Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


nam8298 nội dung

Có 158 mục bởi nam8298 (Tìm giới hạn từ 07-06-2016)



Sắp theo                Sắp xếp  

#466533 p là số nguyên tố sao cho: $n^3$=13p+1

Đã gửi bởi nam8298 on 24-11-2013 - 19:33 trong Số học

bài 2 : nếu n chẵn thì A=$n^{4}+4^{n}$ chẵn nên là hợp số

           nếu n lẻ . đặt n=2k+1. khi đó A = ........={$(n-2^{k})^{2}+2^{2k}$}{$(n+2^{k})^{2}+2^{2k}$} nên là hợp số




#466427 p là số nguyên tố sao cho: $n^3$=13p+1

Đã gửi bởi nam8298 on 24-11-2013 - 09:46 trong Số học

bài 4 : nếu n =3 ( thỏa mãn )

           nếu n khác 3 thì $n^{2}+2$ chia hết cho 3 suy ra n =1 ( vô lí )

vậy nếu n và $n^{2}+2$ là số nguyên tố thì $n^{3}+2$ là số nguyên tố




#466425 p là số nguyên tố sao cho: $n^3$=13p+1

Đã gửi bởi nam8298 on 24-11-2013 - 09:41 trong Số học

bài 3 : trong a và b có 1 số chẵn (nếu cả 2 số lẻ thì c chẵn ,không là số nguyên tố)

giả sử a=2 .ta có c=$2^{b}+b^{2}$ .nếu b khác 3 thì c chia hết cho 3 ( vô lí )

suy ra b =3 suy ra c=17




#466435 p là số nguyên tố sao cho: $n^3$=13p+1

Đã gửi bởi nam8298 on 24-11-2013 - 10:08 trong Số học

bài 1 :giả sử 13p+1 =$n^{3}$ 

ta có 13p= (n-1)($n^{2}+n+1$)

do 13 và p là số nguyên tố nên n-1 =p hoặc n-1 =13

n-1=13 thì p =211

n-1=p thì $n^{2}+n+1$ =13 suy ra n=3 suy ra p=2

vậy p=2 hoặc 211




#499256 Mâu thuẫn giữa 2 ĐHV

Đã gửi bởi nam8298 on 15-05-2014 - 20:48 trong Xử lí vi phạm - Tranh chấp - Khiếu nại

Có vẻ mâu thuẫn bắt đầu từ 27/4 khi toc ngan nhắc nhở buitudong1998




#472515 giải PT này giúp e vs

Đã gửi bởi nam8298 on 23-12-2013 - 20:01 trong Phương trình, hệ phương trình và bất phương trình

nếu $x> 7,5$ hoặc $x< 6,5$ thì vế trài lớn hơn 1

nếu $6,5\leq x\leq 7,5$ .VT = $(x-6,5)^{2013}+(7,5-x)^{2014}\leq (x-6,5)+(7,5-x)=1$

dấu =xảy ra khi x=6,5 hoặc x=7,5




#483100 Giải phương trình: $ (3x+1)\sqrt{2x^2-1}=5x^2+\frac...

Đã gửi bởi nam8298 on 14-02-2014 - 20:00 trong Phương trình, hệ phương trình và bất phương trình

đặt $\sqrt{2x^{2}-1}= a$

viết VP = $2a^{2}+x^{2}+\frac{3x}{2}-1$

sau đó phân tích nhân tử đc (2a-x-2)(2a-2x+1) =0

đến đây bạn giải tiếp đc




#483109 Giải phương trình: $ (3x+1)\sqrt{2x^2-1}=5x^2+\frac...

