Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Kamii0909 nội dung

Có 156 mục bởi Kamii0909 (Tìm giới hạn từ 28-11-2016)



Sắp theo                Sắp xếp  

#675570 $$\prod \left( \dfrac{a}{b}+2...

Đã gửi bởi Kamii0909 on 28-03-2017 - 22:52 trong Các bài toán và vấn đề về Bất đẳng thức

Cho các số thực dương $a,b,c$. Cmr
$$ ( \dfrac{a}{b}+2)( \dfrac{b}{c} +2)( \dfrac{c}{a}+2 ) + \dfrac{117(ab+bc+ca)}{4(a^2+b^2+c^2)} \geq \frac{107}{2}$$



#675568 $\prod (a^{2}+b^{2})\leq \frac{1...

Đã gửi bởi Kamii0909 on 28-03-2017 - 22:46 trong Các bài toán và vấn đề về Bất đẳng thức

Cmr $$f(a,b,c) \leq f(a+b,c,0)$$.



#674391 $100+9abc \geq 17(ab+bc+ca)$

Đã gửi bởi Kamii0909 on 15-03-2017 - 23:10 trong Bất đẳng thức và cực trị

Cho $a,b,c \in [1,2]$ thoả $a+b+c=5$. 

Chứng minh rằng 

$$100+9abc \geq 17(ab+bc+ca)$$




#674386 CMR: $\sqrt{a + b} + \sqrt{b + c} + \...

Đã gửi bởi Kamii0909 on 15-03-2017 - 22:44 trong Bất đẳng thức và cực trị

Cho a, b, c là các số dương thay đổi và a + b + c = 4. CMR : $\sqrt{a + b} + \sqrt{b + c} + \sqrt{c + a} > 4$

*P/s: Xin lỗi các bạn, mình đã sửa đề :)

KMTTQ, $a \geq b \geq c$

Đpcm $$\Leftrightarrow \sum \sqrt{a+b} \geq 2 \sqrt{a+b+c}$$

$$\Leftrightarrow \sqrt{b+c} \geq \frac{c}{\sqrt{a+b+c}+\sqrt{a+b}} +\frac{b}{\sqrt{a+b+c}+\sqrt{a+c}}$$

Có $$\sqrt{a+b+c}+\sqrt{a+b} \geq \sqrt{a+b+c}+\sqrt{a+c} \geq \sqrt{b+c}$$

Vậy $$R.H.S \leq \frac{b+c}{\sqrt{b+c}}=L.H.S$$

Ta có điều phải chứng minh.

Spoiler




#674165 CMR:a, $\sum \frac{1}{a^{2}-a+1}...

Đã gửi bởi Kamii0909 on 13-03-2017 - 19:36 trong Bất đẳng thức và cực trị

vì sao ạ?

Ý bạn là sao? Cứ khai triển ra là thấy nó tương đương thôi mà?



#673908 CMR:a, $\sum \frac{1}{a^{2}-a+1}...

Đã gửi bởi Kamii0909 on 10-03-2017 - 21:47 trong Bất đẳng thức và cực trị

1. abc=1, a,b,c dương
CMR:a, $\sum \frac{1}{a^{2}-a+1} \leq 3$
b, $\sum \frac{12a+7}{2a^{2}+1}\leq 19$

Bài 1 khó cả 2 câu.
a. Bđt cần cm tương đương với
$$\sum \frac{(2a-1)^2}{a^2-a+1} \geq 3$$
Áp dụng bđt C-S ta phải cmr
$$\frac{(2a+2b+2c-3)^2}{a^2+b^2+c^2-a-b-c+3} \geq 3$$
Đặt $p=a+b+c=x^2,q=ab+bc+ca$
Ta phải chỉ ra $p^2-9p+6q \geq 0$
Chú ý bđt thông dụng $q^2 \geq 3pr=3p=3x^2$
Bài toán đưa về $x(x- \sqrt{3})^2(x+2 \sqrt{3}) \geq 0$
Hiển nhiên đúng.
Spoiler


