Đến nội dung

Kamii0909 nội dung

Có 155 mục bởi Kamii0909 (Tìm giới hạn từ 21-04-2020)



Sắp theo                Sắp xếp  

#663924 Điều kiên đồng quy của 3 đường thẳng

Đã gửi bởi Kamii0909 on 05-12-2016 - 22:53 trong Hình học

Mình nghĩ hình như đề bài bạn đưa ra chưa chính xác, vì khi mình kiểm tra bằng geogebra thì tứ giác $ABNM$ không phải lúc nào cũng điều hòa. Bạn có thể xem hình mình gửi kèm thì $BM$ không đi qua cực của $AN$ với $(O).$ Mình thử làm và phát hiện ra 1 số tứ giác điều hòa (khác $ABNM$ ), bạn xem thử nhé. Mình chỉ làm chiều thuận thôi, chiều đảo tương tự.

Spoiler

Rất xin lỗi bạn vì nhầm đề. Thực sự thì mình không còn đề gốc,tuy nhiên sau khi suy luận(vì mình đã từng đọc đáp án bài này) có lẽ nó là như sau: Ta xác định các điểm $A,B,C,D,G,P,S,O$ như trên. $PS$ cắt $OD$ tại $Q$. Qua $Q$ kẻ đường thẳng $d$ song song $AD$. Gọi $M,N$ là giao điểm của $d$ và $QP$ với $(O)$.Chứng minh rằng $AG,PS,BD$ đồng quy khi và chỉ khi $MBNG$ điều hòa.
Bài toán trên thực sự rất đơn giản. Mình không nghĩ đề HSG lại quá đánh đố học sinh như bài gốc. Dù sao, mình cũng rất cảm ơn bạn đã chỉ ra sai sót,mình sẽ cố gắng đi tìm bài toán chính xác nhanh nhất có thể.



#662735 Điều kiên đồng quy của 3 đường thẳng

Đã gửi bởi Kamii0909 on 22-11-2016 - 20:36 trong Hình học

$d$ là đường thẳng kẻ từ $P$ vuông góc với $AD$ hỏ cá?

d là $ PS $ .Đã sửa.



#658044 $\sum\sqrt[3]{\frac{c}{b+a}}>\frac{\sqrt[3]...

Đã gửi bởi Kamii0909 on 16-10-2016 - 11:33 trong Bất đẳng thức và cực trị

1/ Cho a,b,c>0 thỏa mãn: $\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\geq 2$CMR: $abc\leq \frac{1}{8}$
2/ Cho a,b >0, thỏa mãn a+b=1. CMR: $(a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{25}{2}$
3/ Cho a,b,c >0 thỏa mãn: a+b+c+d=1. CMR:
$(a+\frac{1}{a})^2+(b+\frac{1}{b})^2+(c+\frac{1}{c})^2+(d+\frac{1}{d})^2\geq \frac{289}{4}$
4/ Cho a,b,c >0. CMR: $\sqrt[3]{\frac{a}{b+c}}+\sqrt[3]{\frac{b}{a+c}}+\sqrt[3]{\frac{c}{b+a}}>\frac{\sqrt[3]{2}}{2}$

Ta có bất đẳng thức sau với mọi a,b,c không âm

$\sum \sqrt[3]{\frac{a}{b+c}}\geq \sum \sqrt{\frac{a}{b+c}}\geq 2$

Dấu bằng xảy ra khi 1 biến =0 và 2 biến còn lại bằng nhau




#693028 ĐỀ THI LẬP ĐỘI TUYỂN TOÁN LỚP 12 DAKLAK

Đã gửi bởi Kamii0909 on 14-09-2017 - 14:00 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Bài hàm phức tạp ra phết. 
Đặt $P(x,y):f(xf(x+y))=f(yf(x))+x^2$
$P(0,x):f(0)=f(xf(0))$

Nếu $f(0) \neq 0$ thì $xf(0)$ toàn ánh trên $\mathbb{R}$, do đó $f(x)=f(0),\forall x$

Mà dễ thấy $f$ không là hàm hằng nên $f(0)=0$

Giả sử $f(a)=0$,  từ $P(a,0):f(0)=a^2=0$ ta có $a=0$, hay $f(a)=0 \Leftrightarrow a=0$ 

Nếu $\exists a,b$ sao cho $f(a)=f(b) \neq 0$, ta sẽ cmr $a=b$. 

$P(a,0)-P(a,b-a): f((b-a)f(a))=0$ 

Hay $a=b$. Do đó $f$ đơn ánh. 

