Đến nội dung

CaolacVC nội dung

Có 8 mục bởi CaolacVC (Tìm giới hạn từ 20-04-2020)


Sắp theo                Sắp xếp  

#653814 $\lim_{\substack{x\to x_0\\y \to...

Đã gửi bởi CaolacVC on 11-09-2016 - 21:31 trong Giải tích

Tính giới hạn của hàm hai biến

$$\lim_{\substack{x\to x_0\\y \to y_0}}{(x^2+y^2)^{x^2y^2}}$$




#652748 $f(x;y) = \begin{cases} \frac{e^x-e^y}{x-y} & \quad...

Đã gửi bởi CaolacVC on 04-09-2016 - 13:53 trong Giải tích

Xét tính liên tục của hàm số sau:

$$f(x;y) = \begin{cases} \frac{e^x-e^y}{x-y} & \quad \text{khi } x\ne y\\ e^x & \quad \text{khi } x=y\\ \end{cases}$$




#533475 Chứng minh rằng giới hạn $\lim_{n->0}x$, tồn tại...

Đã gửi bởi CaolacVC on 16-11-2014 - 16:44 trong Giải tích

Không biết là đúng hay sai nhưng đây là cách làm của mình.

Trước hết mình thấy $x_{0}>a$ tùy ý có vẻ hợp lý hơn. Nếu $x_{0}>0$ tùy ý thì mình chịu, không làm được.

 

Giả sử mình sửa lại đề là $x_{0}>a$ tùy ý. (Đây chỉ là ý kiến chủ quan của mình)

Khi đó ta chứng minh $x_{n}>\sqrt[3]{a}$ mọi n thuộc N

 

+ Chứng minh sự tồn tại của giới hạn

 

Dùng quy nạp:

$x_{0}>\sqrt[3]{a}$ đúng

Ta giả sử $x_{n}>\sqrt[3]{a}$ mọi n thuộc N

Khi đó $x_{n+1}=\frac{1}{3}(2x_{n}+\frac{a}{x_{n}^2})>\sqrt[3]{a}$ cũng đúng

Thật vậy

$\frac{1}{3}(2x_{n}+\frac{a}{x_{n}^2})>\sqrt[3]{a}$

$\Leftrightarrow$ $\frac{1}{3}(2x_{n}+\frac{a}{x_{n}^2})-\sqrt[3]{a}>0$

$\Leftrightarrow$ $(x_{n}-\sqrt[3]{a})^2(x_{n}+\frac{1}{2}\sqrt[3]{a})>0$ đúng với mọi $x_{n}>\sqrt[3]{a}$ trong đó n thuộc N

 

Do vậy nên $x_{n}>\sqrt[3]{a}$ với mọi n thuộc N, hay nói cách khác dãy $x_{n}$ là một dãy bị chặn dưới bởi $\sqrt[3]{a}$

 

Mặt khác:

$x_{n+1}-x_{n}=\frac{1}{3}(2x_{n}+\frac{a}{x_{n}^2})-x_{n}=\frac{1}{3}(\frac{a-x_{n}^3}{x_{n}^2})<0$ Vì $x_{n}>\sqrt[3]{a}$ mọi n thuộc N

Hay $x_{n}$ là một dãy giảm.

 

Một dãy giảm bị chặn dưới nên hội tụ.

 

+ Tìm giới hạn

 

Giả sử $\lim_{n\rightarrow \infty}{x_{n}}=L$

Khi đó $L=\frac{1}{3}(2L+\frac{a}{L})$

Giải phương trình ra ta được $L=\sqrt[3]{a}$.




#533462 Tính giới hạn: Tính giới hạn: $$\lim_{x\rightarrow 0...

Đã gửi bởi CaolacVC on 16-11-2014 - 16:09 trong Giải tích

Bài này thì biến đổi $\cos{3x}=1+(-2\sin^2{\frac{3x}{2}})$ thêm bớt số mũ và làm bình thường.




#533459 Tính giới hạn: $$\lim_{x\rightarrow \infty...

Đã gửi bởi CaolacVC on 16-11-2014 - 16:05 trong Giải tích

Bài này cũng áp dụng công thức giới hạn cơ bản số 2 mà mình đã đăng.

$\lim_{x\rightarrow \infty}{(\frac{3x^2-x+1}{3x^2+x+1})^{\frac{x^2}{1-x}}}=\lim_{x\rightarrow \infty}{(1+\frac{-2x}{3x^2+x+1})^{\frac{x^2}{1-x}}}$

Thêm bớt số mũ để đưa về dạng và tính bình thường.




#533458 Tính giới hạn: a) $\lim_{x\to 0}\left ( \f...