b. Viết lại bđt
$$ \sum \frac{(3a-1)^2}{2a^2+1} \geq 4$$
Áp dụng C-S và ta đi cmr
$$\frac{9(a+b+c-1)^2}{2(a^2+b^2+c^2)+3} \geq 4$$
$$\Leftrightarrow a^2+b^2+c^2+18(ab+bc+ca) -18(a+b+c)-3 \geq 0$$
$$\Leftrightarrow a^2+b^2+18(c-1)(a+b) +c^2-18c+18ab-3 \geq 0$$
KMTTQ, $c \geq 1$, Đặt $c=x^2$
Khi đó $$ L.H.S \geq 20ab+36(c-1) \sqrt{ab} +c^2-18c-3 \geq 0$$
$$\Leftrightarrow \frac{20}{x^2} +\frac{36(x^2-1)}{x} +x^4-18x^2-3 \geq 0$$
$$\Leftrightarrow (x-1)^2(x-2)^2(x+1)(x+5) \geq 0$$
Hiển nhiên đúng.
Spoiler



#673878 Chứng minh $3(a+b+c)\geq \sqrt{8a^2+1}+\sqrt...

Đã gửi bởi Kamii0909 on 10-03-2017 - 17:40 trong Bất đẳng thức và cực trị

KMTTQ, $a \geq b \geq c$
Khi đó dễ cmr $a - \frac{1}{a} \geq b-\frac{1}{b} \geq c - \frac{1}{c}$
Và $3+ \sqrt{8+ \frac{1}{a^2}} \leq 3+ \sqrt{8+ \frac{1}{b^2}} \leq 3+\sqrt{8+\frac{1}{c^2}}$
Bđt cần cm tương đương với
$\sum \frac{a-\frac{1}{a}}{3+ \sqrt{8+\frac{1}{a^2}}} \geq 0$
Áp dụng bđt Cheybershev kết hợp điều kiện ta có đpcm.



#673764 $a+b+c+\sqrt{a}+\sqrt{b}+\sqrt{c...

Đã gửi bởi Kamii0909 on 08-03-2017 - 22:16 trong Các bài toán và vấn đề về Bất đẳng thức

Ta phát biểu và chứng minh bổ đề sau.
Nếu $a,b,c>0$ và $a^4b^4+b^4c^4+c^4a^4=3$ thì $a^3+b^3+c^3 \geq 3$

Từ đánh giá $a^3+b^3+1 \geq 3ab$ và giả thiết ta có $$\sum xy(x+y+1) \geq 9$$ trong đó $x=a^3,y=b^3,c=z^3$
Giả sử rằng $p=x+y+z \leq 3$
Trước hết,ta sẽ cmr $r \geq \frac{4q-9}{3}$
Theo Schur, $r \geq \frac{p(4q-p^2)}{9}$
Kết quả nếu trên sẽ được chứng minh nếu ta chỉ ra rằng $p(4q-p^2) \geq 12q-27 \Leftrightarrow (3-p)(p^2+3p+9-4q) \geq 0$.
Bất đẳng thức cuối đúng do $9 \geq p^2 \geq 3q$.
Vậy $3r \geq 4q-9$
Mà theo trên ta có $4q-9 \geq pq+q-9 \geq 3r$ nên dấu bằng phải xảy ra hay $x=y=z=1,a=b=c=1$. Khi đó $a^3+b^3+c^3=3 \geq 3$
Bổ đề được chứng minh.
Quay lại bài toán.
Ta có $a+ \sqrt{a} \geq 2 \sqrt[4]{a^3}$
Bài toán trở thành bổ đề cho $( \sqrt[4]{a},\sqrt[4]{b},\sqrt[4]{c})$



#673603 VMF's Marathon Bất Đẳng Thức Olympic

Đã gửi bởi Kamii0909 on 06-03-2017 - 22:30 trong Bất đẳng thức và cực trị

cho a, b, c >0 chứng minh
$\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\geq 1+\sqrt{\frac{2abc}{(a+b)(b+c)(c+a)}}$

Do tính thuần nhất ta có thể cho $c=1$. Khi đó bất đẳng thức cần chứng minh tương đương
$$a^2b+b^2+a+ab\geq \sqrt{2ab(a+b)(a+1)(b+1)}$$
Bình phương lên và biến đổi nó tương đương với $a^4b^2+b^4+a^2 \geq 3a^2b^2$
Đúng theo AM-GM



#673316 CMR: $\sum \frac{a}{\sqrt{b+c}...

