te[t,, t,,,]. Thus the sequence of functions {x,} is well
defined. Denote by x the piecewise linear function which is equal to x, on[z,_,, 7,],
n=1,2,-... Observe that, by construction, #,<¢#,<- - -; moreover, t,<ft,,, when-
ever t,<T.

We claim that, for some #n, ,=7. Suppose the contrary. Then {¢,} is strictly
increasing and, since it is bounded, it has a limit 7, 7<<7. Set £=x(7) and fix 0<e
<a(f, £). By the continuity of F and ¢, there is § >0 such that |t—7|<§/[2(M+1)]
and |x—%£|<d imply

h(@F (1, x), OF (7, x))<7}, |a(t, X)—o(F, )e)1<75{.

Fix n such that |z, —#|<6/[2(M +1)] and |x,(z,) —%|<<8/2. For each te[z,, i] we
have |x,(t,)+(t—t,)v,—X|<d, thus

d(v,, OF (t, x,(1,)+ (1 —1,)0,)) > d(Vy, 0F (1, X,(2,)))
—h(@F(t,, x,(,)), OF (@, ) —h@F(, £), 0F (1, x,(t,)+ (—1,)v,))
e & 2 oA & 3 &
>a(t,, xn(tn))———4~——z>0(t, x)———4——z Z>0.
Hence ¢, ,,>>7, which is a contradiction. Thus there is n such that #,= T and, clearly,
x:[t, T]—X is a solution of (1.1).

Assume, now, X reflexive and let {z,} be a sequence of solutions of (1.1) con-
verging uniformly to z.  We want to prove that z is a solution of (1.1). Infact{z,},
as a bounded set contained in the reflexive Banach space L*([t,, T, X) (see [§], p. 89),
is weakly precompact. By Eberlein-Smulian’s theorem a subsequence, say {Z,}, con-
verges weakly to a measurable function w € L*([z,, T], X); hence, by Mazur’s theorem
(81, p. 36, Corollary) a sequence of convex combinations {> 72, ajZ,,;} converges

strongly to w in L¥([t,, T], X) and so also in L'([#,, T], X). As a consequence of this,
from

% a?Zn+i(t):x0+ft (k" a?2n+i(s)>dsn te [th T]>
i=1 0

to \t=

letting n— -4 oo, it follows
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z(t)=xo+j: os)ds,  telt, T].

Since F is continuous and takes closed convex values, by a standard argument one
shows that the Lipschitzean function z is a solution of (1.1). This completes the
proof.

§4. Proof of Proposition 2.2 (1", is dense).

In this section we prove the first statement of Proposition 2.2 namely, that the
set A", is dense in ./ .
Let F satisfy (x). For £>0 and (¢, x) € 2,, set

F(t, x)={u e F(t, x) | d(u, oF(t, x)) < y},
QD (t, x)={ue F(t, x)|d(u, 0F(t, x)) > p},
G(t, x)={u e F(t, x)|d(u, 0F(t, x))=p}.
Let (7, £) € 22, and let 6<p<<o(f, £). Then F,(i, £) and G (7, £) are in " and,
@ (i, £) is a nonempty convex open bounded subset of X [4, Remark 3.3]. Further-
more, it follows from [4, Remark 3.8] that there is a neighborhood V of (7, £) such
that the mappings (¢, x)—® (¢, x) and (¢, x)—G (¢, x) (respectively, from V to the
nonempty convex open bounded subsets of X and, from V to ¢") are well defined
and continuous in V.
For any x e .#, and p>0, put

dz={t e [t,, T1|d(x(2), OF (t, x(1))> p}-
Lemma 4.1. Let F satisfy (x). Let xe M and fix e>0. Let
0<p<min {o(t, x(¢))|t e [t, T1}

and suppose that A has Lebesgue measure m(42)>0. Let t,t<T be a point of
density of A%. Then, there exists 2(t)>0 such that for each 0<A<2A(z) there is a
Sfunction z, ;2 J, ,—X, J. ,=[c—2, c+2C[t,, T], which is Lipschitzean, differentiable
a.e. and such that

4.1 z. {z£DN=x(r £ 2),
4.2 |z, () —x()|<e foreachteJ_,
4.3) z.(t) e F 1z, (1)) ae.inJ,,.