$P(x,0)-P(-x,0): f(xf(x))=f(-xf(-x))$

Sử dụng tính đơn ánh và kết hợp $f(0)=-f(-0)=0$ thì $f(x)=-f(-x),\forall x$

$P(x+y,-x)-P(y,-x-y)-P(x,y): 2f(yf(x))=2xy \Leftrightarrow f(yf(x))=xy$

Đến đây thì quá dễ rồi, ta sẽ tìm được 2 nghiệm hàm thoả mãn là $f(x)= \pm x,  \forall x$




#674386 CMR: $\sqrt{a + b} + \sqrt{b + c} + \...

Đã gửi bởi Kamii0909 on 15-03-2017 - 22:44 trong Bất đẳng thức và cực trị

Cho a, b, c là các số dương thay đổi và a + b + c = 4. CMR : $\sqrt{a + b} + \sqrt{b + c} + \sqrt{c + a} > 4$

*P/s: Xin lỗi các bạn, mình đã sửa đề :)

KMTTQ, $a \geq b \geq c$

Đpcm $$\Leftrightarrow \sum \sqrt{a+b} \geq 2 \sqrt{a+b+c}$$

$$\Leftrightarrow \sqrt{b+c} \geq \frac{c}{\sqrt{a+b+c}+\sqrt{a+b}} +\frac{b}{\sqrt{a+b+c}+\sqrt{a+c}}$$

Có $$\sqrt{a+b+c}+\sqrt{a+b} \geq \sqrt{a+b+c}+\sqrt{a+c} \geq \sqrt{b+c}$$

Vậy $$R.H.S \leq \frac{b+c}{\sqrt{b+c}}=L.H.S$$

Ta có điều phải chứng minh.

Spoiler




#664361 $\boldsymbol{Topic}$ Các bài toán số học HSG Toán 8 + 9

Đã gửi bởi Kamii0909 on 11-12-2016 - 13:14 trong Số học


ĐỀ BÀI

$\boxed{1}$: (Hellenic Mathematical Competitions 2013)
Xác định tất cả các bộ ba số nguyên dương (x, y, z) thỏa mãn phương trình sau đây:


$\frac{1}{x}+\frac{2}{y}-\frac{4}{z}=1$

$\boxed{2}$: (Hellenic Mathematical Competitions 2013) Xác định tất cả các số nguyên x và y thỏa mãn phương trình sau đây:


$y=2x^2+5xy+3y^2$

$\boxed{3}$ Tìm nghiệm nguyên của phương trình


$x^3+y^3=(x+y)^2$

Bài 1.
Biến đổi tương đương ta có
$x=\frac{yz}{yz+4y-2z}$
Nên $yz+4y-2z|yz$.
Từ đó có $z \geq 2y$
Nếu $z=2y$ ta có bộ $(1,t,2t)$ thỏa mãn.
Xét $z>2y$
Lại có $yz+4y-2z|2z-4y$ nên $(y-4)(z+8) \leq 32$(*)
Nếu $y \geq 6$ thì $z \geq 12$.
Khi đó dễ thấy (*) vô lý.
Vậy $y \leq 5$
Đến đây dễ rồi.

Bài 2.
Xét $\Delta$ theo $x$ ta có
$\Delta = y^2+8y=(y+4)^2-16=a^2$ với $a$ là số tự nhiên
$\Leftrightarrow (y+4-a)(y+4+a)=16$

Bài 3.
Dễ thấy có nghiệm $(x,y)=(t,-t)$
Xét TH $x+y$ khác $0$.
Biến đổi pt về dạng $x^2-xy+y^2=x+y$
$\Leftrightarrow x^2-x(y+1)+y^2-y=0$
Coi đây là phương trình bậc 2 ẩn $x$ có $\Delta = -3y^2+6y+1 \geq 0$
$\Leftrightarrow 3y^2-6y-1 \leq 0$
Bất phương trình có nghiệm nguyên $y=0,1,2$.
Thế vào ta có $x$.



#658528 $\boldsymbol{Topic}$ Các bài toán số học HSG Toán 8 + 9

Đã gửi bởi Kamii0909 on 20-10-2016 - 15:18 trong Số học

Bài 1 :  Nhận xét nếu $a \ge 3$ lúc đó $a+b+c>a+b>3$ 
Khi đó $VT<1$ (vô lí) . Nếu $a=1$ cũng dẫn đến vô lí vì $\frac{1}{a+b}+\frac{1}{a+b+c}=0$ 
Do đó $a=2$ . Biến đổi phương trình về thành $b^2+4b+4+(b+2)c=2c+4b+8 \Leftrightarrow bc+b^2+8b+12=0$ vô lí vì $a,b,c nguyên dương$ 
Bài 2 : Xét số dư của $a,b,c$ cho $3$ ta có đpcm |
 