Đã gửi bởi Kamii0909 on 03-03-2017 - 01:58 trong Các bài toán và vấn đề về Bất đẳng thức

Có $$\sum \frac{a}{\sqrt{\frac{3}{2}(b+c)(a+b+c)}} \geq \sum \frac{4a}{2a+5b+5c} \geq \frac{4(a+b+c)^2}{2(a+b+c)^2+6(ab+bc+ca)} \geq 1$$




#673315 $\sum \frac{a(b+c)}{b^2+bc+c^2}$

Đã gửi bởi Kamii0909 on 03-03-2017 - 01:52 trong Các bài toán và vấn đề về Bất đẳng thức

1/CMR:

    a,b,c>0 

          $\sum \frac{a(b+c)}{b^2+bc+c^2}$$\geq 2$

Theo AM-GM $$4(a^2+ab+b^2)(ab+bc+ca) \leq (a+b)^2(a+b+c)^2$$
Bất đẳng thức cần chứng minh đưa về $$\frac{a}{b+c} +\frac{b}{a+c} +\frac{c}{a+b} \geq \frac{(a+b+c)^2}{2(ab+bc+ca)}$$

Hiển nhiên theo C-S. 

Spoiler




#673314 $(a+b)^2(b+c)^2(a+c)^2\geq abc(a+2b+c)(a+2c+b)(2a+b+c)$

Đã gửi bởi Kamii0909 on 03-03-2017 - 01:10 trong Các bài toán và vấn đề về Bất đẳng thức

Xét $3(a+b)^2(b+c)^2(c+a)^2-3abc(a+b+2c)(b+c+2a)(c+a+2b)=q^2(p^2-3q)+(3q+2p^2)(q^2-3pr) \geq 0$




#672386 Chứng minh $\sum \frac{1}{\sqrt{1+a^2...

Đã gửi bởi Kamii0909 on 22-02-2017 - 14:21 trong Các bài toán và vấn đề về Bất đẳng thức

Có thể dùng dồn biến. Chú ý rằng với $ab\leq 1$ ta dễ dàng chỉ ra rằng
$$\frac{1}{\sqrt{1+a^2}}+\frac{1}{\sqrt{1+b^2}} \leq \frac{2}{\sqrt{ab+1}}$$. Thay $ab=\frac{1}{c}$ và xét hàm theo $c$.



#672103 $ \sum \dfrac{a^2}{b+c}+6(ab+bc+ca) \geq \dfrac{5}{2...

Đã gửi bởi Kamii0909 on 19-02-2017 - 17:39 trong Các bài toán và vấn đề về Bất đẳng thức

Chứng minh bất đẳng thức sau với $a,b,c \geq 0,a+b+c=1, k=\dfrac{8}{27} ( 5 \sqrt{10}-13)$
$$ \sum \dfrac{a^2}{b+c}+6(ab+bc+ca) \geq \dfrac{5}{2} +k \dfrac{\sum (a^2b-ab^2)^2}{(a^2+b^2+c^2)^2}$$



#671492 $\sum (a^3-b^3)^2 \geq 3abc(a-b)(b-c)(c-a)$

Đã gửi bởi Kamii0909 on 13-02-2017 - 18:30 trong Các bài toán và vấn đề về Bất đẳng thức

Bất đẳng thức vẫn đúng mà không cần điều kiện $a^5b+b^5c+c^5a=a^4b^2+b^4c^2+c^4a^2.$

Anh cho em tham khảo lời giải tổng quát? Và đặc biệt là hằng số tốt nhất. E có thử tìm nhưng nó khá là khó và chỉ dừng ở 6.
Em có thử với $a^5b+b^5c+c^5a \geq a^4b^2+b^4c^2+c^4a^2$ và cũng đã chứng minh được bất đẳng thức đúng tuy nhiên chưa làm được phần còn lại.