Đã gửi bởi CaolacVC on 16-11-2014 - 15:55 trong Giải tích

Mình thấy bạn đăng khá nhiều bài, nhưng tất cả đều chung một dạng. Có thể do chưa làm lần nào nên bạn chưa biết, Mình sẽ làm một bài, các bài còn lại gần như tương tự, mình nghĩ bạn sẽ làm được.

Trước khi làm thì mình nói một xíu về dạng bài tập, đây là dạng bài tập sử dụng các giới hạn cơ bản.

Một số giới hạn cơ bản mà bắt buộc chúng ta phải ghi nhớ:

1. $\lim_{x\rightarrow 0}{\frac{sinx}{x}}=1$

2. $\lim_{x\rightarrow 0}{(1+x)^{\frac{1}{x}}}=e; \lim_{x\rightarrow \infty}{(1+\frac{1}{x})^x}=e$

3. $\lim_{x\rightarrow 0}{\frac{e^x-1}{x}}=1$

4. $\lim_{x\rightarrow 0}{\frac{ln(1+x)}{x}}=1$

 

Tổng quát hơn một tí

1. $\lim_{x\rightarrow 0}{[1+u(x)]^\frac{1}{u(x)}}=e$ trong đó $u(x)$ là hàm theo biến $x$ và khi $x\rightarrow 0$ thì $u(x)\rightarrow 0$

Tương tự cho 2, 3, 4

 

Một điều cũng khá quan trọng nữa:

$u(x)^{v(x)}=e^{ln[u(x)]^{v(x)}}=e^{v(x)ln[u(x)]}$

Nên $\lim_{x\rightarrow a}{[u(x)]^{v(x)}}=\lim_{x\rightarrow a}{e^{v(x)ln[u(x)]}}=e^{\lim_{x\rightarrow a}{v(x)}ln[u(x)]}$

 

Mẹo: Làm các bài như thế này chỉ cần biến đổi như thế nào cho gần giống với các công thức giới hạn cơ bản và áp dụng công thức là xong. Tuy nhiên trong quá trình biến đổi có thể rất lằng nhằng.

 

b) $\lim_{x\rightarrow 0}{(\frac{\cos{x}}{\cos{2x}})^{\frac{1}{x^2}}}=\lim_{x\rightarrow 0}{(1+\frac{\cos{x}}{\cos{2x}}-1)^{\frac{1}{x^2}}}=\lim_{x\rightarrow 0}{(1+\frac{\cos{x}-\cos{2x}}{\cos{2x}})^{\frac{\cos{2x}}{\cos{x}-\cos{2x}}.\frac{\cos{x}-\cos{2x}}{\cos{2x}}.\frac{1}{x^2}}}$

 

Ta chỉ cần tính: $\lim_{x\rightarrow 0}{\frac{\cos{x}-\cos{2x}}{x^2\cos{2x}}}=\lim_{x\rightarrow 0}{\frac{2\sin{\frac{x}{2}}\sin{\frac{3x}{2}}}{x^2\cos{2x}}}=\frac{3}{2}$

 

Nên giới hạn cần tính sẽ tiến đến $e^{\frac{3}{2}}$

 

(Đánh công thức quá phức tạp, tốn nhiều thời gian nên mình không thể trình bày từng bước. Chúc bạn học tốt)




#533352 Chứng minh sự hội tụ của dãy: $x_{n}=\frac{1}{1^{2}+1}+\frac{...

Đã gửi bởi CaolacVC on 15-11-2014 - 21:18 trong Giải tích

+ $x_{n}$ là một dãy tăng

+ Mặt khác, $\frac{1}{1^2+1}+\frac{1}{2^2+1}+...+\frac{1}{n^2+1}<\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}<1+\frac{1}{1.2}+...+\frac{1}{(n-1)n}=1+1-\frac{1}{2}+...+\frac{1}{n-1}-\frac{1}{n}=2-\frac{1}{n}<2$

Nghĩa là dãy $x_{n}$ bị chặn trên bởi 2.

 

Một dãy tăng bị chặn trên nên hội tụ.




#532375 Tìm $\lim a_{n}=(1-\frac{1}{2})(1-\frac{1}{2^2})...(1-...

Đã gửi bởi CaolacVC on 08-11-2014 - 18:57 trong Giải tích

Tìm giới hạn của dãy:

$a_{n}=(1-\frac{1}{2})(1-\frac{1}{2^2})...(1-\frac{1}{2^n})$

 

Là một dãy giảm và bị chặn dưới tại 0 nên nó hội tụ. Nhưng mình chưa tìm được giới hạn. Mong giúp đỡ!