Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


nam8298 nội dung

Có 158 mục bởi nam8298 (Tìm giới hạn từ 08-06-2016)



Sắp theo                Sắp xếp  

#462348 $\frac{1}{\sqrt{1+a^3}}+\fr...

Đã gửi bởi nam8298 on 05-11-2013 - 20:36 trong Bất đẳng thức và cực trị

....3....$\frac{1}{\sqrt{1+a^{3}}}= \frac{1}{\sqrt{(1+a)(a^{2}-a+1)}} \geq \frac{2}{2+a^{2}}$

đến đây quy đồng là đc




#462343 $\frac{1}{\sqrt{1+a^3}}+\fr...

Đã gửi bởi nam8298 on 05-11-2013 - 20:26 trong Bất đẳng thức và cực trị

1... $\sum \frac{bc}{\sqrt{a+bc}}= \sum \frac{bc}{\sqrt{(a+b)(a+c)}}\leq \frac{1}{2}\sum (\frac{bc}{a+b}+\frac{bc}{a+c})\leq \frac{1}{2}$




#462344 $\frac{1}{\sqrt{1+a^3}}+\fr...

Đã gửi bởi nam8298 on 05-11-2013 - 20:30 trong Bất đẳng thức và cực trị

2....a..$\frac{a^{3}}{(1+b)(1+c)}+\frac{1+b}{4}+\frac{1+c}{4}\geq 3a$

tương tự cộng theo vế suy ra ĐPCM

......b...$\sum \frac{1}{a^{3}(b+c)}= \sum \frac{(bc)^{2}}{ab+ac}\geq \frac{3}{2}$




#456176 $\frac{1}{4a^{2}+b^{2}+c^{2...

Đã gửi bởi nam8298 on 08-10-2013 - 20:24 trong Bất đẳng thức và cực trị

áp dụng cauchy -schwazt ta có $(4+1+1)(4a^{2}+b^{2}+c^{2})\geq (4a+b+c)^{2}$

tương tự với 2 mẫu còn lại.ta phải chứng minh $\sum \frac{1}{a^{2}+2a+1}\leq \frac{3}{4}$

đến đây chứng minh $\frac{1}{a^{2}+2a+1} \leq \frac{1}{4}+k(a-1)$    .tương tự rồi cộng vế suy ra đpcm




#456873 $\frac{a+\sqrt{ab}+\sqrt[3]{abc}...

Đã gửi bởi nam8298 on 11-10-2013 - 20:00 trong Bất đẳng thức và cực trị

chia vế trái cho vế phải rồi dùng AM-GM ta có     $\sqrt[3]{(\frac{2a}{a+b})(\frac{3a}{a+b+c})}+\sqrt[3]{(\frac{3b}{a+b+c})(\frac{2\sqrt{ab}}{a+b})}+\sqrt[3]{(\frac{2b}{a+b})(\frac{3c}{a+b+c})}\leq 3$




#456427 $\frac{a+\sqrt{ab}+\sqrt[3]{abc}...

Đã gửi bởi nam8298 on 09-10-2013 - 20:46 trong Bất đẳng thức và cực trị

chia vế trái cho vế phải đc 3 cái căn bậc 3.  sau đó dùng AM-GM cho 3 cái căn đó




#461134 $\frac{a+b}{ab+a+b}+\frac{b+c}...

Đã gửi bởi nam8298 on 31-10-2013 - 20:02 trong Các bài toán và vấn đề về Bất đẳng thức

Cho a,b,c >0 thỏa mãn $a^{2}+b^{2}+c^{2}= 1$  .CMR $\frac{a+b}{ab+1}+\frac{b+c}{bc+1}+\frac{c+a}{ca+1}\leq \frac{9}{2(a+b+c)}$




#466430 $\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2...

Đã gửi bởi nam8298 on 24-11-2013 - 09:54 trong Bất đẳng thức và cực trị

Bài này hình như đâu chuân hoá dc đâu

 bài này chuẩn hóa đc mà bạn




#466275 $\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2...

