Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


nam8298 nội dung

Có 158 mục bởi nam8298 (Tìm giới hạn từ 30-03-2016)



Sắp theo                Sắp xếp  

#459202 Chia tam giác đều cạnh $n$ thành $n^2$ tam giác đều cạnh...

Đã gửi bởi nam8298 on 22-10-2013 - 12:48 trong Các bài toán và vấn đề về Tổ hợp và rời rạc

Bài 1 trong cuộc hội thảo cứ 10 người thì có đúng 1 người quen chung tìm số người quen lớn nhất của 1 người

Bài 2 Cho đa giác lồi n đỉnh sao cho không có 3 đường chéo nào đồng quy.tìm số miền do các đường chéo tạo nên

Bài 3 một tam giác đều n cạnh được chia làm $n^{2}$ tam giác đều cạnh 1 bằng các đường thẳng song song với các cạnh của nó .Hỏi có bao nhiêu tam giác đều được tạo thành

Bài 4 cho số nguyên $n\geq 2$ CMR trong mọi họ gồm ít nhất $2^{n-1}+1$ tập con không rỗng phân biệt của tập {1,2,3.....,n} đều tìm được 3 tập mà một trong chúng là hợp của 2 tập còn lại

 




#477414 Tìm GTNN của : A=$\frac{x+8}{\sqrt{x}...

Đã gửi bởi nam8298 on 15-01-2014 - 19:52 trong Bất đẳng thức và cực trị

A-4 =$\frac{(\sqrt{x}-2)^{2}}{\sqrt{x}+1}\geq 0$ nên GTNN A =4




#460039 Đề thi HSG lớp 12 tỉnh Vĩnh Phúc 2013-2014

Đã gửi bởi nam8298 on 26-10-2013 - 12:02 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

1


Đăng lại đề @@
Bài 1. Cho trước số thực $a>0$ và dãy số thực $x_{n}$ xác định bởi $x_{1}$ =a và $x_{n+1}= \sqrt{17+16x_{n}}$ với mọi $n\geq 1$. Chứng minh rằng với mọi $a>0$ dãy $x_{n}$ có giới hạn khi $n\rightarrow$ dương vô cùng..Tìm giới hạn đó
Bài 2. Cho $3$ số $x,y,z$ không âm thỏa mãn $x^{2}+y^{2}+z^{2}= 1$ CMR $\sqrt{1-\frac{(x+y^{2})}{4}}+\sqrt{1-\frac{(y+z)^{2}}{4}}+\sqrt{1-\frac{(z+x)^{2}}{4}}\geq \sqrt{6}$
Bài 3. Tìm các số tự nhiên $x,y$ thỏa mãn phương trình ($(x^{2}+y)(y^{2}+x)= 2(x-y)^{3}$
Bài 4. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ vơí $AB<AC$ .Tiếp tuyến tại $A$ của $(O)$ cắt $BC$ tại $E$ . $D$ là điểm đối xứng của $A$ qua $O$,
a, Chứng minh rằng $AE$ song song với $CD$
b, Đường thẳng $BE$ cắt $AT$ tại $F$ .Giả sử đường tròn ngoại tiếp tam giác $AEF$ cắt $EO$ tại $G$ khác điểm $E$ .Chứng minh rằng tâm đường tròn nội tiếp tam giác $AGB$ nằm trên $(O)$
Bài 5. Một số nguyên dương $k$ được gọi là số đẹp nếu có thể phân hoạch tập hợp các số nguyên dương thành $k$ tập $A_{1},A_{2}....A_{k}$ sao cho với mỗi số nguyên dương $n\geq 15$ và với mọi i$\in (1;2;....:k)$ đều tồn tại 2 số thuộc $A_{i}$ có tổng là $n$
a, Chứng minh rằng $k=3$ là số đẹp
b. Chứng minh rằng với mọi $k\geq 4$ đều không đẹp.



#460344 Đề thi HSG lớp 12 tỉnh Vĩnh Phúc 2013-2014

Đã gửi bởi nam8298 on 27-10-2013 - 19:12 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

xin lỗi mình đánh vội quá nên sai đề




#456633 Đề thi chọn đội tuyển HSG TP Hà Nội

Đã gửi bởi nam8298 on 10-10-2013 - 19:57 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

KỲ THI CHỌN ĐỘI TUYỂN HSG THÀNH PHỐ
Năm học 2013-2014



đề thi HSG.jpg



#456172 Cho x,y thỏa mãn $8x^2+y^2+\dfrac{1}{4x^2}=4...

