Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


nam8298 nội dung

Có 158 mục bởi nam8298 (Tìm giới hạn từ 08-06-2016)



Sắp theo                Sắp xếp  

#458956 $\sum \frac{a-bc}{a+bc}\leq \fra...

Đã gửi bởi nam8298 on 20-10-2013 - 21:48 trong Bất đẳng thức và cực trị

Bài 3:Ta có $b^{2}c^{2}+a^{2}c^{2}\geq 2abc^{2}$   .suy ra  $\sum a^{2}b^{2}+2abc(a+b+c)\geq ab(ab+2c+2c^{2})$

suy ra $(ab+bc+ca)^{2}\geq ab(ab+2c+2c^{2})$  suy ra $\frac{1}{ab+2c+2c^{2}}\geq \frac{ab}{(ab+bc+ca)^{2}}$ tương tự rồi cộng vế




#459199 $max{a+c-b,b+c-a,c+a-b}\leq 1

Đã gửi bởi nam8298 on 22-10-2013 - 12:16 trong Các bài toán và vấn đề về Bất đẳng thức

giả sử a=max{a,b,c} ta có (a+c-b)+(c+a-b) $\leq$ 2 nên a $\leq$ 1

do đó $0\leq a-bc\leq b-c+1-bc=(1-c)(1+b)$

          $0\leq a-bc\leq c-b+1-bc=(1-b)(1+c)$

nhân theo vế rồi rút gọn là xong




#459201 Tìm số k nhỏ nhất sao cho với mọi tập con A gồm k phần tử của X thì đều tồn t...

Đã gửi bởi nam8298 on 22-10-2013 - 12:38 trong Các bài toán và vấn đề về Tổ hợp và rời rạc

Cho X là tập các số tự nhiên lẻ không chia hết cho 5 và nhỏ hơn 30 .Tìm số k nhỏ nhất sao cho với mọi tập con A gồm k phần tử của X thì đều tồn tại hai số trong A chia hết cho nhau




#459202 Chia tam giác đều cạnh $n$ thành $n^2$ tam giác đều cạnh...

Đã gửi bởi nam8298 on 22-10-2013 - 12:48 trong Các bài toán và vấn đề về Tổ hợp và rời rạc

Bài 1 trong cuộc hội thảo cứ 10 người thì có đúng 1 người quen chung tìm số người quen lớn nhất của 1 người

Bài 2 Cho đa giác lồi n đỉnh sao cho không có 3 đường chéo nào đồng quy.tìm số miền do các đường chéo tạo nên

Bài 3 một tam giác đều n cạnh được chia làm $n^{2}$ tam giác đều cạnh 1 bằng các đường thẳng song song với các cạnh của nó .Hỏi có bao nhiêu tam giác đều được tạo thành

Bài 4 cho số nguyên $n\geq 2$ CMR trong mọi họ gồm ít nhất $2^{n-1}+1$ tập con không rỗng phân biệt của tập {1,2,3.....,n} đều tìm được 3 tập mà một trong chúng là hợp của 2 tập còn lại

 




#459643 CMR phương trình sau không có ngiệm nguyên dương $x^{4}-1=(2y+...

Đã gửi bởi nam8298 on 24-10-2013 - 15:53 trong Các bài toán và vấn đề về Số học

CMR phương trình sau không có ngiệm nguyên dương $x^{4}-1=(2y+1)^{3}$




#459697 CMR phương trình sau không có ngiệm nguyên dương $x^{4}-1=(2y+...

Đã gửi bởi nam8298 on 24-10-2013 - 19:12 trong Các bài toán và vấn đề về Số học

bạn ơi gcd(b+1,$b^{2}-b+1$) = 3 đc mà




#459869 .Tìm GTNN P =$(xy+yz+zx)^{2}-\frac{8}{(x+y...

Đã gửi bởi nam8298 on 25-10-2013 - 15:05 trong Các bài toán và vấn đề về Bất đẳng thức

Cho x,y,z là các số thực thoả mãn $x^{2}+y^{2}+z^{2}=1$  .Tìm GTNN P =$(xy+yz+zx)^{2}-\frac{8}{(x+y+z)^{2}-xy-yz+2}$




#460039 Đề thi HSG lớp 12 tỉnh Vĩnh Phúc 2013-2014

Đã gửi bởi nam8298 on 26-10-2013 - 12:02 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