Proof. Lete>0. Let ¢ be a point of density of 42. From this and the con-
tinuity of G,, and @, at (z, x(z)) it follows that there is 0<d(r)<<min {¢, @, R} such
that:

MUNMD B o each 0< 1< 5(e):
) < 37 or each 0<1<d(7);
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moreover, for each (¢, y) € S((z, x(z)), (z)), the sets G, (1, ¥), D (¢, y) are respectively
nonempty bounded, nonempty convex open bounded and satisfy

(4.4) Gz, X(2) TG, (L, ¥)+ %S CF, ),

0,(t,9)C0,(c, X(N+ES.

Fix 0< ()< d(z)/[8(M +1)]. Note that for each s e J_ ., we have (s, x(s)) e
S((z, x(1)), 8(z)/2). Let J,, be any closed interval [c—2, 2], 0<A<2(z). We
have

=], 0d=], 0] s
For each s e J. ;N 4%, we have x(s) € B,(s, x(s)) C® (z, X(t))+ (1/8)S, thus
an (s)ds € m(J._; ) 4 )[QB (2, x(2)+ 2 S]
el )| 0,6 3@+ £ | +mu Adyns
cm, )| 0.6+ L.

On the other hand,

< Mm(J, Z\A)<”m( -

j %(s)ds
Iz, N\4E

Therefore

qe m( 1)[@ (7’ X(T))+ 8#S

and so,

€ D, x(f))+ 2Scd, s, x(f))

(z)

Since (D,,,Z(z-, x(z)) is open, there are points ql, g, € 00,,x(z, X(£)) =G, ;x(t, X(7)) such
that q/m(J. D= ag,+(1 —a)gs, for some 0<< a<1. Hence, by a suitable part1t10n Qf
J., in two intervals J, and J,, we have g=gm(J)+gm(J;). Set, now, o, (s)=
9 (8) + @u30.(5), s € J, ,, where y,, denotes the characteristic function of J;, i=1, 2.
Observe that w, , is a measurable function with values w, ,(s) € G, ,(z, X(r)) and satisfies
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-[ o, x(s)a’s:J X(s)ds.
Jz,2 Jr,2

Define

I
z, () =x(z— )+ j 0. (s)ds,  tel.
T—A

Clearly, z, (r+2)=x(r£4). Furthermore, for each te J_,, we have

20 —XOI<[ | 0,40) = 3| ds<2Mm(J ) <O <e.

Since |z, (t)—x(r)|<|z. (1) — x(2)|+ | x(t) — x(z)|<d(z), it follows that (z, z, (t)) e
S((z, x(z)), 6(r)) and so, by (4.4),

Z(D)=0.,) e G,p(c, X(D)CTFLt, 2. () aeinJ ,
This completes the proof.

Lemma 4.2. Let the hypotheses of Lemma 4.1 be satisfied. Then, there is a
solution z: [t,, T1—X of (1.1) such that

4.5 |z(2) —x(2)|<e for each t e [t,, T,
(4.6) #(t) e F (¢, z(t)) a.e. in[t,, T].

Proof. Let 4* be the set of the points of density of 4%. It is well known that
m(d*)=m(4z). If m(4*¥)=0 there is nothing to prove. So let m(4*)>0 and let
te 4%, t,<z<<T. By Lemma 4.1 there is 2,(z)>0 such that for each 0<<2<2,(7)
there is a Lipschitzean function z, ,: J, ,—X which is differentiable a.e. and satisfies
(4.1), (4.2), (4.3). Likewise in [2], consider the family of all closed intervals J, , where
e d*, t,<z<T, and 0<<2<A(z). Since the intervals J_, are a Vitali’s covering of
4*, by Vitali’s theorem there is a countable subcovering of 4* by pairwise disjoint
intervals J,=J_, ,, such that m(4*\| ), J,)=0.

Set

(U(t):Z Zri,li(t)XJi(t)+x(t)x[to,T]\Ui J,;(t)3 t € [ID) T] a‘e':

and define

Z(t)=x0—|—ﬁ w(s)ds,  te[t, T].

Evidently z is Lipschitzean and 2(¢)=w(¢) a.e.. Moreover z and x are equal at the
end points of every interval J; and at each ¢ ¢ [¢,, T\, J,, We prove only the first
statement (the proof of the second is similar). To this end, set J,=[a,, b,] and denote
by U J;, the union of all intervals J, (of the Vitali’s subcovering of 4*) which are
contained in [£, a;,]. We have
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z(a,)=x,~+ Zk] L w(s)ds+ j w(s)ds

[to,a:\Ur Jx

=%+ Lk z',k,zk(s)ds—kf £(s)ds.

