Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


nam8298 nội dung

Có 158 mục bởi nam8298 (Tìm giới hạn từ 16-08-2016)



Sắp theo                Sắp xếp  

#465758 cho a,b,c là các số thực dương thoả mãn điều kiện $abc=1$ tìm max c...

Đã gửi bởi nam8298 on 21-11-2013 - 20:15 trong Bất đẳng thức và cực trị

đặt a=x/y ;b=y/z ;c=z/x rồi chứng minh




#460344 Đề thi HSG lớp 12 tỉnh Vĩnh Phúc 2013-2014

Đã gửi bởi nam8298 on 27-10-2013 - 19:12 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

xin lỗi mình đánh vội quá nên sai đề




#456633 Đề thi chọn đội tuyển HSG TP Hà Nội

Đã gửi bởi nam8298 on 10-10-2013 - 19:57 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

KỲ THI CHỌN ĐỘI TUYỂN HSG THÀNH PHỐ
Năm học 2013-2014



đề thi HSG.jpg



#460039 Đề thi HSG lớp 12 tỉnh Vĩnh Phúc 2013-2014

Đã gửi bởi nam8298 on 26-10-2013 - 12:02 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

1


Đăng lại đề @@
Bài 1. Cho trước số thực $a>0$ và dãy số thực $x_{n}$ xác định bởi $x_{1}$ =a và $x_{n+1}= \sqrt{17+16x_{n}}$ với mọi $n\geq 1$. Chứng minh rằng với mọi $a>0$ dãy $x_{n}$ có giới hạn khi $n\rightarrow$ dương vô cùng..Tìm giới hạn đó
Bài 2. Cho $3$ số $x,y,z$ không âm thỏa mãn $x^{2}+y^{2}+z^{2}= 1$ CMR $\sqrt{1-\frac{(x+y^{2})}{4}}+\sqrt{1-\frac{(y+z)^{2}}{4}}+\sqrt{1-\frac{(z+x)^{2}}{4}}\geq \sqrt{6}$
Bài 3. Tìm các số tự nhiên $x,y$ thỏa mãn phương trình ($(x^{2}+y)(y^{2}+x)= 2(x-y)^{3}$
Bài 4. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ vơí $AB<AC$ .Tiếp tuyến tại $A$ của $(O)$ cắt $BC$ tại $E$ . $D$ là điểm đối xứng của $A$ qua $O$,
a, Chứng minh rằng $AE$ song song với $CD$
b, Đường thẳng $BE$ cắt $AT$ tại $F$ .Giả sử đường tròn ngoại tiếp tam giác $AEF$ cắt $EO$ tại $G$ khác điểm $E$ .Chứng minh rằng tâm đường tròn nội tiếp tam giác $AGB$ nằm trên $(O)$
Bài 5. Một số nguyên dương $k$ được gọi là số đẹp nếu có thể phân hoạch tập hợp các số nguyên dương thành $k$ tập $A_{1},A_{2}....A_{k}$ sao cho với mỗi số nguyên dương $n\geq 15$ và với mọi i$\in (1;2;....:k)$ đều tồn tại 2 số thuộc $A_{i}$ có tổng là $n$
a, Chứng minh rằng $k=3$ là số đẹp
b. Chứng minh rằng với mọi $k\geq 4$ đều không đẹp.



#478368 CMR: xy=0 hoặc x=2y

Đã gửi bởi nam8298 on 21-01-2014 - 19:27 trong Số học

Đề chắc chắn đúng!

 

nghiệm nguyên dương mà bắt chứng minh xy = 0 ???




#477591 x,y,z>0,x+y+z=1.CMR: $\frac{x}{x^2+1}+...

Đã gửi bởi nam8298 on 16-01-2014 - 19:52 trong Bất đẳng thức và cực trị

2. nếu đề yêu cầu chứng minh $\geq 3$ :

 ta có $\frac{x+3}{(x+1)^{2}}\geq 1+\frac{3}{4}(x-1)$

chứng minh tương tự rồi cộng theo vế đc đpcm




#477589 x,y,z>0,x+y+z=1.CMR: $\frac{x}{x^2+1}+...