Đã gửi bởi nam8298 on 14-02-2014 - 20:13 trong Phương trình, hệ phương trình và bất phương trình

mình phân tích thế này đặt $\sqrt{2x^{2}-1}=t$ .sau đó  viết thành $at^{2}-2(3x+1)t+10x^{2}+3x-6-a(2x^{2}-1)$

tính đenta rồi viết lại cái đenta đấy

sau đó tính thêm 1 lần đenta nữa rồi chọn a để đenta đẹp đẹp

đây cũng là may thôi.còn tùy bài




#473772 Giải phương trình sau: 1.$16x^4+5=6\sqrt[3]{4x^3+x}$

Đã gửi bởi nam8298 on 29-12-2013 - 19:40 trong Phương trình - hệ phương trình - bất phương trình

1.theo đề bài thì x>o....áp dụng AM-GM ta có $6\sqrt[3]{4x^{3}+x}=3\sqrt[3]{2.4x.(4x^{2}+1)}\leq 4x+3+4x^{2}\leq 16x^{4}+5$

vậy x=0,5 là nghiệm




#473774 Giải phương trình sau: 1.$16x^4+5=6\sqrt[3]{4x^3+x}$

Đã gửi bởi nam8298 on 29-12-2013 - 19:43 trong Phương trình - hệ phương trình - bất phương trình

2.áp dụng Am-Gm ta có $2\sqrt{10-x}=\frac{2}{3}\sqrt{9(10-x)}\leq \frac{(19-x)}{3} 

\sqrt[3]{4+4x}= \sqrt[3]{2.2.(x+1)}\leq \frac{5+x}{3}$

cộng vào ta đc VT<= VP

vậy pt có nghiệm x=1




#478366 Giải phương trình sau $$\dfrac{2x}{2x^2-5x+3...

Đã gửi bởi nam8298 on 21-01-2014 - 19:22 trong Phương trình, hệ phương trình và bất phương trình

theo mình cách 2 là quy đồng hết lên vì sau khi quy đồng được phương trình bậc 4 mà có nghiệm là 2  và 0,75




#483098 Giải phương trình nghiệm nguyên: $ 2y^4-x^4+x^2y^2+4x^2+7y^2+5=0$

Đã gửi bởi nam8298 on 14-02-2014 - 19:56 trong Số học

viết thành $2y^{4}+ y^{2}(x^{2}+7)- (x^{4}-4x^{2}-5)= 0$

tính đenta thì đenta là SCP .từ đó tìm được x suy ra y




#471617 Giải phương trình nghiệm nguyên dương : $(x^2+1)(y^2+1)+2(x-y)(1-xy)=4(...

Đã gửi bởi nam8298 on 18-12-2013 - 20:18 trong Số học

mình nhớ là bài này sau khi bung hết ra sẽ đc 1 cái phương trình tích .sau đó giải đc x,y




#476666 Giải Phương trình :)

Đã gửi bởi nam8298 on 11-01-2014 - 13:23 trong Phương trình, hệ phương trình và bất phương trình

dùng đánh giá Cauchy -Schwazt cho VT đc VT <= 2

     VP >= 2

do đó.phương trình có nghiệm x=3




#476405 giả sử $a^2+b^2=1$ ;chứng minh $((a+b)^2-(a+b))^2\geq 4(a...

Đã gửi bởi nam8298 on 09-01-2014 - 21:19 trong Bất đẳng thức và cực trị

do $a^{2}+b^{2}=1 \Rightarrow -1 \leq a,b\leq 1$

ta có $(a+b)^{2}=2ab+1$ .do đó sau khi nhân hết ra ta đc bđt cần chứng minh tương đương với (1-a)(1-b)$\geq 0$ (luôn đúng )




#478368 CMR: xy=0 hoặc x=2y

Đã gửi bởi nam8298 on 21-01-2014 - 19:27 trong Số học

Đề chắc chắn đúng!

 

nghiệm nguyên dương mà bắt chứng minh xy = 0 ???




#482416 CMR: $a_{1}^{3}+a_{2}^{3}+...+a_...