[¢0,at\Ug Tk
Thus
z(a)=x,+2, I x(s)ds+ J x(8)ds=x(a,)
k JE

[to,a:\Ux I

and since, clearly, z(b,)=x(b,) the statement is proved. Therefore

Zey,2(2), teld, i=12,---
z(t)=
x(2), telt, TNU.: J;

and so, by (4.2), we obtain (4.5). Furthermore,

Ze (), ted, ae., i=1,2,.-.
x(1), telt, TNU;J; ae..

Since m(4*\|_J; J;)=0 and the set A*C 4 satisfies m(4;\4*)=0, there is a set Jc
[#,, T1 of measure zero such that decF U, J). Thus, for almost all £ e [t, T]\
U, J;, we have 7 ¢ 4%, hence x(t) € F,(t, x(t)). On the other hand, for almost all 7 ¢
J, we have (t)=:z,,,(t) e F (¢, z,,,(t))=F,¢ z(t)). Therefore z satisfies (4.6) and
the lemma is proved.

Now we are ready to prove that A", is dense in .4/ 5.

z'(t)={

Proof of Proposition 2.2 (AN, is dense). Let x e # and fix ¢>0. By Lemma
4.2 there is z € M , satisfying (4.5) and (4.6). By (4.6), d(2(2), dF (¢, z(t))<p a.e. and
so ze A, provided p<8/(T—1t,). Since |z(t)—x(t)|<e for each te [#, T], the set
N, is dense in A 5.

§5. Proof of Proposition 2.2 (./", is open).

In this section we prove the second statement of Proposition 2.2, namely that
(if X is reflexive) the set A", is open in A 5.

By a simple application of Lebesgue’s covering lemma it is easy to prove the
following

Lemma 5.1. Let F satisfy (x). Let K be a compact subset of ,. Let ¢>0.
Then there is >0 (6<<min {a, R}) such that for each (t,u)e K and all (s,v)e
S((t, u), 0) we have

F(s, v)CF(t, u)+¢S.

Lemma5.2. LetAeB. Ifu,u, - --,u,eAand > ?  a,=1, a,>0, then
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d (ﬁ; i, aA) >S" a,d(u,, 9A).
i=1 i=1
Proof. We observe that, for any v e 4, d(v, 94)=sup {>0| v+ BSCA}. Let

¢>0. Foreachi=1,2, ..., n,thereis g,>d(u;, 04)—e¢, B:=0, such that u,+g,SC
A. Since A is convex

AD é a4 B.S) = }Z_“i g+ (ﬁ a,.,ei)s,

i=1

which implies

d (f, i, 6A> >3 B> ad(u, 94)—e.
=1 =1 i=1

Since ¢ is arbitrary, the lemma is proved.

Proof of Proposition 2.2 (A, is open). It is enough to prove that the set

JV,,:{xe My

r d(E), DF (2, x(£)))dt 20}

is closed in A .

Indeed, suppose that {x,}C.#, converges uniformly to xe .#,. Let ¢>O0.
Set K={(t, x(¢))|t e [t,, T]} and let § correspond (to ¢ and K) according to Lemma
5.1. There is n, such that for each m>n, and all ¢ ¢ [t,, T] we have (¢, x,(¢)) e
S((t, x(2)), 5)C2,. Hence, by Lemma 5.1,

(CR)) Xn(t) € F(t, x,,()) CF(t, x(1))+¢S, telt, T, m>n,

On the other hand, since X is reflexive and {x,} converges uniformly to x, by the
argument of Proposition 2.1 it follows that a subsequence, say {x,}, converges weakly
to x in L*([t,, T], X). Hence a sequence of convex combinations {> %, a?%,,,} con-
verges strongly to x in L*([z,, T], X) and so, in particular, in L'([z,, T], X).

We have ‘

'[T dGi(t), OF (1, x(t)))dzzr d(x(2), BF(t, x(£))+eS])di —e(T—1,)

zj d(3; i, (0, 30FC, x(r))+eS])dt

T | kn

azxn+,.<t)—x<t){dr—e<z"— £).

toli=

Let n>>n,. Then, by virtue of (5.1) and Lemma 5.2, we have
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[ a(Z et o). o8 x@)-+e81)as
25 @[ dCt 0, OLF( (@) +eSDds
>5[ dee, k0, 08, x,. ().

Therefore, since x,,,,; € 4 ,, we obtain

r d(x(t), 0F(t,x(t)))dt za—r

i ayX, , (8) —x(1) % dt —e(T—1,).

Let n—-+oo. Since {D %=, %, .} converges to x in L'([#, T], X) and ¢ is arbitrary,
it follows that x e .#,. Thus ., is closed, hence .4, is open and the proof of
Proposition 2.2 is complete.
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