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1. INTRODUCTION

In 1930, René Goormaghtigh, French engineer and geometrician, expanded Droz-Farny
theorem [1, 2, 3] with a nice theorem as follow.

Theorem 1.1 (Goormaghtigh [4]). Given triangle ABC and point P distinct from A, B, C. A
line ∆ passes through P. A1, B1, C1 belong to BC, CA, AB respectively such that PA1, PB1, PC1
are the images of PA, PB, PC respetively by reflection R∆. Then, A1, B1, C1 are collinear.

Notation R∆ refers to reflection against ∆.
Theorem 1.1 is called Goormaghtigh’s theorem [4].
When P is the orthocenter of triangle ABC, theorem 1.1 actually becomes Droz-Farny
theorem.
Proof of theorem 1.1 can be found in [5, 6].
In 2014, O.T.Dao expanded theorem 1.1 with two theorems [7].
In this article, we are first going to expand O.T.Dao’s second theorem with theorem 1.2
and more beautifully restate O.T.Dao’s first theorem with theorem 1.3. Then, we are
going to prove theorems 1.2 and 1.3. Please note that, in terms of ideas, the way we prove
theorems 1.2 and 1.3 is completely different from the way that theorem 1.1 is proved in
[1] and [2].

Theorem 1.2. Given triangle ABC and point P distinct from A, B, C. A line ∆ passes through P.
α is any real number. Let A1, B1, C1 belong to BC, CA, AB respectively such that PA1, PB1, PC1
are the images of PA, PB, PC respectively by transformation Rα

P◦R∆. Then, A1, B1, C1 are
collinear.

Notation Rα
P refers rotation around P with angle of rotation α

When α = 0, theorem 1.2 becomes theorem 1.1.
When α = π

2 , theorem 1.2 becomes O.T.Dao’s second theorem.

Theorem 1.3 (Dao [7]). Given triangle ABC and point P distinct from A, B, C. Lines ∆ and ∆′

cut at P. Points A1, B1, C1 belong to BC, CA, AB respectively such that (PA, PA1, ∆, ∆′) =
(PB, PB1, ∆, ∆′) = (PC, PC1, ∆, ∆′) = − 1. Then, A1, B1, C1 are collinear.
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When ∆⊥∆′, theorem 1.3 becomes theorem 1.1.
Theorem 1.3 is a different, more interesting reiteration of O.T.Dao’s first theorem.
Before we prove theorems 1.2 and 1.3, note that notation AB refers to the signed length
from point A to point B.

2. PROOF OF THEOREM 1.2

There are two cases to consider.
Case 1. α ≡ 0 (mod2π). Then, Rα

P◦R∆ = R∆.
Ignore platitudinous situations: ∆ passes through a vertex of triangle ABC; ∆ passes
through two vertices of triangle of ABC.
Let A2, B2 be the intersections of PC1 and BC, CA respectively (see f.1).

Figure 1
Since reflection preserves cross ratio,

A1B
A1C

: A2B
A2C

= (BCA1A2) = P(BCA1A2) = P(BCA1C1) = P(B1C1AC)

= P(B1B2AC) = P(ACB1B2) = (ACB1B2) =
B1 A
B1C

: B2 A
B2C

.

From this, noting that A2, B2, C1 are collinear, by Menelaus theorem, we have

A1B
A1C

.
B1C
B1A

.
C1A
C1C

=
A2B
A2C

.
B2C
B2A

.
C1A
C1C

= 1.

Hence, by Menelaus theorem, A1, B1, C1 are collinear.
Case 2. α 6≡ 0 (mod2π).
Let line ∆′ pass through P such that ∠(∆, ∆′) ≡ α

2 (modπ).
Apparently, Rα

P◦R∆ = (R∆′ ◦ R∆) ◦ R∆ = R∆′ ◦ (R∆ ◦ R∆) = R∆′ ◦ id = R∆′

From this, noting that P belongs to ∆′, according to case 1, we can deduce that A1, B1, C1
are collinear.

3. PROOF OF THEOREM 1.3

We need two lemmas.

Lemma 3.1. If BC, CA, AB are parallel to B1C1, C1A1, A1B1 respectively, then two triangles
ABC and A1B1C1 are similar in the same direction.

126



A synthetic proof of Dao’s generalization of Goormaghtigh’s theorem

Proof. We have BC // B1C1; CA // C1A1; AB // A1B1. Therefore, ∠(BA, BC) ≡ ∠(B1A1, B1C1)
(modπ) and ∠(CA, CB) ≡ ∠(C1A1, C1B1) (modπ).
Hence, triangles ABC and A′B′C′ are similar in the same direction.

Lemma 3.2. Given two triangles ABC and A1B1C1 which are similar in the same direction.
A2, B2, C2 are the midpoints of AA1, BB1, CC1 respectively. Then, triangle A2B2C2 are similar
to triangles ABC and A1B1C1 in the same direction.

