Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


nam8298 nội dung

Có 158 mục bởi nam8298 (Tìm giới hạn từ 08-04-2016)



Sắp theo                Sắp xếp  

#477591 x,y,z>0,x+y+z=1.CMR: $\frac{x}{x^2+1}+...

Đã gửi bởi nam8298 on 16-01-2014 - 19:52 trong Bất đẳng thức và cực trị

2. nếu đề yêu cầu chứng minh $\geq 3$ :

 ta có $\frac{x+3}{(x+1)^{2}}\geq 1+\frac{3}{4}(x-1)$

chứng minh tương tự rồi cộng theo vế đc đpcm




#477589 x,y,z>0,x+y+z=1.CMR: $\frac{x}{x^2+1}+...

Đã gửi bởi nam8298 on 16-01-2014 - 19:47 trong Bất đẳng thức và cực trị

1. ta có $\frac{x}{x^{2}+1}\leq \frac{3}{10}+\frac{6}{25}(x-\frac{1}{3})$

tương tự cộng theo vế đc đpcm




#477088 Tứ Giác Đều Hòa

Đã gửi bởi nam8298 on 13-01-2014 - 18:54 trong Các bài toán và vấn đề về Hình học

đây là tíng chất cơ bản của tứ giác điều hòa mà bạn




#476473 Từ các số 1,2,3,4,5,6,7, 8,9 người ta lập tất cả các số có 4 chữ s...

Đã gửi bởi nam8298 on 10-01-2014 - 12:18 trong Tổ hợp - Xác suất và thống kê - Số phức

tinh số lần xuất hiện của mỗi chữ số

 

Buớc tính tổng là sao mình ko biết?




#455709 Tìm điểm M sao cho MA+MB+MC+MD+ME đạt GTLN và GTNN

Đã gửi bởi nam8298 on 06-10-2013 - 20:01 trong Bất đẳng thức và cực trị

hạ MI,MJ,MK,MH,MO vuông góc với AB,BC,CD,DE,EA.ta có 2(MA+MB+MC+MD+ME) =$\sqrt{MI^{2}+AI^{^2}}$ +........sau đó áp dụng mincopski .thay (MI+MJ+MK+MH+MO)=2S(abcde)/(AB+BC+CD+DE+EA) rồi dùng AM-GM thì tìm được min.còn max thì mình không biết




#463649 Tìm x và y

Đã gửi bởi nam8298 on 11-11-2013 - 19:45 trong Đại số

do $2\left | x-2012 \right |+3\geq 3$  nên $\left | y-2013 \right |+2\leq 3$ từ đây tìm đc x và y




#459201 Tìm số k nhỏ nhất sao cho với mọi tập con A gồm k phần tử của X thì đều tồn t...

Đã gửi bởi nam8298 on 22-10-2013 - 12:38 trong Các bài toán và vấn đề về Tổ hợp và rời rạc

Cho X là tập các số tự nhiên lẻ không chia hết cho 5 và nhỏ hơn 30 .Tìm số k nhỏ nhất sao cho với mọi tập con A gồm k phần tử của X thì đều tồn tại hai số trong A chia hết cho nhau




#489251 Tìm min M=$x^{3}+y^{3}+z^{3}= 12$.

Đã gửi bởi nam8298 on 28-03-2014 - 19:55 trong Bất đẳng thức và cực trị

chắcđề yêu cầu tìm min của M

xét $(x+1)(x-2)^{2}\geq 0$

nhân bung ra .

tương tự cho y và z rồi cộng vế




#486492 Tìm max, min $P=7x^4+7y^4+4x^2y^2$

Đã gửi bởi nam8298 on 12-03-2014 - 20:03 trong Bất đẳng thức và cực trị

mình làm thế này viết P = $\frac{7x^{4}+7y^{4}+4x^{2}y^{2}}{(2x^{2}+2y^{2}-xy)^{2}}$

sau đó chia cả tử và mẫu cho  y^4 .

đặt x/y  = t .sau đó dùng pp miền giá trị .không biết có ra không.




#463670 Tìm max$A=(3x-1)(2y-1)(z-1)$.

Đã gửi bởi nam8298 on 11-11-2013 - 20:15 trong Các bài toán và vấn đề về Bất đẳng thức

đặt x= a+$\frac{1}{3}$ ; y =b+1$\frac{1}{2}$ ; z=c+1 suy ra a;b;c > 0

thay vào giả thiết thứ 2 ta đc $\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 2$ suy ra $\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\leq 1$

ta có $\frac{1}{a+1}= 1-\frac{a}{a+1}\geq \frac{b}{b+1}+\frac{c}{c+1}\geq 2\sqrt{\frac{bc}{(b+1)(c+1)}}$

 chứng minh tương tự rồi nhân theo vế ta đc abc $\leq \frac{1}{8}$  từ đó tìm đc max A




#514408 Tìm Max P = $\sum \sqrt[3]{\frac{a^{2...

Đã gửi bởi nam8298 on 21-07-2014 - 17:10 trong Các bài toán và vấn đề về Bất đẳng thức

cho a,b,c > 0 thoả mãn $abc\leq 1$ .Tìm Max P = $\sum \sqrt[3]{\frac{a^{2}+a}{a^{2}+a+1}}$




#476391 Tìm max abc

Đã gửi bởi nam8298 on 09-01-2014 - 20:42 trong Bất đẳng thức và cực trị

nhầm khi ABC đều thì cạnh bằng $R\sqrt{3}$  . khi đó abc =$\frac{3\sqrt{3}R^{2}}{4}$




#476370 Tìm max abc

Đã gửi bởi nam8298 on 09-01-2014 - 20:03 trong Bất đẳng thức và cực trị

ta chứng minh được S(ABC) max khi ABC đều

theo công thức $S=\frac{abc}{4R}$ suy ra abc max =$3\sqrt{3}R$




#455938 Tìm m để phương trình \frac{1}{x^2}+\frac{...