Câu 1 bạn biến đổi nhầm khúc cuối kìa  :icon6:  :icon6:

Mình làm như sau 
Dễ có $\frac{1}{a}> \frac{1}{a+b}> \frac{1}{a+b+c}\Rightarrow \frac{1}{a}> \frac{1}{3}\Rightarrow a< 3$

Mà $a=1$ cũng vô lý vậy $a=2$

Nhân lên ta có $b(b+c)=4$ mà $b< b+c\Rightarrow b=1,c=3$

Câu 2 $\Leftrightarrow (a+bc)(b+ac)=101^{n}$




#670566 $ \frac{a^2b+b^2c+c^2a}{a^3+b^3+c^3} \leq \frac{ab+bc+ca}...

Đã gửi bởi Kamii0909 on 06-02-2017 - 20:14 trong Bất đẳng thức - Cực trị

Cho các số thực không âm $a,b,c$. Chứng minh rằng
$$ \frac{a^2b+b^2c+c^2a}{a^3+b^3+c^3} \leq \frac{ab+bc+ca}{a^2+b^2+c^2} + \frac{3 \sum (a-b)^2}{4 (a+b+c)^2}$$



#660307 Tìm tất cả các số nguyên dương m,n thỏa mãn $9^{m}-3^{m...

Đã gửi bởi Kamii0909 on 02-11-2016 - 14:26 trong Số học

Đặt $3^m=x$

Pt trở thành $x^2-x=n^4+2n^3+n^2+2n$

Nhân 4 và nhóm hằng đẳng thức VT 

$(2x-1)^2=4n^4+8n^3+4n^2+8n+1$
Tới đây có thể chặn bình phương VP cũng ra $x=n^2+n+1$




#663698 Cho tam giác ABC vẽ về phía ngoài các hình vuông...

Đã gửi bởi Kamii0909 on 03-12-2016 - 14:30 trong Hình học

Xét $Q(B,\frac{-\pi}{2})$ và $Q(C,\frac{-\pi}{2})$ có tích 2 phép quay này là 1 phép đối xứng tâm $Đ_{M}$ do $M$ là trung điểm $DF$.
Theo tính chất tích các phép quay,$M$ là giao của $x,y$ với
$x$ là ảnh của $BC$ qua $Q(B,\frac{-\pi}{4})$
$y$ là ảnh của $CB$ qua $Q(C,\frac{\pi}{4})$
Từ đó $(BM,BC)=(CB,CM)=\frac{\pi}{4}$( mod $\pi$)
Chứng tỏ $\Delta MBC$ vuông cân



#658282 Giải phương trình nghiệm nguyên: $x+y-2=xyz-3xy$

Đã gửi bởi Kamii0909 on 18-10-2016 - 13:21 trong Số học

Mấy dòng đầu có vội vàng quá không nhỉ?

Nếu $x+y-2=0\Leftrightarrow \left\{\begin{matrix} x=0\\ y=0\\ z=3 \end{matrix}\right.$

Xét từng TH ra ngay tập nghiệm  :icon6:  :icon6:




#658219 Giải phương trình nghiệm nguyên: $x+y-2=xyz-3xy$

Đã gửi bởi Kamii0909 on 17-10-2016 - 21:10 trong Số học

Giải phương trình nghiệm nguyên:

$x+y-2=xyz-3xy$

$x+y-2=xy(z-3)$
Ta bỏ qua TH đơn giản $x+y-2=0$ Giả sử x không lớn hơn y
TH1:$x+y-2> 0\Rightarrow \left\{\begin{matrix} x+y-2 \vdots xy\\ x+y-2 \vdots -xy \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+y-2\geq xy\\ x+y-2\geq -xy \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)(y-1)\geq -1\\ (x+1)(y+1)\geq 3 \end{matrix}\right.$

$x+y-2> 0\Rightarrow y>1\Rightarrow -1<x<1$ mà x khác 0 nên loại 
TH2:$2-x-y> 0\Leftrightarrow \left\{\begin{matrix} (x-1)(y-1)\geq -1\\ (x+1)(y+1) \leq 3\end{matrix}\right.$

Các TH $\left\{\begin{matrix} (x-1)(y-1)=-1\\ (x-1)(y-1) =0\end{matrix}\right.$ đơn giản nên ta bỏ qua 
Nếu $(x-1)(y-1)\geq 1\Rightarrow y-1< 0 \Rightarrow x,y<0\left ( y\neq 0 \right )$

