Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


nam8298 nội dung

Có 158 mục bởi nam8298 (Tìm giới hạn từ 08-04-2016)



Sắp theo                Sắp xếp  

#454639 Chứng minh bất đẳng thức

Đã gửi bởi nam8298 on 02-10-2013 - 14:52 trong Bất đẳng thức và cực trị

ta có :$x(9\sqrt{1+x^{2}}+13\sqrt{1-x^{2}})= 6\sqrt{\frac{9}{4}x^{2}(1+x^{2})}+\frac{13}{2}\sqrt{(4-4x^{2})x^{2}}\leq 3(\frac{13x^{2}}{4}+1)+\frac{13}{4}(4-3x^{2})= 16 (theo BDT AM-GM)$




#455709 Tìm điểm M sao cho MA+MB+MC+MD+ME đạt GTLN và GTNN

Đã gửi bởi nam8298 on 06-10-2013 - 20:01 trong Bất đẳng thức và cực trị

hạ MI,MJ,MK,MH,MO vuông góc với AB,BC,CD,DE,EA.ta có 2(MA+MB+MC+MD+ME) =$\sqrt{MI^{2}+AI^{^2}}$ +........sau đó áp dụng mincopski .thay (MI+MJ+MK+MH+MO)=2S(abcde)/(AB+BC+CD+DE+EA) rồi dùng AM-GM thì tìm được min.còn max thì mình không biết




#455913 $\sum \frac{1}{1+a^{2}}\geq...

Đã gửi bởi nam8298 on 07-10-2013 - 17:39 trong Bất đẳng thức và cực trị

theo mình thì chứng minh $\frac{1}{1+x^{2}}+\frac{1}{1+y^{2}}\geq \frac{2}{1+xy}$ (tớ quy đồng ) .giả sử z=min{x;y;z}  sau đó xét $\frac{2}{1+xy}+\frac{1}{1+z^{2}}-\frac{3}{1+xyz}= \frac{2xy(z-1)}{(1+xy)(1+xyz)}+\frac{z(xy-z)}{(1+z^{2})(1+xyz)}\geq 0$ (do $z\geq 1$ và xy-z >0)            Mọi người thử xem có đúng không




#455938 Tìm m để phương trình \frac{1}{x^2}+\frac{...

Đã gửi bởi nam8298 on 07-10-2013 - 19:50 trong Phương trình, hệ phương trình và bất phương trình

phương trình gi vậy bạn




#456172 Cho x,y thỏa mãn $8x^2+y^2+\dfrac{1}{4x^2}=4...

Đã gửi bởi nam8298 on 08-10-2013 - 20:12 trong Bất đẳng thức và cực trị

công thức nghiệm bậc ba có trong NCPT 9 đấy bạn ơi




#456176 $\frac{1}{4a^{2}+b^{2}+c^{2...

Đã gửi bởi nam8298 on 08-10-2013 - 20:24 trong Bất đẳng thức và cực trị

áp dụng cauchy -schwazt ta có $(4+1+1)(4a^{2}+b^{2}+c^{2})\geq (4a+b+c)^{2}$

tương tự với 2 mẫu còn lại.ta phải chứng minh $\sum \frac{1}{a^{2}+2a+1}\leq \frac{3}{4}$

đến đây chứng minh $\frac{1}{a^{2}+2a+1} \leq \frac{1}{4}+k(a-1)$    .tương tự rồi cộng vế suy ra đpcm




#456207 $\frac{1}{a^{2}+b^{2}+2}+\frac{1}{b^{2}+c^{2}+2}+\frac{1}...

Đã gửi bởi nam8298 on 08-10-2013 - 21:20 trong Bất đẳng thức và cực trị

ta có $\sum \frac{1}{a^{2}+b^{2}+2}\leq \sum \frac{2}{(a+b)^{2}+4}= \sum \frac{2}{c^{2}-6c+13}$

ta chứng minh $\frac{2}{c^{2}-6c+13}\leq \frac{1}{4}+k(a-1)$ sau đó cộng theo vế đc đpcm




#456420 $\frac{1}{a^{2}+b^{2}+2}+\frac{1}{b^{2}+c^{2}+2}+\frac{1}...