Đã gửi bởi nam8298 on 10-02-2014 - 19:36 trong Các bài toán và vấn đề về Bất đẳng thức

dùng quy nạp bạn ạ




#486480 CMR: $\sum a^{2}\geqslant 3abc$

Đã gửi bởi nam8298 on 12-03-2014 - 19:40 trong Các bài toán và vấn đề về Bất đẳng thức

đổi biến p ,q, r

ta có q^2 >= 3pr >= 9r^2 .

suy ra q >= 3r

mà a^2 + b^2 +c^2 >= q >= 3r

vậy bđt đc cm




#480024 CMR: $\sum \sqrt[4]{\frac{\sqrt{3...

Đã gửi bởi nam8298 on 30-01-2014 - 11:44 trong Các bài toán và vấn đề về Bất đẳng thức

mình có cách khác như sau BĐT cần chứng minh tương đương với $\sum \sqrt[4]{a^{3}b^{4}c^{4}(\sqrt{3}+6\sqrt{3}ab)}\leq 1$

dùng AM- GM cho 4 số 9abc ,9abc,9abc và $\sqrt{3}bc+6\sqrt{3}ab^{2}c$ thì đc BĐT cần chứng minh




#483094 CMR: $\sum \frac{a+b}{c}\leq 8$

Đã gửi bởi nam8298 on 14-02-2014 - 19:46 trong Bất đẳng thức và cực trị

3 số (a+b)/c ; (b+c)/a ; (c+a)/b không thể cùng lớn hơn 2 .

bạn xét các trường hợp ra là đc




#489263 CMR: $\sum \frac{1}{1+(n-1)a_{i}...

Đã gửi bởi nam8298 on 28-03-2014 - 20:26 trong Các bài toán và vấn đề về Bất đẳng thức

đặt  $a_{i}= \frac{1}{x_{i}}$

theo Cauchy-Schwazt ta có $\sum \frac{x_{i}}{x_{i}+n-1}\geq \frac{(\sum \sqrt{x_{i}})^{2}}{\sum (x_{i}+n-1)}$

ta sẽ chứng minh $(\sum \sqrt{x_{i}})^{2}\geq n(n-1)+\sum x_{i}$

nhân ra rút gọn 2 vế rồi dùng AM-GM là xong




#481154 CMR: $\sum \frac{1}{(a+b)^{3}}+...

Đã gửi bởi nam8298 on 05-02-2014 - 16:32 trong Các bài toán và vấn đề về Bất đẳng thức

dưới mẫu không phải là a+b mà là 1+ a




#481150 CMR: $\sum \frac{1}{(a+b)^{3}}+...

Đã gửi bởi nam8298 on 05-02-2014 - 16:29 trong Các bài toán và vấn đề về Bất đẳng thức

Cho a, b, c là các số thực dương . CMR: $\sum \frac{1}{(a+b)^{3}}+\frac{3}{32}\sum ab\geqslant \frac{21}{32}$

 

hình như bạn gõ sai đề




#478947 CMR: $\sum \frac{(a+b)^{3}}{\sqr...

Đã gửi bởi nam8298 on 25-01-2014 - 12:28 trong Các bài toán và vấn đề về Bất đẳng thức

áp dụng AM-GM ta có P =$\sum \frac{(a+b)^{3}}{\sqrt[3]{2(a+b)(a^{2}+b^{2})}}= \sum \frac{(a+b)^{4}}{\sqrt[3]{(2a^{2}+2b^{2})(a^{2}+2ab+b^{2})(a^{2}+2ab+b^{2})}}\geq \sum \frac{3(a+b)^{4}}{4(a^{2}+ab+b^{2})}=9+\sum \frac{3(a^{2}+b^{2})^{2}} {4(a^{2}+ab+b^{2})}\geq 9+3\doteq 12$

 (do $(a^{2}+b^{2})^{2}\geq \frac{4}{9}(a^{2}+ab+b^{2})^{2}$ nên BĐT cuối đúng )

vậy BĐT đc cm




#503840 CMR: $\frac{a^{3}}{x^{2}}+...

Đã gửi bởi nam8298 on 03-06-2014 - 20:20 trong Bất đẳng thức và cực trị

Áp dụng AM-GM ta có $\frac{a^{3}}{x^{2}}+2x \geq 3a$

Tương tự cộng vế là xong