Đã gửi bởi nam8298 on 16-01-2014 - 19:47 trong Bất đẳng thức và cực trị

1. ta có $\frac{x}{x^{2}+1}\leq \frac{3}{10}+\frac{6}{25}(x-\frac{1}{3})$

tương tự cộng theo vế đc đpcm




#477704 Đề thi chọn đội tuyển HSG cấp tỉnh lần 2

Đã gửi bởi nam8298 on 17-01-2014 - 19:11 trong Tài liệu - Đề thi

Câu 2 :

a, đặt $\sqrt{x^{2}+x+1}=a;\sqrt{x-1}=b$ .Ta có phương trình $a^{2}-4ab +3b^{2}=0\Leftrightarrow (a-b)(a-3b)=0$

giải ra tìm x ,

b,Ta có $xy =2+\frac{z^{2}}{2};x+y =2-z$ mà để phương trình có nghiệm thì $(x+y)^{2}\geq 4xy$

Từ đây tính đc z =-2

thay vào tìm đc x,y




#477703 Đề thi chọn đội tuyển HSG cấp tỉnh lần 2

Đã gửi bởi nam8298 on 17-01-2014 - 19:00 trong Tài liệu - Đề thi

Câu 1 b ; áp dụng Cauch- Schwazt ta có $(a^{2010}+b^{2010})(a^{2012}+b^{2012})\geq (a^{2011}+b^{2011})^{2}$

dấu bằng xảy ra khi a=b =1 nên M =3




#481150 CMR: $\sum \frac{1}{(a+b)^{3}}+...

Đã gửi bởi nam8298 on 05-02-2014 - 16:29 trong Các bài toán và vấn đề về Bất đẳng thức

Cho a, b, c là các số thực dương . CMR: $\sum \frac{1}{(a+b)^{3}}+\frac{3}{32}\sum ab\geqslant \frac{21}{32}$

 

hình như bạn gõ sai đề




#499256 Mâu thuẫn giữa 2 ĐHV

Đã gửi bởi nam8298 on 15-05-2014 - 20:48 trong Xử lí vi phạm - Tranh chấp - Khiếu nại

Có vẻ mâu thuẫn bắt đầu từ 27/4 khi toc ngan nhắc nhở buitudong1998




#481154 CMR: $\sum \frac{1}{(a+b)^{3}}+...

Đã gửi bởi nam8298 on 05-02-2014 - 16:32 trong Các bài toán và vấn đề về Bất đẳng thức

dưới mẫu không phải là a+b mà là 1+ a




#466541 Chứng minh: A= $a^n+b^n+c^n+d^n$ là hợp số với mọi n tự nhiên.

Đã gửi bởi nam8298 on 24-11-2013 - 19:44 trong Số học

nếu a khác c

sau khi quy đồng ta đc ac =$b^{2}$

$b^{2}+a^{2}+c^{2}= a^{2}+c^{2}-ac= (a+c)^{2}-ac= (a+c)^{2}-b^{2}= (a+b+c)(a+c-b)$

nếu a+c-b =1 suy ra $ac=b^{2}=(a+c-1)^{2}$ hay $a^{2}+c^{2}+ac-2a-2c+1=0$ hay $(a-1)^{2}+(c-1)^{2}+ac-1=0$ suy ra ac =1 suy ra a=c=1 ( vô lí do a khác c)




#466533 p là số nguyên tố sao cho: $n^3$=13p+1

Đã gửi bởi nam8298 on 24-11-2013 - 19:33 trong Số học

bài 2 : nếu n chẵn thì A=$n^{4}+4^{n}$ chẵn nên là hợp số

           nếu n lẻ . đặt n=2k+1. khi đó A = ........={$(n-2^{k})^{2}+2^{2k}$}{$(n+2^{k})^{2}+2^{2k}$} nên là hợp số




#466328 Đề thi chọn đội tuyển trường THCS Bạch Liêu

Đã gửi bởi nam8298 on 23-11-2013 - 20:50 trong Tài liệu - Đề thi

1, Tìm tất cả các số nguyên dương a,b,c đôi một khác nhau sao cho:

$A=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}$ nhận giá trị nguyên dương.

2 Chứng minh rằng:

$\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{(n+1)\sqrt{n}}\leq 2$

3.Cho x,y,z>0 và $x+y+z\geq 1$.Chứng minh:

$\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\geq 1$

4.Cho tam giác ABC. Trên cạnh BC lấy 2 điểm M,N. Chứng minh rằng:

$\widehat{MAB}=\widehat{NAC}\Leftrightarrow \frac{MB.NB}{MC.NC}=(\frac{AB}{AC})^2$.

bà 1 : giả sử $a\geq b\geq c$ .nếu c$c\geq 3$ thì A < 1 nên c=1 hoặc c=2 .

c=1 .làm tương tự chặn đc a và b

c=2 cũng tương tự




#466275 $\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2...

Đã gửi bởi nam8298 on 23-11-2013 - 19:22 trong Bất đẳng thức và cực trị

chuẩn hóa a+b+c =3 .ta chứng minh $\frac{a^{2}}{5a^{2}+(3-a)^{2}}\leq \frac{1}{3}+\frac{4}{9}(a-1)$ ( biến đổi tương đương )

tương tự cọng theo vế đc đpcm




#459202 Chia tam giác đều cạnh $n$ thành $n^2$ tam giác đều cạnh...

