Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


nam8298 nội dung

Có 158 mục bởi nam8298 (Tìm giới hạn từ 03-06-2016)



Sắp theo                Sắp xếp  

#456420 $\frac{1}{a^{2}+b^{2}+2}+\frac{1}{b^{2}+c^{2}+2}+\frac{1}...

Đã gửi bởi nam8298 on 09-10-2013 - 20:21 trong Bất đẳng thức và cực trị

chọn k = 1/8 sau đó biến đổi tương đương




#456207 $\frac{1}{a^{2}+b^{2}+2}+\frac{1}{b^{2}+c^{2}+2}+\frac{1}...

Đã gửi bởi nam8298 on 08-10-2013 - 21:20 trong Bất đẳng thức và cực trị

ta có $\sum \frac{1}{a^{2}+b^{2}+2}\leq \sum \frac{2}{(a+b)^{2}+4}= \sum \frac{2}{c^{2}-6c+13}$

ta chứng minh $\frac{2}{c^{2}-6c+13}\leq \frac{1}{4}+k(a-1)$ sau đó cộng theo vế đc đpcm




#456176 $\frac{1}{4a^{2}+b^{2}+c^{2...

Đã gửi bởi nam8298 on 08-10-2013 - 20:24 trong Bất đẳng thức và cực trị

áp dụng cauchy -schwazt ta có $(4+1+1)(4a^{2}+b^{2}+c^{2})\geq (4a+b+c)^{2}$

tương tự với 2 mẫu còn lại.ta phải chứng minh $\sum \frac{1}{a^{2}+2a+1}\leq \frac{3}{4}$

đến đây chứng minh $\frac{1}{a^{2}+2a+1} \leq \frac{1}{4}+k(a-1)$    .tương tự rồi cộng vế suy ra đpcm




#456172 Cho x,y thỏa mãn $8x^2+y^2+\dfrac{1}{4x^2}=4...

Đã gửi bởi nam8298 on 08-10-2013 - 20:12 trong Bất đẳng thức và cực trị

công thức nghiệm bậc ba có trong NCPT 9 đấy bạn ơi




#455938 Tìm m để phương trình \frac{1}{x^2}+\frac{...

Đã gửi bởi nam8298 on 07-10-2013 - 19:50 trong Phương trình, hệ phương trình và bất phương trình

phương trình gi vậy bạn




#455913 $\sum \frac{1}{1+a^{2}}\geq...

Đã gửi bởi nam8298 on 07-10-2013 - 17:39 trong Bất đẳng thức và cực trị

theo mình thì chứng minh $\frac{1}{1+x^{2}}+\frac{1}{1+y^{2}}\geq \frac{2}{1+xy}$ (tớ quy đồng ) .giả sử z=min{x;y;z}  sau đó xét $\frac{2}{1+xy}+\frac{1}{1+z^{2}}-\frac{3}{1+xyz}= \frac{2xy(z-1)}{(1+xy)(1+xyz)}+\frac{z(xy-z)}{(1+z^{2})(1+xyz)}\geq 0$ (do $z\geq 1$ và xy-z >0)            Mọi người thử xem có đúng không




#455709 Tìm điểm M sao cho MA+MB+MC+MD+ME đạt GTLN và GTNN

Đã gửi bởi nam8298 on 06-10-2013 - 20:01 trong Bất đẳng thức và cực trị

hạ MI,MJ,MK,MH,MO vuông góc với AB,BC,CD,DE,EA.ta có 2(MA+MB+MC+MD+ME) =$\sqrt{MI^{2}+AI^{^2}}$ +........sau đó áp dụng mincopski .thay (MI+MJ+MK+MH+MO)=2S(abcde)/(AB+BC+CD+DE+EA) rồi dùng AM-GM thì tìm được min.còn max thì mình không biết




#454639 Chứng minh bất đẳng thức

Đã gửi bởi nam8298 on 02-10-2013 - 14:52 trong Bất đẳng thức và cực trị

ta có :$x(9\sqrt{1+x^{2}}+13\sqrt{1-x^{2}})= 6\sqrt{\frac{9}{4}x^{2}(1+x^{2})}+\frac{13}{2}\sqrt{(4-4x^{2})x^{2}}\leq 3(\frac{13x^{2}}{4}+1)+\frac{13}{4}(4-3x^{2})= 16 (theo BDT AM-GM)$