#671421 $\sum (a^3-b^3)^2 \geq 3abc(a-b)(b-c)(c-a)$

Đã gửi bởi Kamii0909 on 13-02-2017 - 02:50 trong Các bài toán và vấn đề về Bất đẳng thức

Cho $a,b,c$ là các số thực thỏa mãn $a^5b+b^5c+c^5a=a^4b^2+b^4c^2+c^4a^2$
Chứng minh rằng
$(a^3-b^3)^2+(b^3-c^3)^2+(c^3-a^3)^2 \geq 6abc(a-b)(b-c)(c-a)$



#670624 $\sum \frac{1}{\sqrt{a+2b+6}}\leq 1$

Đã gửi bởi Kamii0909 on 07-02-2017 - 13:52 trong Các bài toán và vấn đề về Bất đẳng thức

Cho các số thực dương $a, b, c$ thỏa mãn $abc=1.$ Chứng minh rằng $\frac{1}{\sqrt{a+2b+6}}+\frac{1}{\sqrt{b+2c+6}}+\frac{1}{\sqrt{c+2a+6}}\leq 1.$


$$\sum_{cyc} \frac{1}{\sqrt{a+2b+6}} \leq \sqrt{ 3 \sum_{cyc} \frac{1}{a+2b+6}} \leq \sqrt{ 3 \left( \dfrac{4}{9} \sum_{cyc} \dfrac{1}{a+2b+3} + \frac{1}{9} \right)} \leq \sqrt{3 \left( \dfrac{4}{9} \sum_{cyc} \dfrac{1}{2( \sqrt{ab}+ \sqrt{b}+1)} + \frac{1}{9} \right)} = 1$$



#670566 $ \frac{a^2b+b^2c+c^2a}{a^3+b^3+c^3} \leq \frac{ab+bc+ca}...

Đã gửi bởi Kamii0909 on 06-02-2017 - 20:14 trong Các bài toán và vấn đề về Bất đẳng thức

Cho các số thực không âm $a,b,c$. Chứng minh rằng
$$ \frac{a^2b+b^2c+c^2a}{a^3+b^3+c^3} \leq \frac{ab+bc+ca}{a^2+b^2+c^2} + \frac{3 \sum (a-b)^2}{4 (a+b+c)^2}$$



#670560 Chứng minh rằng: $\left | \frac{a^{3}-b^{...

Đã gửi bởi Kamii0909 on 06-02-2017 - 19:24 trong Bất đẳng thức và cực trị

Cho a, b, c là các số thực dương. Chứng minh rằng:
$\left | \frac{a^{3}-b^{3}}{a+b}+\frac{b^{3}-c^{3}}{b+c}+\frac{c^{3}-a^{3}}{c+a} \right |\leqslant \frac{1}{4}\left [(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \right ]$

Hằng số tốt nhất cho bất đẳng thức này khá xấu và có thể tìm bằng dồn biến toàn miền.
Cho $$a=0,b=2,c=1+ \sqrt{3}+\sqrt{2} \cdot 3^\frac{1}{4}$$ thì $k \geq \sqrt{\dfrac{2 \cdot \sqrt{3}-9}{9}}$



#670339 Chứng minh rằng: $\left | \frac{a^{3}-b^{...

Đã gửi bởi Kamii0909 on 29-01-2017 - 14:07 trong Bất đẳng thức và cực trị

Có vẻ như $\frac{1}{4}$ chưa phải hằng số tốt nhất.
Bình phương lên, điều phải chứng minh tương đương.
$$4\prod(a-b)^2 (ab+bc+ca)^2 \leq \prod (a+b)^2 (\sum a^2-bc)^2$$
Đổi về pqr.
$$ \dfrac{4q^2}{27} [4(p^2-3q)^3 -(2p^3-9pq+27r)^2] \leq (pq-r)^2(p^2-3q)^2 $$
$$L.H.S \leq \dfrac{16q^2(p^2-3q)^3}{27}$$
Ta quy điều phải chứng minh về
$$\dfrac{16q^2(p^2-3q)}{27} \leq (pq-r)^2$$
Có $$pq-r \geq \dfrac{8pq}{9}$$
Thay vào và biến đổi, bất đẳng thức tương đương với
$$q^2(\frac{p^2}{3} +3q) \geq 0$$
Hiển nhiên đúng.



#670334 $\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\leq...

Đã gửi bởi Kamii0909 on 29-01-2017 - 13:19 trong Bất đẳng thức và cực trị

CM tương đương.
chuyển vế: $(\frac{a}{a^2+1}-\frac{3}{10})+(\frac{b}{b^2+1}-\frac{3}{10})+(\frac{c}{c^2+1}-\frac{3}{10})\leq 0<=>\sum( \frac{-3a^2+10a-3}{a^2+1})$(luôn đúng).
Dấu "=" xảy ra khi x=y=3.