Đặt $\left ( x,y \right )=\left ( -a,-b \right )$ thì 

$a+b+2=ab(3-z)\Rightarrow a+b+2\vdots ab\Rightarrow a+b+2\geq ab\Leftrightarrow (a-1)(b-1)\leq 3$

Tới đây thì dễ rồi 




#658381 Giải phương trình nghiệm nguyên: $x+y-2=xyz-3xy$

Đã gửi bởi Kamii0909 on 18-10-2016 - 22:36 trong Số học

chỗ xét x+y-2>0 ấy bạn :)

Ta có $\left ( y-1 \right )>0 \Rightarrow$
TH $\left ( x-1 \right )(y-1)\leq 0$ xử lí như mình ghi ở trên.
Nếu $\left ( x-1 \right )(y-1)>0 \Rightarrow x \geq 2$
Nếu x=2 thì phương trình vô nghiệm nguyên
Nếu $x>2$
Có $xy|x+y-2\Rightarrow y|x+y-2\Rightarrow y|x-2$

Mà 0<x-2<y nên loại :lol: :lol:

Mình chưa chú ý. Cảm ơn bạn đã nhắc. Cách này cũng có thể dùng để loại nghiệm TH2 nhỉ :icon6:




#658832 $n(n+1)(n+2)(n+3)=m(m+1)^{2}(m+2)^{3}(m+3)^{4...

Đã gửi bởi Kamii0909 on 22-10-2016 - 21:41 trong Số học

Mình nghĩ là hướng làm nó như thế này 

$\prod_{i=0}^{3}(n+i)+1 =\left ( n^{2}+3n+1 \right )^{2}$

Vậy ta chỉ cần chứng minh VP+1 không chính phương @@ 
Cơ mà cái này số to quá 




#676603 $\prod (a^{2}+b^{2})\leq \frac{1...

Đã gửi bởi Kamii0909 on 08-04-2017 - 00:01 trong Bất đẳng thức - Cực trị

Biểu thức $f(a,b,c)$ của em là gì ? Nếu dồn biến theo kiểu này thì sẽ chọn $c$ là số nhỏ nhất, anh thử nhẩm với $f(a,b,c) = (a^2+b^2)(b^2+c^2)(c^2+a^2)$ khi xét $f(a,b,c) \leqslant f(a+b,c,0)$ thì hai đại lượng trội nhất là $a^3b,ab^3$ nằm bên trái dấu $\leqslant $ nên có thể bất đẳng thức này sai.

Em chọn $c$ là số lớn nhất.
Ta nhân 2 đánh giá sau
$c^2[(a+b)^2+c^2]=c^4+c^2a^2+c^2b^2+2c^2ab \geq (c^2+a^2)(c^2+b^2)$
Và $(a+b)^2 \geq (a^2+b^2)$



#676639 $\prod (a^{2}+b^{2})\leq \frac{1...

Đã gửi bởi Kamii0909 on 08-04-2017 - 18:51 trong Bất đẳng thức - Cực trị

Nhưng như vầy thì em dồn $c$ về $0$ !

Em chưa hiểu ý anh lắm. Em đang dồn $b \rightarrow 0$. Nếu dồn $c \rightarrow 0$ thì có lẽ là $f(a+c,b,0)$ chính xác hơn.



#676727 $\prod (a^{2}+b^{2})\leq \frac{1...

Đã gửi bởi Kamii0909 on 09-04-2017 - 13:15 trong Bất đẳng thức - Cực trị

Em định nghĩa $f(a,b,c) = (a^2+b^2)(b^2+c^2)(c^2+a^2)$ thì $f(a+b,c,0)$ tức là thay $a = a + b,\, b = c$ và $c = 0.$ Tức $c$ là nhỏ nhất.

Thực ra nó chỉ là mặt quy ước, ta có thể thấy $f(a+c,b,0)$ và $f(a+b,c,0)$ hay $f(0,b,a+c)$ là tương đương hết sau phép đặt ẩn $(a+c,b) \rightarrow (x,y)$ hay $(a+b,c) \rightarrow (x,y)$
Ta chọn vị trí các số sao cho chứng minh dễ nhất có thể mà thôi. Nó không ảnh hưởng dù $c$ max hay min. Bài toán này có thể chọn thứ tự thoải mái do tính đối xứng.



#675568 $\prod (a^{2}+b^{2})\leq \frac{1...

Đã gửi bởi Kamii0909 on 28-03-2017 - 22:46 trong Bất đẳng thức - Cực trị

Cmr $$f(a,b,c) \leq f(a+b,c,0)$$.



