Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


nam8298 nội dung

Có 158 mục bởi nam8298 (Tìm giới hạn từ 06-06-2016)



Sắp theo                Sắp xếp  

#463645 $12(\frac{1}{a}+\frac{1}{b...

Đã gửi bởi nam8298 on 11-11-2013 - 19:43 trong Các bài toán và vấn đề về Bất đẳng thức

mình dùng dồn biến  Giả sử a$a\leq b\leq c$

đặt F(x) =$12(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})-4(a^{3}+b^{3}+c^{3})-21$$F(a;b;c)-F(\frac{a+b}{2};\frac{a+b}{2};c)= (a-b)^{2}(\frac{4}{(a+b)ab}-(a+b))\geq 0$  

$F(\frac{a+b}{2};\frac{a+b}{2};c)= (c-2)^{2}(c^{3}+4c^{2}-6c+3)\geq 0$

do đó suy ra điều phải chứng minh




#463649 Tìm x và y

Đã gửi bởi nam8298 on 11-11-2013 - 19:45 trong Đại số

do $2\left | x-2012 \right |+3\geq 3$  nên $\left | y-2013 \right |+2\leq 3$ từ đây tìm đc x và y




#463670 Tìm max$A=(3x-1)(2y-1)(z-1)$.

Đã gửi bởi nam8298 on 11-11-2013 - 20:15 trong Các bài toán và vấn đề về Bất đẳng thức

đặt x= a+$\frac{1}{3}$ ; y =b+1$\frac{1}{2}$ ; z=c+1 suy ra a;b;c > 0

thay vào giả thiết thứ 2 ta đc $\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 2$ suy ra $\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\leq 1$

ta có $\frac{1}{a+1}= 1-\frac{a}{a+1}\geq \frac{b}{b+1}+\frac{c}{c+1}\geq 2\sqrt{\frac{bc}{(b+1)(c+1)}}$

 chứng minh tương tự rồi nhân theo vế ta đc abc $\leq \frac{1}{8}$  từ đó tìm đc max A




#463678 $\left\{\begin{matrix} x^{4}-4x^...

Đã gửi bởi nam8298 on 11-11-2013 - 20:28 trong Phương trình - hệ phương trình - bất phương trình

bài 2 : nhân 2 vào phương thình thứ 2 rồi cộng vào phương trình đầu tiên .sau đó phân tích nhân tử đc $x^{2}+y= 7$   hoặc $x^{2}+y= -5$ .tính $x^{2}$ theo y rồi thay vào phương trình 2 giải tìm ra y




#465536 Cho phương trình $x^{2}+(m-1)x -6=0$

Đã gửi bởi nam8298 on 20-11-2013 - 19:41 trong Bất đẳng thức và cực trị

cứ thay $x_{2}^{2}= \frac{36}{x_{1}^{2}}$ rồi làm thôi .khi đó $x_{1}= 3;-3$




#465654 Cho phương trình $x^{2}+(m-1)x -6=0$

Đã gửi bởi nam8298 on 21-11-2013 - 12:54 trong Bất đẳng thức và cực trị

khi tìm đc 2 nghiệm thì thay vào tìm đc m mà bạn




#465758 cho a,b,c là các số thực dương thoả mãn điều kiện $abc=1$ tìm max c...

Đã gửi bởi nam8298 on 21-11-2013 - 20:15 trong Bất đẳng thức và cực trị

đặt a=x/y ;b=y/z ;c=z/x rồi chứng minh




#466050 $a^3+b^3\geq2[\sqrt{\frac{1}{2}(...

Đã gửi bởi nam8298 on 22-11-2013 - 20:29 trong Bất đẳng thức và cực trị

chuẩn hóa $a^{2}+b^{2}= 2$

ta chứng minh $a^{3}+b^{3}\geq 2$ (dễ chứng minh bằng AM-GM)




#466231 $\sum \frac{a}{b+c}(y+z)\geq 3\f...

Đã gửi bởi nam8298 on 23-11-2013 - 16:31 trong Bất đẳng thức và cực trị

đặt P=VT.

ta có P+(x+y)+(y+z)+(z+x) = $\frac{1}{2}[(a+b)+(b+c)+(c+a)][\frac{x+y}{a+b}+\frac{y+z}{b+c}+\frac{z+x}{c+a}]\geq \frac{1}{2}(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x})^{2}$ =Q

ta chứng minh Q $-2(x+y+z)\geq 3\frac{xy+yz+zx}{x+y+z}$

$\Leftrightarrow  $\sum \sqrt{(x+y)(y+z)}\geq 3\frac{xy+yz+zx}{x+y+z}+(x+y+z)$

lại có $\sum \sqrt{(x+y)(y+z)}$ $\geq \sqrt{(x+y+z^{2})+9(xy+yz+zx)}$ =R

ta chứng minh R $\geq x+y+z+3\frac{xy+yz+zx}{x+y+z}$ (luôn đúng bằng cách bình phương)

Vậy BĐT đc cm




#466275 $\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2...

