Đến nội dung

Kamii0909 nội dung

Có 155 mục bởi Kamii0909 (Tìm giới hạn từ 25-04-2020)



Sắp theo                Sắp xếp  

#691650 $(x^{2}+y+f(y))=f(x)^{2}+a, \forall x,y \i...

Đã gửi bởi Kamii0909 on 27-08-2017 - 02:22 trong Phương trình hàm

Chuẩn phải là $ P(x,y): f(x^2+y+f(y))=f^2(x)+ay, \forall x,y \in \mathBB{R}$
Nếu $a=0$ dễ chỉ ra 2 hàm $f(x) =0,f(x)=1$ thoả mãn. 
Xét $a \neq 0$ thì ta có $f$ toàn ánh. 

Nếu $f(a)=0$ ta chỉ ra $a=0$
Thật vậy, ta có
$P(b,y)-P(-b,y): f(b)=f(-b)=0$
$P(0,b)+P(0,-b): f(b)+f(-b)=2f^2(0)=0$
Tức là $f(0)=0$, từ đó $P(0,b): ab=0 \Leftrightarrow b=0$

 

Chứng minh $f(x^2)=bx^2, b \geq 0, b^2+b=a$
$P(x,0):f(x^2)=f^2(x)$
Từ đây $f$ đơn ánh trên từng khoảng $(0,+ \infty)$ và $(- \infty,0)$ và $f(x) \geq 0, \forall x \geq 0$
Từ đó $f(x^2)+x^2 \geq 0,\forall x$
$P(0,x):f(x+f(x))=ax$
$P( \sqrt{x^2+f(x^2)},y^2): f(x^2+y^2+f(x^2)+f(y^2))=a(x^2+y^2)$
Và $P(0,x^2+y^2): f(x^2+y^2+f(x^2+y^2))=a(x^2+y^2)$
Do $f$ đơn ánh trên $(0, +\infty)$ nên $f(x+y)=f(x)+f(y),\forall x,y \geq 0$
Kết hợp với $f(x) \geq 0,\forall x \geq 0$ 
Và xét $f$ trên $(0, +\infty)$ dễ thu được $f(x)=bx,\forall x \geq 0(b > 0)$
Trong đó $b^2+b=a$

Bây giờ ta chứng minh $f(-x^2) \leq 0, \forall x$ 
Giả sử $\exists x,f(-x^2) \geq 0$ 
$P(x,-x^2):f(f(-x^2))=f(x^2)-ax^2=-b^2x^2 <0$
Mà $f(-x^2)>0$ nên $f(f(-x^2)) >0$
Mâu thuẫn, tức là $f(-x^2) \leq 0$

 

$f(x)=-f(-x)$

Ta có $f(x^2)=f(-x)^2=f(x)^2$

Dễ thấy 2 số $x$ và $-x$ khác dấu $ \forall x \neq 0$ nên $f(x)$ và $f(-x)$ cũng khác dấu.

Nói cách khác $f(x) \neq f(-x), \forall x \neq 0$ dẫn tới $f(x)=-f(-x), \forall x$

$f(x^2)=bx^2$ nên $f(x)=bx,\forall x$

Trong đó $b^2+b=a \geq 0$

Với $a>0$ ta tìm được nghiệm dương duy nhất của $b$ là $\dfrac{2a}{1+ \sqrt{1+4a}}$

Kết luận $a>0$




#673314 $(a+b)^2(b+c)^2(a+c)^2\geq abc(a+2b+c)(a+2c+b)(2a+b+c)$

Đã gửi bởi Kamii0909 on 03-03-2017 - 01:10 trong Bất đẳng thức - Cực trị

Xét $3(a+b)^2(b+c)^2(c+a)^2-3abc(a+b+2c)(b+c+2a)(c+a+2b)=q^2(p^2-3q)+(3q+2p^2)(q^2-3pr) \geq 0$




#669788 $ \sum \sqrt{a+b+\sqrt{ca}+\sqrt{cb}} \geq k(...

Đã gửi bởi Kamii0909 on 24-01-2017 - 22:29 trong Bất đẳng thức - Cực trị

Cho các số thực không âm $a,b,c$ thỏa mãn $a^2+b^2+c^2=2(ab+bc+ca)$
Tìm hằng số k tốt nhất sau cho bất đẳng thức sau luôn đúng $$ \sum \sqrt{a+b+\sqrt{ca}+\sqrt{cb}} \geq k(\sum \sqrt{a})$$



#672103 $ \sum \dfrac{a^2}{b+c}+6(ab+bc+ca) \geq \dfrac{5}{2...

Đã gửi bởi Kamii0909 on 19-02-2017 - 17:39 trong Bất đẳng thức - Cực trị

Chứng minh bất đẳng thức sau với $a,b,c \geq 0,a+b+c=1, k=\dfrac{8}{27} ( 5 \sqrt{10}-13)$
$$ \sum \dfrac{a^2}{b+c}+6(ab+bc+ca) \geq \dfrac{5}{2} +k \dfrac{\sum (a^2b-ab^2)^2}{(a^2+b^2+c^2)^2}$$



#670566 $ \frac{a^2b+b^2c+c^2a}{a^3+b^3+c^3} \leq \frac{ab+bc+ca}...

Đã gửi bởi Kamii0909 on 06-02-2017 - 20:14 trong Bất đẳng thức - Cực trị

Cho các số thực không âm $a,b,c$. Chứng minh rằng
$$ \frac{a^2b+b^2c+c^2a}{a^3+b^3+c^3} \leq \frac{ab+bc+ca}{a^2+b^2+c^2} + \frac{3 \sum (a-b)^2}{4 (a+b+c)^2}$$