#667825 Chứng minh A,F,I thẳng hàng

Đã gửi bởi Kamii0909 on 09-01-2017 - 22:40 trong Hình học

Nó quanh quanh cấu hình bài hình của USAMO 2008



#658519 Cho các số thực x, y, z khác 1 và xyz=1. Chứng minh rằng $\sum...

Đã gửi bởi Kamii0909 on 20-10-2016 - 12:15 trong Bất đẳng thức và cực trị

Bạn tham khảo thêm cách khác 
Đặt $a= \frac{x}{x-1}\Leftrightarrow x= \frac{a}{a-1}$

$xyz=1 \Leftrightarrow abc= (a-1)(b-1)(c-1)\Leftrightarrow ab+bc+ac-a-b-c+1=0$

Ta có $(a+b+c-1)^{2}\geq 0\Leftrightarrow a^{2}+b^{2}+c^{2}\geq 1$




#658521 BT BĐT trong tài liệu chuyên toán đại số 10

Đã gửi bởi Kamii0909 on 20-10-2016 - 12:28 trong Bất đẳng thức và cực trị

22.Bổ đề $x^{5}+y^{5}\geq x^{2}y^{2}(x+y)$

$\sum \frac{xy}{x^{5}+y^{5}+xy}\leq \sum \frac{1}{xy(x+y)+1}=\sum \frac{z}{x+y+z}=1$

12. Dễ có $\sum x^{2}y\geq \sum x^{2}y^{2}$

$\prod (1-x^{2})\geq 0 \Leftrightarrow 1+\sum x^{2}y^{2}\geq \sum x^{2}+\prod x^{2}\geq \sum x^{2}$




#658523 BT BĐT trong tài liệu chuyên toán đại số 10

Đã gửi bởi Kamii0909 on 20-10-2016 - 13:31 trong Bất đẳng thức và cực trị

19.Theo C-S

$VP^{2}\leq 2(2x^{2}+2y^{2}+2z^{2}+2t^{2})\leq 8$

18.$\Leftrightarrow \sum (x-y)^{2}\geq 0$

17.AM-GM

$\sum \frac{1}{x}\geq \frac{9}{\sum x}$

$\sum x +\frac{1}{\sum x}+\frac{8}{\sum x}\geq 2+8=10$

13.$\sum \sqrt{x^{2}+xy+y^{2}}\geq \sqrt{3}(\sum x)$

Ta sẽ chứng minh 

$\sqrt{3}\left ( \sum x \right )^{2}\geq 3\sqrt{3}\left ( \sum xy\right )\Leftrightarrow (\sum x)^{2}\geq 3\left ( \sum xy \right )$




#670624 $\sum \frac{1}{\sqrt{a+2b+6}}\leq 1$

Đã gửi bởi Kamii0909 on 07-02-2017 - 13:52 trong Bất đẳng thức - Cực trị

Cho các số thực dương $a, b, c$ thỏa mãn $abc=1.$ Chứng minh rằng $\frac{1}{\sqrt{a+2b+6}}+\frac{1}{\sqrt{b+2c+6}}+\frac{1}{\sqrt{c+2a+6}}\leq 1.$


$$\sum_{cyc} \frac{1}{\sqrt{a+2b+6}} \leq \sqrt{ 3 \sum_{cyc} \frac{1}{a+2b+6}} \leq \sqrt{ 3 \left( \dfrac{4}{9} \sum_{cyc} \dfrac{1}{a+2b+3} + \frac{1}{9} \right)} \leq \sqrt{3 \left( \dfrac{4}{9} \sum_{cyc} \dfrac{1}{2( \sqrt{ab}+ \sqrt{b}+1)} + \frac{1}{9} \right)} = 1$$



#661637 Chứng minh rằng trong ba số p, q, r có ít nhất hai số bằng nhau.

Đã gửi bởi Kamii0909 on 12-11-2016 - 14:11 trong Số học

Dễ thấy rằng $a,b,c \geq 1$
Với mọi tính chẵn lẻ của bộ $(a,b,c)$ thì trong 3 số $p,q,r$ luôn có 1 số chẵn.
Giả sử $b^c +a =2$
Từ đó thấy rằng $a=b=1$
Thay xuống $q,r$ ta có $q=r=c+1$
Như vậy ta có đpcm



#661255 Chứng minh rằng trong ba số p, q, r có ít nhất hai số bằng nhau.

Đã gửi bởi Kamii0909 on 09-11-2016 - 15:16 trong Số học

Bài này sai đề. Cho $(a,b,c)=(1,2,3)$ không đúng. Theo mình thì p,q,r phải là các số nguyên tố