Đã gửi bởi nam8298 on 23-11-2013 - 19:22 trong Bất đẳng thức và cực trị

chuẩn hóa a+b+c =3 .ta chứng minh $\frac{a^{2}}{5a^{2}+(3-a)^{2}}\leq \frac{1}{3}+\frac{4}{9}(a-1)$ ( biến đổi tương đương )

tương tự cọng theo vế đc đpcm




#460926 $\frac{bc}{3a^2+b^2+c^2}+\frac{ca...

Đã gửi bởi nam8298 on 30-10-2013 - 20:17 trong Các bài toán và vấn đề về Bất đẳng thức

theo mình đánh giá thế này $\frac{bc}{3a^{2}+b^{2}+c^{2}}\leq \frac{(b+c)^{2}}{12a^{2}+2(b+c)^{2}}$   

chuẩn hóa a+b+c =3 .sau đó dùng ước lượng là đc




#477095 $\frac{x^2}{(ay+bz)(az+by)}+\frac{y^2...

Đã gửi bởi nam8298 on 13-01-2014 - 19:30 trong Bất đẳng thức và cực trị

ta chỉ cần chứng minh BĐT trong trường hợp a,b >0

áp dụng AM-GM ta có $4(ay+bz)(az+by)\leq (a+b)^{2}(y+z)^{2}$

BĐT cần chứng minh khi đó là $\sum \frac{x^{2}}{(y+z)^{2}}\geq \frac{3}{4}$ (luôn đúng do có BĐT $\sum \frac{x}{y+z}\geq \frac{3}{2}$




#456207 $\frac{1}{a^{2}+b^{2}+2}+\frac{1}{b^{2}+c^{2}+2}+\frac{1}...

Đã gửi bởi nam8298 on 08-10-2013 - 21:20 trong Bất đẳng thức và cực trị

ta có $\sum \frac{1}{a^{2}+b^{2}+2}\leq \sum \frac{2}{(a+b)^{2}+4}= \sum \frac{2}{c^{2}-6c+13}$

ta chứng minh $\frac{2}{c^{2}-6c+13}\leq \frac{1}{4}+k(a-1)$ sau đó cộng theo vế đc đpcm




#456420 $\frac{1}{a^{2}+b^{2}+2}+\frac{1}{b^{2}+c^{2}+2}+\frac{1}...

Đã gửi bởi nam8298 on 09-10-2013 - 20:21 trong Bất đẳng thức và cực trị

chọn k = 1/8 sau đó biến đổi tương đương




#460919 $\frac{a^{3}}{b^{2}+c^{2}}+\frac{b^{3}}{c^{2}+a^{2}}+\fra...

Đã gửi bởi nam8298 on 30-10-2013 - 19:49 trong Các bài toán và vấn đề về Bất đẳng thức

khẳng định bạn ạ




#477363 $\left\{\begin{matrix} x^{3}-8x=...

Đã gửi bởi nam8298 on 15-01-2014 - 15:06 trong Các bài toán và vấn đề về PT - HPT - BPT

giải phương trình :  $\left\{\begin{matrix} x^{3}-8x=y^{3}+2y & \\ x^{2}-3=3y^{2}-1& \end{matrix}\right.$




#463678 $\left\{\begin{matrix} x^{4}-4x^...

Đã gửi bởi nam8298 on 11-11-2013 - 20:28 trong Phương trình - hệ phương trình - bất phương trình

bài 2 : nhân 2 vào phương thình thứ 2 rồi cộng vào phương trình đầu tiên .sau đó phân tích nhân tử đc $x^{2}+y= 7$   hoặc $x^{2}+y= -5$ .tính $x^{2}$ theo y rồi thay vào phương trình 2 giải tìm ra y




#476384 $\Sigma \frac{a^{2}b}{4-bc}...