1


Đăng lại đề @@
Bài 1. Cho trước số thực $a>0$ và dãy số thực $x_{n}$ xác định bởi $x_{1}$ =a và $x_{n+1}= \sqrt{17+16x_{n}}$ với mọi $n\geq 1$. Chứng minh rằng với mọi $a>0$ dãy $x_{n}$ có giới hạn khi $n\rightarrow$ dương vô cùng..Tìm giới hạn đó
Bài 2. Cho $3$ số $x,y,z$ không âm thỏa mãn $x^{2}+y^{2}+z^{2}= 1$ CMR $\sqrt{1-\frac{(x+y^{2})}{4}}+\sqrt{1-\frac{(y+z)^{2}}{4}}+\sqrt{1-\frac{(z+x)^{2}}{4}}\geq \sqrt{6}$
Bài 3. Tìm các số tự nhiên $x,y$ thỏa mãn phương trình ($(x^{2}+y)(y^{2}+x)= 2(x-y)^{3}$
Bài 4. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ vơí $AB<AC$ .Tiếp tuyến tại $A$ của $(O)$ cắt $BC$ tại $E$ . $D$ là điểm đối xứng của $A$ qua $O$,
a, Chứng minh rằng $AE$ song song với $CD$
b, Đường thẳng $BE$ cắt $AT$ tại $F$ .Giả sử đường tròn ngoại tiếp tam giác $AEF$ cắt $EO$ tại $G$ khác điểm $E$ .Chứng minh rằng tâm đường tròn nội tiếp tam giác $AGB$ nằm trên $(O)$
Bài 5. Một số nguyên dương $k$ được gọi là số đẹp nếu có thể phân hoạch tập hợp các số nguyên dương thành $k$ tập $A_{1},A_{2}....A_{k}$ sao cho với mỗi số nguyên dương $n\geq 15$ và với mọi i$\in (1;2;....:k)$ đều tồn tại 2 số thuộc $A_{i}$ có tổng là $n$
a, Chứng minh rằng $k=3$ là số đẹp
b. Chứng minh rằng với mọi $k\geq 4$ đều không đẹp.



#460344 Đề thi HSG lớp 12 tỉnh Vĩnh Phúc 2013-2014

Đã gửi bởi nam8298 on 27-10-2013 - 19:12 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

xin lỗi mình đánh vội quá nên sai đề




#460919 $\frac{a^{3}}{b^{2}+c^{2}}+\frac{b^{3}}{c^{2}+a^{2}}+\fra...

Đã gửi bởi nam8298 on 30-10-2013 - 19:49 trong Các bài toán và vấn đề về Bất đẳng thức

khẳng định bạn ạ




#460920 $a^3+b^3+c^3-3abc\geq 2\left ( \frac{b+c}{...

Đã gửi bởi nam8298 on 30-10-2013 - 19:59 trong Các bài toán và vấn đề về Bất đẳng thức

+ nếu $\frac{b+c}{2}-a\leq 0$ ta đc đpcm

+nếu $\frac{b+c}{2}-a> 0$   đặt b=a+2x ; c=a+2y 

    đặt A= $a^{3}+b^{3}+c^{3}-3abc-2(\frac{b+c}{2}-a)^{3}$   suy ra A= $12a(x^{2}-xy+y^{2})+6(x+y)(x-y)^{2}\geq 6(x+y)(x-y)^{2}= \frac{3}{2}(\frac{b+c}{2}-a)(b-c)^{2}\geq 0$    suy ra BĐT đc cm




#460923 (a,b,c>0

Đã gửi bởi nam8298 on 30-10-2013 - 20:05 trong Các bài toán và vấn đề về Bất đẳng thức

theo mình thì cái này hiển nhiên mà .....trong 3 số a,b,c có 2 số bằng nhau thì BĐT đc chứng minh

nếu không có 2 số nào bằng nhau  .khi đó trong các hiệu a-b ;b-c ;c-a có 1 số âm suy ra đpcm




#460925 Chứng minh $\sum \sqrt{1-\frac{(x+y^{2...

Đã gửi bởi nam8298 on 30-10-2013 - 20:11 trong Các bài toán và vấn đề về Bất đẳng thức

bài này bình phương rồi dùng Cauchy-Schwazt




#460926 $\frac{bc}{3a^2+b^2+c^2}+\frac{ca...

Đã gửi bởi nam8298 on 30-10-2013 - 20:17 trong Các bài toán và vấn đề về Bất đẳng thức

theo mình đánh giá thế này $\frac{bc}{3a^{2}+b^{2}+c^{2}}\leq \frac{(b+c)^{2}}{12a^{2}+2(b+c)^{2}}$   

chuẩn hóa a+b+c =3 .sau đó dùng ước lượng là đc




#461128 (a,b,c>0

Đã gửi bởi nam8298 on 31-10-2013 - 19:43 trong Các bài toán và vấn đề về Bất đẳng thức

a=b=c=0




#461130 Cho a,b,c là các số thực không âm.CMR:

