Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Kamii0909 nội dung

Có 156 mục bởi Kamii0909 (Tìm giới hạn từ 26-11-2016)



Sắp theo                Sắp xếp  

#657582 Đề chọn đội tuyển học sinh giỏi quốc gia tỉnh Quảng Ninh ngày 1 2016-2017

Đã gửi bởi Kamii0909 on 12-10-2016 - 01:19 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

 

 

Bài 1: Cho $a,b,c>0$ thỏa mãn $(a+b)(b+c)(c+a)=1$. Tìm giá trị nhỏ nhất của biểu thức:

                    $P=\sum\frac{\sqrt{a^2-ab+b^2}}{\sqrt{ab}+1}$

 

Ta có $a^{2}-ab+b^{2}= \left [ \frac{1}{2}\left (a-b \right )^{2}+\frac{1}{2}\left ( a^{2}+b^{2} \right ) \right ]\geq \frac{1}{4}\left ( a+b \right )^{2}$

$\Rightarrow P\geq \sum \frac{a+b}{2\sqrt{ab}+2}\geq \sum \frac{a+b}{a+b+2}$

Đổi biến $\left ( a+b,b+c,c+a \right )\rightarrow \left ( x,y,z \right )$ thì $P\geq \sum \frac{x}{x+2}$ và $xyz=1$

Đây là bài toán đơn giản. Đổi ẩn $\left ( x,y,z \right )\rightarrow \left ( \frac{m}{n},\frac{n}{p},\frac{p}{m} \right )$

Khi đó $P\geq \sum \frac{m}{m+2n}=\sum \frac{m^{2}}{m+2mn}\geq \frac{\left ( m+n+p \right )^{2}}{\left (m+n+p \right )^{2}}=1$

Vậy min P=1 $\Leftrightarrow$ $a=b=c=\frac{1}{2}$




#657053 Chứng minh rằng: $\sum \frac{1}{\sqrt{3+a}}\le...

Đã gửi bởi Kamii0909 on 07-10-2016 - 22:04 trong Bất đẳng thức và cực trị

$\sum \frac{1}{\sqrt{3+a}}\leq \sqrt{3\left ( \sum \frac{1}{a+3 } \right )}$

Ta sẽ chứng minh $\sum \frac{1}{3+a}\leq \frac{3}{4}$

Đổi biến $\left ( a,b,c \right )= \left ( \frac{x}{y},\frac{y}{z},\frac{z}{x} \right )$

Đpcm $\Leftrightarrow \sum \frac{y}{x+3y}\leq \frac{3}{4}\Leftrightarrow \sum \frac{3y}{x+3y}\leq \frac{9}{4}\Leftrightarrow \sum \frac{x}{x+3y}\geq \frac{3}{4}$

Điều này luôn đúng do $\sum \frac{x}{x+3y}= \sum \frac{x^{2}}{x^{2}+3xy}\geq \frac{\left ( \sum x \right )^{2}}{\sum x^{2}+3\sum xy}= \frac{\left ( \sum x \right )^{2}}{\left ( \sum x \right )^{2}+\sum xy}\geq \frac{\left ( \sum x \right )^{2}}{\left ( \sum x \right )^{2}+\frac{1}{3}\left ( \sum x \right )^{2}}=\frac{3}{4}$




#657041 tìm giá trị nhỏ nhất của biểu thức $P=\frac{x^{2}-3x...

Đã gửi bởi Kamii0909 on 07-10-2016 - 21:07 trong Đại số

$P=\frac{\left ( x-1 \right )^{2}-\left ( x-1 \right )+2}{\left ( x-1 \right )^{2}}=\frac{a^{2}-a+2}{a^{2}} \Leftrightarrow a^{2}\left ( 1-P \right )-a+2=0. Ta có \Delta = 1-8\left ( 1-P \right )\geq 0 \Leftrightarrow P\geq \frac{7}{8}$




#657034 $\sum \frac{4}{a+b} \leq \frac{1}{a}+\frac{1}{b...

Đã gửi bởi Kamii0909 on 07-10-2016 - 20:40 trong Bất đẳng thức và cực trị

Bài 6 $2ab+6bc+2ac=7abc$ <=> $\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\Leftrightarrow 6x+2y+2z=7$

C=$\frac{4}{y+2x}+\frac{9}{z+4x}+\frac{4}{y+z}\geq \frac{\left (2+3+2 \right )^{2}}{6x+2y+2z}=7$ 




#654500 CHỌN ĐỘI TUYỂN HSG QUỐC GIA TỈNH HÒA BÌNH

Đã gửi bởi Kamii0909 on 17-09-2016 - 16:59 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

biến đổi vế trái:
$ VT=a(x^{2}+z^{2})+b(x^{2}+y^{2})+c(y^{2}+z^{2}) \geq 2(azx+bxy+cyz) $
đến đây áp dụng BĐT chebychev ta có:
$ azx+bxy+cyz \geq \frac{1}{3}(a+b+c)(xy+yz+zx) $
mà theo bất đẳng thức AM-GM ta có: $ a+b+c \geq 3\sqrt[3]{abc} = 3 $
suy ra $ 2(azx+bxy+cyz) \geq 2(xy+yz+zx) $
từ đó ta có đpcm

Hình như đâu có thể Cheybershev được đâu :) Nếu a>=b>=c và y>=x>=z thì bất đẳng thức đó sai rồi mà



#653631 Đề hsg lớp 10 KHTN 2016-2017

Đã gửi bởi Kamii0909 on 10-09-2016 - 21:40 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Full câu hình  :lol:  :lol:

Gọi (O) cắt (AEF) tại P khác A. I là trung điểm BC.S là trung điểm EF.PI cắt (O) tại H.EF cắt BC tại K.

Có$\widehat{PCK}=\widehat{PFK}$ (cùng phụ với $\widehat{PAB}$ nên PFCK là tứ giác nội tiếp.

$\Delta PEF \sim \Delta PBC$ nên $\frac{PF}{PC}= \frac{EF}{BC}=\frac{FS}{CI}$ suy ra $\Delta PIC \sim \Delta PSF$ => $\widehat{PSK}= \widehat{PIK}$ suy ra PKCI là tứ giác nội tiếp.

Từ các tứ giác nội tiếp PFCK ,PSIK ,PAHC => $\widehat{PKS}=\widehat{PCA}= \widehat{PIS}=\widehat{PHE}$ suy ra OI//AH suy ra AH là đường cao => P cố định

Kẻ PX và PY vuông góc BC,EF =>P,Y,Q thẳng hàng

Mà $\Delta PIX \sim \Delta PSY => \widehat{IPX}= \widehat{SPY} => \widehat{SIP}=\widehat{SPY} => \widehat{SIP}=\widehat{SQP}$ nên SPIQ là tứ giác nội tiếp. Ix là tia đối tia IO. Có $\widehat{HIx}= \widehat{SIP}= \widehat{SPQ}= \widehat{QIx}$ nên Q $\epsilon$ đường thẳng đối của IH qua OI (cố định) 

Hình gửi kèm

  • 01.png