Đã gửi bởi nam8298 on 09-01-2014 - 20:31 trong Các bài toán và vấn đề về Bất đẳng thức

Ta có bổ đề sau $a^{2}b+b^{2}c+c^{2}a+abc\leq 4$ suy ra $4-a^{2}b-b^{2}c-c^{2}a\geq abc$

BĐT tương đương $4-a^{2}b-b^{2}c-c^{2}a\geq \sum \frac{a^{2}b^{2}c}{4-bc}$

ta chứng minh abc $\geq \sum \frac{a^{2}b^{2}c}{4-bc}$

đặt a+b+c =p      ab+bc+ca =q          abc =r

tương đương $16-8q+q^{2}-r \geq 0$

mà $q^{2}\geq 9r$ nên ta chứng minh 16-8q+$q^{2}$ -$\frac{q^{2}}{9}$ $\geq 0$ tương đương (q-3)(q-6)$\geq 0$ (luôn đúng)




#484403 $(\sum\frac{a}{b})^2\geq (\sum a...

Đã gửi bởi nam8298 on 23-02-2014 - 17:16 trong Bất đẳng thức và cực trị

nhân bung hết ra rồi rút gọn đi

cái $\sum \frac{a^{2}}{b^{2}}\geq 3$ còn $\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}$

nên BĐT đc cm




#519022 $(3-t)+ t ( abc)^{\frac{2}{t}} + a^...

Đã gửi bởi nam8298 on 11-08-2014 - 19:53 trong Các bài toán và vấn đề về Bất đẳng thức

cho 0 < t $\leq 3$ .CMR với mọi a ,b,c không âm thì ta có $(3-t)+ t ( abc)^{\frac{2}{t}} + a^{2}+b^{2}+c^{2}\geq 2(ab+bc+ca)$




#471766 $(a^{2}+b^{2})(b^{2}+c^{2})(c^...

Đã gửi bởi nam8298 on 19-12-2013 - 19:20 trong Các bài toán và vấn đề về Bất đẳng thức

cho a,b,c >0 .cmr $(a^{2}+b^{2})(b^{2}+c^{2})(c^{2}+a^{2})(ab+bc+ca)^{2}\geq 8a^{2}b^{2}c^{2}(a^{2}+b^{2}+c^{2})^{2}$




#468592 (3a+2b+c)(\frac{1}{a}+\frac{1}{b...

Đã gửi bởi nam8298 on 03-12-2013 - 18:57 trong Bất đẳng thức và cực trị

Ta đi cm 2 bbđt phụ sau:  Với a,b,c thuộc [1,2] thì  $\left ( a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\leq 10$  và $9\left ( a+b+c \right )\geq 4\left ( 3a+2b+c \right )$

 chứng minh ý 2 kiểu gì vậy bạn




#468400 (3a+2b+c)(\frac{1}{a}+\frac{1}{b...

Đã gửi bởi nam8298 on 02-12-2013 - 19:26 trong Bất đẳng thức và cực trị

Cho $a,b,c \in [1;2] .CMR (3a+2b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\leq \frac{45}{2}$




#461128 (a,b,c>0

Đã gửi bởi nam8298 on 31-10-2013 - 19:43 trong Các bài toán và vấn đề về Bất đẳng thức

a=b=c=0




#460923 (a,b,c>0

Đã gửi bởi nam8298 on 30-10-2013 - 20:05 trong Các bài toán và vấn đề về Bất đẳng thức

theo mình thì cái này hiển nhiên mà .....trong 3 số a,b,c có 2 số bằng nhau thì BĐT đc chứng minh

nếu không có 2 số nào bằng nhau  .khi đó trong các hiệu a-b ;b-c ;c-a có 1 số âm suy ra đpcm




#459869 .Tìm GTNN P =$(xy+yz+zx)^{2}-\frac{8}{(x+y...

Đã gửi bởi nam8298 on 25-10-2013 - 15:05 trong Các bài toán và vấn đề về Bất đẳng thức

Cho x,y,z là các số thực thoả mãn $x^{2}+y^{2}+z^{2}=1$  .Tìm GTNN P =$(xy+yz+zx)^{2}-\frac{8}{(x+y+z)^{2}-xy-yz+2}$