Đã gửi bởi nam8298 on 09-10-2013 - 20:21 trong Bất đẳng thức và cực trị

chọn k = 1/8 sau đó biến đổi tương đương




#456422 Tìm GTNN, GTLN của $S=m+n+p$

Đã gửi bởi nam8298 on 09-10-2013 - 20:31 trong Bất đẳng thức và cực trị

áp dụng $n^{2}+np+p^{2}\geq \frac{3(n+p)^{2}}{4}$           sau đó chuyển $\frac{3m^{2}}{2}$ sang rồi dùng Cauchy-Chwazt




#456427 $\frac{a+\sqrt{ab}+\sqrt[3]{abc}...

Đã gửi bởi nam8298 on 09-10-2013 - 20:46 trong Bất đẳng thức và cực trị

chia vế trái cho vế phải đc 3 cái căn bậc 3.  sau đó dùng AM-GM cho 3 cái căn đó




#456633 Đề thi chọn đội tuyển HSG TP Hà Nội

Đã gửi bởi nam8298 on 10-10-2013 - 19:57 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

KỲ THI CHỌN ĐỘI TUYỂN HSG THÀNH PHỐ
Năm học 2013-2014



đề thi HSG.jpg



#456767 CMR tâm đường tròn nội tiếp tam giác ABC thuộc 1 đường thẳng cố định khi tam...

Đã gửi bởi nam8298 on 11-10-2013 - 12:20 trong Hình học phẳng

Cho D nằm giữa H và M cố định.tam giác ABC thay đổi sao cho AH,AD,AM là đường cao ,phân giác .trung tuyến của tam giác ABC .CMR tâm đường tròn nội tiếp tam giác ABC thuộc 1 đường thẳng cố định khi tam giác ABC thay đổi




#456768 Cho a,b,c là các số thực dương

Đã gửi bởi nam8298 on 11-10-2013 - 12:27 trong Bất đẳng thức và cực trị

Bài 1 dùng mincopski

Bài 2 do a,b,c thuộc đoạn (0,1) nên$\sqrt{abc}\leq \sqrt[3]{abc}$ và $\sqrt{(1-a)(1-b)(1-c)}\leq \sqrt[3]{(1-a)(1-b)(1-c)}$ dau đó dùng AM-GM là xong




#456770 Cho a,b,c là các số thực dương

Đã gửi bởi nam8298 on 11-10-2013 - 12:33 trong Bất đẳng thức và cực trị

Bài 3  chứng minh $\sum \frac{b+c}{\sqrt{a}}\geq 2(\sum \sqrt{a})\geq \sum \sqrt{a}+3$




#456771 Cho a,b,c là các số thực dương

Đã gửi bởi nam8298 on 11-10-2013 - 12:34 trong Bất đẳng thức và cực trị

Bài 4 chia phương trình ban đầu cho $x^{2}$ đặt ẩn phụ rồi dùng Cauchy-Chwazt

Bài 5 phân tích $x^{3}+y^{3}+z^{3}-3xyz =(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx)$ .bình phương rồi dùng AM-GM

Bài 6 ax+by+cz $\leq \sqrt{(x^{2}+y^{2}+z^{2})(a^{2}+b^{2}+c^{2})}$ sau đó dùng Cauchy-Chwazt là đc

Bài7 nhân a+b+c lên rồi dùng nesbit

mấy bài còn lại để tối lên mình làm nốt cho




#456774 $\sum \frac{1}{c\sqrt{a^{2}...