Đã gửi bởi nam8298 on 23-11-2013 - 19:22 trong Bất đẳng thức và cực trị

chuẩn hóa a+b+c =3 .ta chứng minh $\frac{a^{2}}{5a^{2}+(3-a)^{2}}\leq \frac{1}{3}+\frac{4}{9}(a-1)$ ( biến đổi tương đương )

tương tự cọng theo vế đc đpcm




#466328 Đề thi chọn đội tuyển trường THCS Bạch Liêu

Đã gửi bởi nam8298 on 23-11-2013 - 20:50 trong Tài liệu - Đề thi

1, Tìm tất cả các số nguyên dương a,b,c đôi một khác nhau sao cho:

$A=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}$ nhận giá trị nguyên dương.

2 Chứng minh rằng:

$\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{(n+1)\sqrt{n}}\leq 2$

3.Cho x,y,z>0 và $x+y+z\geq 1$.Chứng minh:

$\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\geq 1$

4.Cho tam giác ABC. Trên cạnh BC lấy 2 điểm M,N. Chứng minh rằng:

$\widehat{MAB}=\widehat{NAC}\Leftrightarrow \frac{MB.NB}{MC.NC}=(\frac{AB}{AC})^2$.

bà 1 : giả sử $a\geq b\geq c$ .nếu c$c\geq 3$ thì A < 1 nên c=1 hoặc c=2 .

c=1 .làm tương tự chặn đc a và b

c=2 cũng tương tự




#466421 Chứng minh: A= $a^n+b^n+c^n+d^n$ là hợp số với mọi n tự nhiên.

Đã gửi bởi nam8298 on 24-11-2013 - 09:33 trong Số học

bài 2 : phải có a khác c .nếu a=c thì có bộ thỏa mãn như a=c=2 .b=3 thì $a^{2}+b^{2}+c^{2}= 17$ là số nguyên tố




#466425 p là số nguyên tố sao cho: $n^3$=13p+1

Đã gửi bởi nam8298 on 24-11-2013 - 09:41 trong Số học

bài 3 : trong a và b có 1 số chẵn (nếu cả 2 số lẻ thì c chẵn ,không là số nguyên tố)

giả sử a=2 .ta có c=$2^{b}+b^{2}$ .nếu b khác 3 thì c chia hết cho 3 ( vô lí )

suy ra b =3 suy ra c=17




#466427 p là số nguyên tố sao cho: $n^3$=13p+1

Đã gửi bởi nam8298 on 24-11-2013 - 09:46 trong Số học

bài 4 : nếu n =3 ( thỏa mãn )

           nếu n khác 3 thì $n^{2}+2$ chia hết cho 3 suy ra n =1 ( vô lí )

vậy nếu n và $n^{2}+2$ là số nguyên tố thì $n^{3}+2$ là số nguyên tố




#466430 $\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2...

Đã gửi bởi nam8298 on 24-11-2013 - 09:54 trong Bất đẳng thức và cực trị

Bài này hình như đâu chuân hoá dc đâu

 bài này chuẩn hóa đc mà bạn




#466435 p là số nguyên tố sao cho: $n^3$=13p+1

Đã gửi bởi nam8298 on 24-11-2013 - 10:08 trong Số học

bài 1 :giả sử 13p+1 =$n^{3}$ 

ta có 13p= (n-1)($n^{2}+n+1$)

do 13 và p là số nguyên tố nên n-1 =p hoặc n-1 =13

n-1=13 thì p =211

n-1=p thì $n^{2}+n+1$ =13 suy ra n=3 suy ra p=2

vậy p=2 hoặc 211




#466490 Chứng minh rằng: Nếu $1+2^n+4^n$ là số nguyên tố thì tồn tại $...