Hãy đánh giá thử bất đẳng thức cuối xem vì sao nó đúng?

$$\sum \dfrac{a}{a^2+1} \leq \frac{9}{10} $$
$$\Leftrightarrow \sum \dfrac{a}{a^2+1} \leq \frac{9}{10} + \sum \dfrac{6(3a-1)}{25}$$
$$\Leftrightarrow \sum \dfrac{(3a-1)^2(4a+3)}{50(a^2+1)}\geq 0$$
Hiển nhiên đúng.



#669788 $ \sum \sqrt{a+b+\sqrt{ca}+\sqrt{cb}} \geq k(...

Đã gửi bởi Kamii0909 on 24-01-2017 - 22:29 trong Các bài toán và vấn đề về Bất đẳng thức

Cho các số thực không âm $a,b,c$ thỏa mãn $a^2+b^2+c^2=2(ab+bc+ca)$
Tìm hằng số k tốt nhất sau cho bất đẳng thức sau luôn đúng $$ \sum \sqrt{a+b+\sqrt{ca}+\sqrt{cb}} \geq k(\sum \sqrt{a})$$



#669770 CMR: $\sqrt{(a+b-c)(b+c-a)(c+a-b)}\leq \frac...

Đã gửi bởi Kamii0909 on 24-01-2017 - 21:39 trong Các bài toán và vấn đề về Bất đẳng thức

Chuẩn hóa $a+b+c=1$.
Ta phải chứng minh
$$27a^2b^2c^2+8abc+1 \geq 4(ab+bc+ca)$$
Đặt $f(a,b,c)=27a^2b^2c^2+8abc+1-4(ab+bc+ca)$
Không mất tính tổng quát,$a= \min{a,b,c}$ và đặt $t=\frac{b+c}{2}$
Ta sẽ cmr $f(a,b,c)-f(a,t,t) \geq 0$
$\Leftrightarrow (t^2-bc)\left[ 27a^2(t^2+bc) +8a-4 \right] \leq 0$
Có $bc\leq t^2$ và $a+2t=1$ Thay vào ta đi cmr $\frac{27}{2}a^2(1-a)^2 +8a-4 \leq 0$
Dễ dàng chứng minh điều này với $a \leq \frac{1}{3}$
Kiểm tra $f(a,t,t) \geq 0$ khá đơn giản.



#669234 Chứng minh đường tròn đi qua 1 điểm cố định

Đã gửi bởi Kamii0909 on 21-01-2017 - 21:07 trong Các bài toán và vấn đề về Hình học

Cho tứ giác $ABCD$ cố định và 1 điểm $P$ chuyển động trên đường $AC$. Giả sử đường tròn ngoại tiếp tam giác $APD$ cắt tia $AD$ tại $E$, đường tròn ngoại tiếp tam giác $APB$ cắt tai $AD$ tại $F$. Chứng minh rằng khi đó đường tròn ngoại tiếp tam giác $AEF$ luôn đi qua 1 điểm cố định.
[hide] Với cấu hình khá là đẹp thế này không biết liệu nó đã xuất hiện ở đâu chưa? [\hide]



#669214 Tìm min $P=\frac{1}{x^{2}+1}+\fr...

Đã gửi bởi Kamii0909 on 21-01-2017 - 20:03 trong Các bài toán và vấn đề về Bất đẳng thức

Bài toán nên là $x,y,z$ không âm thì hay hơn( khi đó dấu bằng xảy ra thêm tại $(x,y,z) \sim (0,\sqrt{3},\sqrt{3})$)

Ta sẽ chứng minh rằng $\sum \dfrac{1}{x^2+1} \geq \frac{3}{2}.$

Nhân lên và biến đổi $p,q,r,$ ta đi chứng minh $p^2 +pr +r(p-3r) \geq 12.$

Do $a+b+c \geq 3 \sqrt[3]{abc} \geq 3abc \Rightarrow p \geq 3r,$ nên ta quy về chứng minh $p^2+pr \geq 12.$

Nếu $p^2 \geq 12$ thì bất đẳng thức hiển nhiên đúng. Giả sử $9 \leq p^2 \leq 12.$

Áp dụng bất đẳng thức Schur bậc 3 $r \geq \frac{p(12-p^2)}{9},$ điều phải chứng minh trở thành  $(p^2-9)(12-p^2) \geq 0$ :đúng.