Đã gửi bởi nam8298 on 07-10-2013 - 19:50 trong Phương trình, hệ phương trình và bất phương trình

phương trình gi vậy bạn




#456422 Tìm GTNN, GTLN của $S=m+n+p$

Đã gửi bởi nam8298 on 09-10-2013 - 20:31 trong Bất đẳng thức và cực trị

áp dụng $n^{2}+np+p^{2}\geq \frac{3(n+p)^{2}}{4}$           sau đó chuyển $\frac{3m^{2}}{2}$ sang rồi dùng Cauchy-Chwazt




#484433 Tìm GTNN của cosB.

Đã gửi bởi nam8298 on 23-02-2014 - 19:54 trong Các bài toán và vấn đề về Bất đẳng thức

ta có cos B = $\frac{a^{2}+c^{2}-b^{2}}{2ac}$  (1)

do AA` cắt CC` tại trọng tâm tam giác .dùng công thức tính đường trung tuyến trong tam giác và dùng Py-ta-go thì điều kiện AA` vuông góc với CC` thì ta có $a^{2}+c^{2} = 5b^{2}$

thay vào (1) .áp dụng 2ac <= a^2 +c^2 thì tìm đc min cos B




#477414 Tìm GTNN của : A=$\frac{x+8}{\sqrt{x}...

Đã gửi bởi nam8298 on 15-01-2014 - 19:52 trong Bất đẳng thức và cực trị

A-4 =$\frac{(\sqrt{x}-2)^{2}}{\sqrt{x}+1}\geq 0$ nên GTNN A =4




#480018 Tìm GTLN của P=$\mid (x-y)(y-z)(z-x)\mid$

Đã gửi bởi nam8298 on 30-01-2014 - 11:40 trong Các bài toán và vấn đề về Bất đẳng thức

ta có P$P^{2}= 108-27x^{2}y^{2}z^{2}\leq 108 \Rightarrow P\leq 6\sqrt{3}$

dấu bằng xảy ra khi  (x,y,z ) =( căn 3 ,- căn 3 ,o ) và các hoán vị




#462746 Tìm GTLN của biểu thức $P=\frac{1}{2a+b+c}+...

Đã gửi bởi nam8298 on 07-11-2013 - 20:47 trong Bất đẳng thức và cực trị

chứng minh $\frac{1}{2a+b+c}\leq \frac{1}{4}(\frac{1}{a+b}+\frac{1}{a+c})\leq \frac{1}{16}(\frac{1}{2a}+\frac{1}{b}+\frac{1}{c})$

tương tự cộng vế




#482410 Tìm GTLN của : $P=2(b+c-a)+abc$

Đã gửi bởi nam8298 on 10-02-2014 - 19:12 trong Các bài toán và vấn đề về Bất đẳng thức

P = 2 (b+c) +(bc-2) a .sau đó dùng Cauchy - Schwazt




#473908 tìm giá trị nhỏ nhất?

Đã gửi bởi nam8298 on 30-12-2013 - 12:21 trong Bất đẳng thức và cực trị

mình làm thế này không biết đúng không

áp dụng Holder ta có $(x^{3}+y^{3}+16z^{3})(1+1+\frac{1}{\sqrt[3]{4}})^{2}\geq (x+y+z)^{3}$

từ đó suy ra min P




#476399 Tìm giá trị nhỏ nhất của biểu thức: $P=\frac{3a}{b+c...

Đã gửi bởi nam8298 on 09-01-2014 - 21:07 trong Bất đẳng thức và cực trị

P +12 =$\frac{3(a+b+c)}{b+c}+\frac{4(a+b+c)}{c+a}+\frac{5(a+b+c)}{a+b}=(a+b+c)(\frac{3}{b+c}+\frac{4}{c+a}+\frac{5}{a+b})=\frac{1}{2}(b+c+c+a+a+b)(\frac{3}{b+c}+\frac{4}{c+a}+\frac{5}{a+b})\geq \frac{(\sqrt{3}+\sqrt{4}+\sqrt{5})^{2}}{2}$

suy ra min P




#471623 Tìm giá trị nhỏ nhất của A =\sqrt{(x+y)(y+z)(z+x)}.(\frac...

Đã gửi bởi nam8298 on 18-12-2013 - 20:26 trong Bất đẳng thức và cực trị

cái x ở mẫu cho nó vào trong




#471615 Tìm giá trị nhỏ nhất của A =\sqrt{(x+y)(y+z)(z+x)}.(\frac...

Đã gửi bởi nam8298 on 18-12-2013 - 20:13 trong Bất đẳng thức và cực trị

áp dụng Cauchy-Schwazt ta có A =$\sum (y+z)\sqrt{(1+\frac{y}{x})(1+\frac{z}{x})}\geq \sum (y+z)(1+\frac{\sqrt{yz}}{x})\geq \sum (y+z)+\sum \frac{2yz}{x}\geq 3(x+y+z)= 3\sqrt{2}$




#483089 Toán khó

Đã gửi bởi nam8298 on 14-02-2014 - 19:27 trong Các bài toán và vấn đề về Số học

xét các trường hợp số dư của a và b khi chia cho 5 thì S chia hết cho 5 khi a và b chia 5 dư 4 hay (a-b) chia 5 dư 0