Proof. Let M, N be the midpoints of AB1, AC1 respectively (see f.2).
Because M, N, A2 are the midpoints of AB1, AC1, AA1 respectively, MN, NA2, A2M are
parallel to B1C1, C1A1, A1B1 respectively.
Therefore, by lemma 3.1, triangles A2MN and A1B1C1 are similar in the same direction
(1).
As A2, B2, C2, M, N are the midpoints of AA1, BB1, CC1, AB1, AC1 respectively,

−−→
MA2 =

1
2
−−→
B1A1;

−−→
MB2 =

1
2
−→
AB;
−−→
NA2 =

1
2
−−→
C1A1;

−−→
NC2 =

−→
AC.

Figure 2
From this, noting that triangles ABC and A1B1C1 are similar in the same direction,

∠(
−−→
MA2,

−−→
MB2) ≡ ∠(

−−→
B1A1,

−→
AB) ≡ π + ∠(

−−→
B1A1,

−→
BA) (mod2π)

≡ π + ∠(
−−→
C1A1,

−→
CA) ≡ ∠(

−−→
C1A1,

−→
AC) ≡ ∠(

−−→
NA2,

−−→
NC2)(mod2π).

MA2

MB2
=

B1A1

AB
=

B1A1

BA
=

C1A1

CA
=

C1A1

AC
=

NA2

NC2
.

Thus, triangles A2MB2 and A2NC2 are similar in the same direction.
Therefore, triangles A2MN and A2B2C2 are similar in the same direction (2).
From (1) and (2), deduce that A1B1C1 and A2B2C2 are similar in the same direction.
In other words, triangle A2B2C2 are similar to triangles ABC and A1B1C1 in the same
direction.

Return to the proof of theorem 1.3.

Let A2, B2 be the intersections of PC1 and BC, CA respectively. Let A3, B3, C3 be the inter-
sections of PA1, PB1, PC1 and the lines parallel to ∆, passing through A, B, C respectively.
Let A0, B0, C0 be the intersections of ∆ and AA3, BB3, CC3 respectively (see f.3).
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Figure 3

Because (PA, PA1, ∆, ∆′ ) = (PB, PB1, ∆, ∆′) = (PC, PC1, ∆, ∆′ ) = − 1,
(PA, PA3, PA0, ∆) = (PB, PB3, PB0, ∆ ) = (PC, PC3, PC0, ∆) = − 1.
Then, combined with the fact that AA3, BB3, CC3 are all parallel to ∆, we can deduce that
A0, B0, C0 are the midpoints of AA3, BB3, CC3 respectively.
If BC, CA, AB are parallel to B3C3, C3A3, A3B3 respectively, then by lemma 3.1, triangles
ABC and A3B3C3 are similar in the same direction. From this, noting that A0, B0, C0
are the midpoints of AA3, BB3, CC3 respectively, by lemma 3.2, we can deduce that
A0, B0, C0 are not collinear, contradiction. Thus, BC, CA, AB are not respectively par-
allel to B3C3, C3A3, A3B3. Without the loss of generality, assume that BC and B3C3 are
not parallel.
Let S be the intersection of BC and B3C3. Let A2, A4 be the intersections of BC and
C1P, AA3 respectively. Let A5, A6, A7 be the intersections of B3C3 and AP, CP, AA3 re-
spectively.
Apparently, S belongs to ∆′.
Applying Cevas theorem to triangle SC3C, noting that SC0, C3A2, CA6 are concurrent (at
P), we have

C0C3

C0C
.
A2C
A2S

.
A6S
A6C3

= − 1.

Combined with the fact that C0 is the midpoint of C3C, we have A2S
A2C

= A6S
A6C3

.
Therefore, by Thales theorem, A2A6 // CC3 (3).
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Applying Menelaus theorem to triangles A0SA4 and A0SA7, noting that A1, A3, P are
collinear and A5, A, P are collinear, we have

A1S
A1A4

.
A3A4

A3A0
.
PA0

PS
= 1 =

A5S
A5A7

.
AA7

AA0
.
PA0

PS
.

From this, noting that A0 is the midpoint of both AA3 and A4A7, deduce that

A1S
A1A4

=
A5S

A5A7
.

Therefore, by Thales theorem, A1A5 // A4A7 (4).
From (3) and (4), deduce that BB3//CC3//A1A5//A2A6.
Hence,

A1B
A1C

: A2B
A2C

= (BCA1A2) = (B3C3A5A6) = P(B3C3A5A6)

= P(B1B2AC) = P(ACB1B2) = (ACB1B2) =
B1 A
B1C

: B2 A
B2C

.

From this, noting that A2, B2, C1 are collinear, by Menelaus theorem, deduce that

A1B
A1C

.
B1C
B1A

.
C1A
C1B

=
A2B
A2C

.
B2C
B2A

.
C1A
C1B

= 1.

Thus, by Menelaus theorem, A1, B1, C1 are collinear.
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