Đã gửi bởi nam8298 on 24-11-2013 - 15:30 trong Các bài toán và vấn đề về Số học

đặt n =$3^{k}m$ ( m không chia hết cho 3 )

nếu m =3l+1   suy ra $1+2^{n}+4^{n}$ =$a(a^{3l}-1)+a^{2}(a^{6l-1})+a^{2}+a+1$ chia hết cho a^{2}+a+1$ nên không là số nguyên tố

nếu m=3l+2    .làm tương tự ta đc $1+2^{n}+4^{n}$ chia hết cho a^{2}+a+1$ nên không là số nguyên tố

vậy n=$3^{k}$




#466494 a) chứng minh ab là số xấu lớn nhất

Đã gửi bởi nam8298 on 24-11-2013 - 15:50 trong Các bài toán và vấn đề về Số học

1:   dễ chứng minh ab là số xấu

giả sử tồn tại số xấu > ab

xét hệ H {1,2,.....,b} là hệ thặng dư đầy đủ thì {a,2a,.......ab} là hệ thặng dư đầy đủ

suy ra tòn tại x thỏa mãn ax đồng dư với n theo mod b hay n-ax =by (y là số nguyên)

do n>ab nên n-ax >n-ab >0 suy ra by > o

suy ra đpcm




#466533 p là số nguyên tố sao cho: $n^3$=13p+1

Đã gửi bởi nam8298 on 24-11-2013 - 19:33 trong Số học

bài 2 : nếu n chẵn thì A=$n^{4}+4^{n}$ chẵn nên là hợp số

           nếu n lẻ . đặt n=2k+1. khi đó A = ........={$(n-2^{k})^{2}+2^{2k}$}{$(n+2^{k})^{2}+2^{2k}$} nên là hợp số




#466541 Chứng minh: A= $a^n+b^n+c^n+d^n$ là hợp số với mọi n tự nhiên.

Đã gửi bởi nam8298 on 24-11-2013 - 19:44 trong Số học

nếu a khác c

sau khi quy đồng ta đc ac =$b^{2}$

$b^{2}+a^{2}+c^{2}= a^{2}+c^{2}-ac= (a+c)^{2}-ac= (a+c)^{2}-b^{2}= (a+b+c)(a+c-b)$

nếu a+c-b =1 suy ra $ac=b^{2}=(a+c-1)^{2}$ hay $a^{2}+c^{2}+ac-2a-2c+1=0$ hay $(a-1)^{2}+(c-1)^{2}+ac-1=0$ suy ra ac =1 suy ra a=c=1 ( vô lí do a khác c)




#466731 $x^{2}y^{2}+y^{2}z^{2}+z^{2...

Đã gửi bởi nam8298 on 25-11-2013 - 19:34 trong Các bài toán và vấn đề về Bất đẳng thức

cho x,y,z >$\frac{2}{3}$ và x+y+z =3 .CMR $x^{2}y^{2}+y^{2}z^{2}+z^{2}x^{2}\geq xy+yz+zx$




#466928 Cho n $\in $ Z, n $\geq $ 2.CMR: $2^{...

Đã gửi bởi nam8298 on 26-11-2013 - 19:44 trong Bất đẳng thức và cực trị

với n =2 ( đúng )

giả sử đíng với n=k .ta chứng minh đúng với n=k+1

thật vậy ta có $2^{n}+2^{2n+1}= 4.2^{n-1}+4.2^{2n-1}> 4.3^{n}> 3^{n+1}$

vậy ta đc đpcm




#468399 Cho $a,b,c$ là ba cạnh của một $\Delta$ thỏa mãn:...

Đã gửi bởi nam8298 on 02-12-2013 - 19:22 trong Bất đẳng thức và cực trị

đặt $F(a,b,c)= a+b+c-2-abc$

 xét $F(a,b,c) - F(a,\sqrt{\frac{b^{2}+c^{2}}{2}},\sqrt{\frac{b^{2}+c^{2}}{2}})\geq 0$

 lại có $F(a,\sqrt{\frac{b^{2}+c^{2}}{2}},\sqrt{\frac{b^{2}+c^{2}}{2}})\geq 0$

suy ra đpcm




#468400 (3a+2b+c)(\frac{1}{a}+\frac{1}{b...

Đã gửi bởi nam8298 on 02-12-2013 - 19:26 trong Bất đẳng thức và cực trị

Cho $a,b,c \in [1;2] .CMR (3a+2b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\leq \frac{45}{2}$




#468592 (3a+2b+c)(\frac{1}{a}+\frac{1}{b...

Đã gửi bởi nam8298 on 03-12-2013 - 18:57 trong Bất đẳng thức và cực trị

Ta đi cm 2 bbđt phụ sau:  Với a,b,c thuộc [1,2] thì  $\left ( a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\leq 10$  và $9\left ( a+b+c \right )\geq 4\left ( 3a+2b+c \right )$

 chứng minh ý 2 kiểu gì vậy bạn