Đã gửi bởi nam8298 on 11-10-2013 - 12:45 trong Bất đẳng thức và cực trị

cho ab+bc+ca =1.CMR $\sum \frac{1}{c\sqrt{a^{2}+b^{2}}}\geq \frac{9}{2\sqrt{3}-3\sqrt{6}abc}$




#456873 $\frac{a+\sqrt{ab}+\sqrt[3]{abc}...

Đã gửi bởi nam8298 on 11-10-2013 - 20:00 trong Bất đẳng thức và cực trị

chia vế trái cho vế phải rồi dùng AM-GM ta có     $\sqrt[3]{(\frac{2a}{a+b})(\frac{3a}{a+b+c})}+\sqrt[3]{(\frac{3b}{a+b+c})(\frac{2\sqrt{ab}}{a+b})}+\sqrt[3]{(\frac{2b}{a+b})(\frac{3c}{a+b+c})}\leq 3$




#456881 $2(x+y+z)(x^{2}+y^{2}+z^{2})\leq 4xyz...

Đã gửi bởi nam8298 on 11-10-2013 - 20:20 trong Bất đẳng thức và cực trị

cho x,y,z là các số thực CMR $2(x+y+z)(x^{2}+y^{2}+z^{2})\leq 4xyz+(x^{2}+y^{2}+z^{2})^{\frac{3}{2}}$




#456888 $3(x^{2}+xy+y^{2})(y^{2}+yz+z^{2...

Đã gửi bởi nam8298 on 11-10-2013 - 20:28 trong Bất đẳng thức và cực trị

cho x,y,z là các số thực CMR:$3(x^{2}+xy+y^{2})(y^{2}+yz+z^{2})(z^{2}+zx+x^{2})\geq (x+y+z)^{2}(xy+yz+zx)^{2}$




#456892 Chứng minh

Đã gửi bởi nam8298 on 11-10-2013 - 20:40 trong Bất đẳng thức và cực trị

 ta có $2(a+b+c)-abc=a(2-bc)+2(b+c)\leq \sqrt{(a^{2}+(b+c)^{2})((2-bc)^{2}+4)}= \sqrt{(9+2bc)(b^{2}c^{2}-4bc+8)}$.đến đây biến đổi tương đương là đc




#457046 $3(x^{2}+xy+y^{2})(y^{2}+yz+z^{2...

Đã gửi bởi nam8298 on 12-10-2013 - 12:38 trong Bất đẳng thức và cực trị

x,y,z  là các số thực chứ có phải dương đâu mà làm thế đc81(x+y)2(y+z)2(z+x)264(x+y+z)2(xy+yz+xz)29(x+y)(y+z)(z+x)8(x+y+z)(xy+yz+zx)




#458424 CMR $\sum \frac{1}{3+a}\geq 1$

Đã gửi bởi nam8298 on 18-10-2013 - 20:08 trong Bất đẳng thức và cực trị

Cho a,b,c,d dương thỏa mãn abcd=1.CMR $\sum \frac{1}{3+a}\geq 1$

 




#458428 CMR $\sum \frac{a^{3}}{\sqrt...

Đã gửi bởi nam8298 on 18-10-2013 - 20:17 trong Bất đẳng thức và cực trị

Cho a,b,c >0 và $\sum a^{4}\geq \sum a^{3}$  CMR  $\sum \frac{a^{3}}{\sqrt{b^{4}+b^{2}c^{2}+c^{4}}}\geq \sqrt{3}$




#458952 $\sum \frac{a-bc}{a+bc}\leq \fra...

Đã gửi bởi nam8298 on 20-10-2013 - 21:43 trong Bất đẳng thức và cực trị

sao toàn đăng bài tập ego vậy bạn




#458953 $\sum \frac{a-bc}{a+bc}\leq \fra...

Đã gửi bởi nam8298 on 20-10-2013 - 21:44 trong Bất đẳng thức và cực trị

Bài 1: thay a+bc =a(a+b+c)+bc .tương tự 2 mẫu kí.sau đó quy đồng là đc