Đã gửi bởi nam8298 on 22-10-2013 - 12:48 trong Các bài toán và vấn đề về Tổ hợp và rời rạc

Bài 1 trong cuộc hội thảo cứ 10 người thì có đúng 1 người quen chung tìm số người quen lớn nhất của 1 người

Bài 2 Cho đa giác lồi n đỉnh sao cho không có 3 đường chéo nào đồng quy.tìm số miền do các đường chéo tạo nên

Bài 3 một tam giác đều n cạnh được chia làm $n^{2}$ tam giác đều cạnh 1 bằng các đường thẳng song song với các cạnh của nó .Hỏi có bao nhiêu tam giác đều được tạo thành

Bài 4 cho số nguyên $n\geq 2$ CMR trong mọi họ gồm ít nhất $2^{n-1}+1$ tập con không rỗng phân biệt của tập {1,2,3.....,n} đều tìm được 3 tập mà một trong chúng là hợp của 2 tập còn lại

 




#466421 Chứng minh: A= $a^n+b^n+c^n+d^n$ là hợp số với mọi n tự nhiên.

Đã gửi bởi nam8298 on 24-11-2013 - 09:33 trong Số học

bài 2 : phải có a khác c .nếu a=c thì có bộ thỏa mãn như a=c=2 .b=3 thì $a^{2}+b^{2}+c^{2}= 17$ là số nguyên tố




#466425 p là số nguyên tố sao cho: $n^3$=13p+1

Đã gửi bởi nam8298 on 24-11-2013 - 09:41 trong Số học

bài 3 : trong a và b có 1 số chẵn (nếu cả 2 số lẻ thì c chẵn ,không là số nguyên tố)

giả sử a=2 .ta có c=$2^{b}+b^{2}$ .nếu b khác 3 thì c chia hết cho 3 ( vô lí )

suy ra b =3 suy ra c=17




#466435 p là số nguyên tố sao cho: $n^3$=13p+1

Đã gửi bởi nam8298 on 24-11-2013 - 10:08 trong Số học

bài 1 :giả sử 13p+1 =$n^{3}$ 

ta có 13p= (n-1)($n^{2}+n+1$)

do 13 và p là số nguyên tố nên n-1 =p hoặc n-1 =13

n-1=13 thì p =211

n-1=p thì $n^{2}+n+1$ =13 suy ra n=3 suy ra p=2

vậy p=2 hoặc 211




#466430 $\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2...

Đã gửi bởi nam8298 on 24-11-2013 - 09:54 trong Bất đẳng thức và cực trị

Bài này hình như đâu chuân hoá dc đâu

 bài này chuẩn hóa đc mà bạn




#466427 p là số nguyên tố sao cho: $n^3$=13p+1

Đã gửi bởi nam8298 on 24-11-2013 - 09:46 trong Số học

bài 4 : nếu n =3 ( thỏa mãn )

           nếu n khác 3 thì $n^{2}+2$ chia hết cho 3 suy ra n =1 ( vô lí )

vậy nếu n và $n^{2}+2$ là số nguyên tố thì $n^{3}+2$ là số nguyên tố




#471620 Chứng minh đa thức f(x) chia hết cho đa thức g(x)

Đã gửi bởi nam8298 on 18-12-2013 - 20:24 trong Đại số

cái đa thức đầu tiên là $\frac{x^{80}-1}{x-1}$ .cái thứ 2 là $\frac{x^{20}-1}{x-1}$ .cái đầu rõ ràng chia hết cho cái sau




#483100 Giải phương trình: $ (3x+1)\sqrt{2x^2-1}=5x^2+\frac...

Đã gửi bởi nam8298 on 14-02-2014 - 20:00 trong Phương trình, hệ phương trình và bất phương trình

đặt $\sqrt{2x^{2}-1}= a$

viết VP = $2a^{2}+x^{2}+\frac{3x}{2}-1$

sau đó phân tích nhân tử đc (2a-x-2)(2a-2x+1) =0

đến đây bạn giải tiếp đc




#471615 Tìm giá trị nhỏ nhất của A =\sqrt{(x+y)(y+z)(z+x)}.(\frac...

Đã gửi bởi nam8298 on 18-12-2013 - 20:13 trong Bất đẳng thức và cực trị

áp dụng Cauchy-Schwazt ta có A =$\sum (y+z)\sqrt{(1+\frac{y}{x})(1+\frac{z}{x})}\geq \sum (y+z)(1+\frac{\sqrt{yz}}{x})\geq \sum (y+z)+\sum \frac{2yz}{x}\geq 3(x+y+z)= 3\sqrt{2}$