Đã gửi bởi nam8298 on 08-10-2013 - 20:12 trong Bất đẳng thức và cực trị

công thức nghiệm bậc ba có trong NCPT 9 đấy bạn ơi




#471620 Chứng minh đa thức f(x) chia hết cho đa thức g(x)

Đã gửi bởi nam8298 on 18-12-2013 - 20:24 trong Đại số

cái đa thức đầu tiên là $\frac{x^{80}-1}{x-1}$ .cái thứ 2 là $\frac{x^{20}-1}{x-1}$ .cái đầu rõ ràng chia hết cho cái sau




#466421 Chứng minh: A= $a^n+b^n+c^n+d^n$ là hợp số với mọi n tự nhiên.

Đã gửi bởi nam8298 on 24-11-2013 - 09:33 trong Số học

bài 2 : phải có a khác c .nếu a=c thì có bộ thỏa mãn như a=c=2 .b=3 thì $a^{2}+b^{2}+c^{2}= 17$ là số nguyên tố




#466541 Chứng minh: A= $a^n+b^n+c^n+d^n$ là hợp số với mọi n tự nhiên.

Đã gửi bởi nam8298 on 24-11-2013 - 19:44 trong Số học

nếu a khác c

sau khi quy đồng ta đc ac =$b^{2}$

$b^{2}+a^{2}+c^{2}= a^{2}+c^{2}-ac= (a+c)^{2}-ac= (a+c)^{2}-b^{2}= (a+b+c)(a+c-b)$

nếu a+c-b =1 suy ra $ac=b^{2}=(a+c-1)^{2}$ hay $a^{2}+c^{2}+ac-2a-2c+1=0$ hay $(a-1)^{2}+(c-1)^{2}+ac-1=0$ suy ra ac =1 suy ra a=c=1 ( vô lí do a khác c)




#462558 Chứng minh rằng nếu A là tích của n số nguyên tố đầu tiên thì: p+1 và p-1 khô...

Đã gửi bởi nam8298 on 06-11-2013 - 21:02 trong Số học

 theo mình p là tích của n số nguyên tố đầu tiên .nếu thế mình chứng minh thế này

      p chia hết cho 3 nên p-1 chia 3 dư 2 nên không là số chính phương

      giả sử p+1 là số chính phương ..đặt p+1 =$a^{2}$ suy ra p =(a-1)(a+1) ..do p chẵn nên a lẻ .do đó a-1 và a+1 chẵn suy ra (a-1)(a+1) chia hết cho 4 suy ra p hia hết cho 4 (vô lí)

Vậy p-1 và p+1 không là số chính phương




#499256 Mâu thuẫn giữa 2 ĐHV

Đã gửi bởi nam8298 on 15-05-2014 - 20:48 trong Xử lí vi phạm - Tranh chấp - Khiếu nại

Có vẻ mâu thuẫn bắt đầu từ 27/4 khi toc ngan nhắc nhở buitudong1998




#466490 Chứng minh rằng: Nếu $1+2^n+4^n$ là số nguyên tố thì tồn tại $...

Đã gửi bởi nam8298 on 24-11-2013 - 15:30 trong Các bài toán và vấn đề về Số học

đặt n =$3^{k}m$ ( m không chia hết cho 3 )

nếu m =3l+1   suy ra $1+2^{n}+4^{n}$ =$a(a^{3l}-1)+a^{2}(a^{6l-1})+a^{2}+a+1$ chia hết cho a^{2}+a+1$ nên không là số nguyên tố

nếu m=3l+2    .làm tương tự ta đc $1+2^{n}+4^{n}$ chia hết cho a^{2}+a+1$ nên không là số nguyên tố

vậy n=$3^{k}$




#463634 $n(n+1)(2n+1)\vdots 42$

Đã gửi bởi nam8298 on 11-11-2013 - 19:20 trong Đại số

bài 1 thay x =7k +3 ta đc (7k+3)(7k+4)(14k+7) cái này hiển nhiên là chia hết cho 42




#466275 $\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2...

Đã gửi bởi nam8298 on 23-11-2013 - 19:22 trong Bất đẳng thức và cực trị

chuẩn hóa a+b+c =3 .ta chứng minh $\frac{a^{2}}{5a^{2}+(3-a)^{2}}\leq \frac{1}{3}+\frac{4}{9}(a-1)$ ( biến đổi tương đương )

tương tự cọng theo vế đc đpcm




#466430 $\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2...

Đã gửi bởi nam8298 on 24-11-2013 - 09:54 trong Bất đẳng thức và cực trị

Bài này hình như đâu chuân hoá dc đâu

 bài này chuẩn hóa đc mà bạn




#471617 Giải phương trình nghiệm nguyên dương : $(x^2+1)(y^2+1)+2(x-y)(1-xy)=4(...

Đã gửi bởi nam8298 on 18-12-2013 - 20:18 trong Số học

mình nhớ là bài này sau khi bung hết ra sẽ đc 1 cái phương trình tích .sau đó giải đc x,y




#484446 $\sum \sqrt{a+(b-c)^{2}}\geq \sq...