Đã gửi bởi nam8298 on 31-10-2013 - 19:47 trong Các bài toán và vấn đề về Bất đẳng thức

a=0; b=c thay vào

 

Cho a,b,c là các số thực không âm .CMR: 

         $A=\frac{a^2}{b^2-bc+c^2}+\frac{b^2}{c^2-ac+c^2}+\frac{c^2}{a^2-ab+b^2}\geq 2$

 làm gì đúng




#461133 BĐT trê-bư-sép

Đã gửi bởi nam8298 on 31-10-2013 - 19:59 trong Các bài toán và vấn đề về Bất đẳng thức

Cho a,b,c >0 .CMR $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \sqrt{\frac{a^{2}+1}{b^{2}+1}}+\sqrt{\frac{b^{2}+1}{c^{2}+1}}+\sqrt{\frac{c^{2}+1}{a^{2}+1}}$




#461134 $\frac{a+b}{ab+a+b}+\frac{b+c}...

Đã gửi bởi nam8298 on 31-10-2013 - 20:02 trong Các bài toán và vấn đề về Bất đẳng thức

Cho a,b,c >0 thỏa mãn $a^{2}+b^{2}+c^{2}= 1$  .CMR $\frac{a+b}{ab+1}+\frac{b+c}{bc+1}+\frac{c+a}{ca+1}\leq \frac{9}{2(a+b+c)}$




#462343 $\frac{1}{\sqrt{1+a^3}}+\fr...

Đã gửi bởi nam8298 on 05-11-2013 - 20:26 trong Bất đẳng thức và cực trị

1... $\sum \frac{bc}{\sqrt{a+bc}}= \sum \frac{bc}{\sqrt{(a+b)(a+c)}}\leq \frac{1}{2}\sum (\frac{bc}{a+b}+\frac{bc}{a+c})\leq \frac{1}{2}$




#462344 $\frac{1}{\sqrt{1+a^3}}+\fr...

Đã gửi bởi nam8298 on 05-11-2013 - 20:30 trong Bất đẳng thức và cực trị

2....a..$\frac{a^{3}}{(1+b)(1+c)}+\frac{1+b}{4}+\frac{1+c}{4}\geq 3a$

tương tự cộng theo vế suy ra ĐPCM

......b...$\sum \frac{1}{a^{3}(b+c)}= \sum \frac{(bc)^{2}}{ab+ac}\geq \frac{3}{2}$




#462348 $\frac{1}{\sqrt{1+a^3}}+\fr...

Đã gửi bởi nam8298 on 05-11-2013 - 20:36 trong Bất đẳng thức và cực trị

....3....$\frac{1}{\sqrt{1+a^{3}}}= \frac{1}{\sqrt{(1+a)(a^{2}-a+1)}} \geq \frac{2}{2+a^{2}}$

đến đây quy đồng là đc




#462558 Chứng minh rằng nếu A là tích của n số nguyên tố đầu tiên thì: p+1 và p-1 khô...

Đã gửi bởi nam8298 on 06-11-2013 - 21:02 trong Số học

 theo mình p là tích của n số nguyên tố đầu tiên .nếu thế mình chứng minh thế này

      p chia hết cho 3 nên p-1 chia 3 dư 2 nên không là số chính phương

      giả sử p+1 là số chính phương ..đặt p+1 =$a^{2}$ suy ra p =(a-1)(a+1) ..do p chẵn nên a lẻ .do đó a-1 và a+1 chẵn suy ra (a-1)(a+1) chia hết cho 4 suy ra p hia hết cho 4 (vô lí)

Vậy p-1 và p+1 không là số chính phương




#462746 Tìm GTLN của biểu thức $P=\frac{1}{2a+b+c}+...

Đã gửi bởi nam8298 on 07-11-2013 - 20:47 trong Bất đẳng thức và cực trị

chứng minh $\frac{1}{2a+b+c}\leq \frac{1}{4}(\frac{1}{a+b}+\frac{1}{a+c})\leq \frac{1}{16}(\frac{1}{2a}+\frac{1}{b}+\frac{1}{c})$

tương tự cộng vế




#463634 $n(n+1)(2n+1)\vdots 42$

Đã gửi bởi nam8298 on 11-11-2013 - 19:20 trong Đại số

bài 1 thay x =7k +3 ta đc (7k+3)(7k+4)(14k+7) cái này hiển nhiên là chia hết cho 42




#463636 $2x^2+x+3=3x\sqrt{x+3}$

Đã gửi bởi nam8298 on 11-11-2013 - 19:24 trong Phương trình - hệ phương trình - bất phương trình

đặt $\sqrt{x^{2}+7x+7}= a$ $3x^{2}+21x+18 = 3a^{2}-3$  ta đc phương trình bậc 2 có nghiệm là 1 và -5/3