Đã gửi bởi nam8298 on 23-02-2014 - 20:16 trong Các bài toán và vấn đề về Bất đẳng thức

bài này  bình phương xong dùng Cauchy-Schwazt .

pp làm là cách nâng lũy thừa và điều chỉnh hệ số.

nó tương tự bài bđt thi chọn đôi tuyển Vĩnh Phúc năm 2013-2014.  lời giải hơi dài nên giờ mình ko kịp đánh ra




#478376 $\sum \sqrt{a+(b-c)^{2}}\geq \sq...

Đã gửi bởi nam8298 on 21-01-2014 - 19:51 trong Các bài toán và vấn đề về Bất đẳng thức

bình phương hai vế ta đc BĐT cần chứng minh tương đương với $3(ab+bc+ca)\leq \sum \sqrt{a^{2}+ab+ac+(b-c)^{2}}\sqrt{b^{2}+ba+bc+(c-a)^{2}}$

 áp dụng Cauchy -Schwazt ta có X= $\sqrt{a^{2}+ab+ac+(b-c)^{2}}\sqrt{b^{2}+ba+bc+(c-a)^{2}}= \sqrt{\sqrt{a(a+b+c)}^{2}+(b-c)^{2}}\sqrt{\sqrt{b(b+a+c)}^{2}+(c-a)^{2}}$ $\geq \left | (b-c)(c-a) \right |+\sqrt{ab}(a+b+c)$

làm tương tự rồi cộng lại ta cần chứng minh $\sum \left | (b-c)(c-a) \right |\geq 3(ab+bc+ca)-(a+b+c)(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})$

do $\sum \left | (b-c)(c-a) \right |\geq (\sum a^{2})-ab-bc-ca$ nên ta cần chứng minh $(\sum a^{2})+(a+b+c)(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})\geq 4(ab+bc+ca)$

có thể viết dưới dạng $\sum (x-y)^{2}xy+\sum x^{4}+xyz(x+y+z)\geq 2\sum x^{2}y^{2}$  (luôn đúng theo Schur )

Vậy BĐT đc chứng minh




#477591 x,y,z>0,x+y+z=1.CMR: $\frac{x}{x^2+1}+...

Đã gửi bởi nam8298 on 16-01-2014 - 19:52 trong Bất đẳng thức và cực trị

2. nếu đề yêu cầu chứng minh $\geq 3$ :

 ta có $\frac{x+3}{(x+1)^{2}}\geq 1+\frac{3}{4}(x-1)$

chứng minh tương tự rồi cộng theo vế đc đpcm




#477589 x,y,z>0,x+y+z=1.CMR: $\frac{x}{x^2+1}+...

Đã gửi bởi nam8298 on 16-01-2014 - 19:47 trong Bất đẳng thức và cực trị

1. ta có $\frac{x}{x^{2}+1}\leq \frac{3}{10}+\frac{6}{25}(x-\frac{1}{3})$

tương tự cộng theo vế đc đpcm




#463636 $2x^2+x+3=3x\sqrt{x+3}$

Đã gửi bởi nam8298 on 11-11-2013 - 19:24 trong Phương trình - hệ phương trình - bất phương trình

đặt $\sqrt{x^{2}+7x+7}= a$ $3x^{2}+21x+18 = 3a^{2}-3$  ta đc phương trình bậc 2 có nghiệm là 1 và -5/3




#486476 $x^2+y^2+z^2\geq x^3+y^3+z^3$

Đã gửi bởi nam8298 on 12-03-2014 - 19:18 trong Bất đẳng thức và cực trị

do  -1 <= x ,y ,z <= 1 nên x^3 <= x^2 .

tương tự rồi cộng lại là đc.




#477363 $\left\{\begin{matrix} x^{3}-8x=...

Đã gửi bởi nam8298 on 15-01-2014 - 15:06 trong Các bài toán và vấn đề về PT - HPT - BPT

giải phương trình :  $\left\{\begin{matrix} x^{3}-8x=y^{3}+2y & \\ x^{2}-3=3y^{2}-1& \end{matrix}\right.$




#471635 $z^{3}-3z=4-x$ $x^{3}-...

Đã gửi bởi nam8298 on 18-12-2013 - 20:44 trong Các bài toán và vấn đề về PT - HPT - BPT

 giải hê sau $z^{3}-3z=4-x$

                   $x^{3}-3x=y$

                    $y^{3}-3y=z$




#460919 $\frac{a^{3}}{b^{2}+c^{2}}+\frac{b^{3}}{c^{2}+a^{2}}+\fra...

Đã gửi bởi nam8298 on 30-10-2013 - 19:49 trong Các bài toán và vấn đề về Bất đẳng thức

khẳng định bạn ạ