Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


germany3979 nội dung

Có 121 mục bởi germany3979 (Tìm giới hạn từ 04-07-2016)



Sắp theo                Sắp xếp  

#469872 $\left\{\begin{matrix} x(4-y^2)=8y\...

Đã gửi bởi germany3979 on 09-12-2013 - 16:16 trong Phương trình - hệ phương trình - bất phương trình

Hàm số bạn xét không phải hàm liên tục trên $\mathbb{R}$ nên không thể kết luận x=y=z được,bài này mình giải ra rồi,dùng lượng giác hóa như Jupiter_1996 nói,hệ còn có nghiệm khác nữa...  :icon6:

Bạn giải chi tiết di, coi xem nào!!!!




#464083 $\left\{\begin{matrix} x(4-y^2)=8y\...

Đã gửi bởi germany3979 on 13-11-2013 - 17:03 trong Phương trình - hệ phương trình - bất phương trình

Sai mà sao vẫn có người like nhỉ? Bài này đặt $\frac{x}{2}=\tan {\alpha}$

Sai ở chỗ nào vậy bạn??????????????????




#458159 Đề thi chọn đội tuyển Trà Vinh tham dự VMO 2014

Đã gửi bởi germany3979 on 17-10-2013 - 17:22 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

pt $\Leftrightarrow \frac{9x-3}{\sqrt{4x^2+5x+1}+2\sqrt{x^2-x+1}}=9x-3$

 

    $\Leftrightarrow 9x-3=0$

   

  $\Leftrightarrow x=\frac{1}{3}$ (Thỏa diều kiện)

 

(Do $\frac{1}{\sqrt{4x^2+5x+1}+2\sqrt{x^2-x+1}}\leq \frac{1}{2.\sqrt{\frac{3}{4}}}<1$)

 

Vậy $x=\frac{1}{3}$ 

Bạn giải thích rõ hơn dùm mình với $\frac{1}{\sqrt{4x^2+5x+1}+2\sqrt{x^2-x+1}}\leq \frac{1}{2.\sqrt{\frac{3}{4}}}$




#457887 Đề thi chọn đội tuyển HSG tỉnh Khánh Hòa năm 2013-2014

Đã gửi bởi germany3979 on 16-10-2013 - 11:03 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.



 

Ngày 1:
 
Bài 1. (4 điểm ) Giải phương trình $\tan^23x+2\tan3x.\tan4x-1=0\\$ 
 
Bài 2. (4 điểm) Cho dãy số $(u_n)$ thỏa mãn $u_1=\frac{1}{2}$, $u_{n+1}=u^2_n-u_n$ với mọi $n \in \mathbb{N^*}$. Chứng minh dãy có giới hạn hữu hạn và tìm giới hạn đó. 
 
Bài 3. (4 điểm) Tìm tất cả các số tự nhiên $n$ sao cho $3^n+5$ là số chính phương.
 
Bài 4. (4 điểm) Cho tam giác nhọn $ABC$ có trực tâm $H$. Trên các đoạn $HB,HC$ lần lượt lấy 2 điểm $B_1, C_1$ sao cho $\widehat{AB_1C}=\widehat{AC_1B}=90$ độ. Chứng minh $AB_1=AC_1$. 
 
Bài 5. (4 điểm) Cho số nguyên $n>1$. Có tất cả bao nhiêu dãy số $(x_1,x_2,...,x_n)$ với $x_i \in \{a,b,c\}, i=1,2,...,n$ thỏa $x_1=x_n=a$ và $x_i$ khác $x_{i+1}$ khi $i=1,2,...,n-1$.   

 

Bài 2. (4 điểm) Cho dãy số $(u_n)$ thỏa mãn $u_1=\frac{1}{2}$, $u_{n+1}=u^2_n-u_n$ với mọi $n \in \mathbb{N^*}$. Chứng minh dãy có giới hạn hữu hạn và tìm giới hạn đó.

Giải

Ta có: $u_{1}=\frac{1}{2};u_{2}=-\frac{1}{4};u_{3}=\frac{5}{16};...$

Đặt hàm số $f(x)=x^{2}-x\Rightarrow f'(x)=2x-1\leqslant 0\Leftrightarrow x\leqslant \frac{1}{2}$

Ta có $u_{1}>u_{3}\Rightarrow f(u_{1})f(u_{4})\Rightarrow u_{3}>u_{5}\Rightarrow ...$(u_{3})\rightarrow>

Từ đây suy ra:

$\left\{\begin{matrix} u_{1}>u_{3}>u_{5}>...>u_{2k+1}\\ u_{2}<u_{4}<u_{6}<...<u_{2k}

\end{matrix}\right.$




#456396 $\left\{\begin{matrix} x(4-y^2)=8y\...

Đã gửi bởi germany3979 on 09-10-2013 - 18:02 trong Phương trình - hệ phương trình - bất phương trình

Hệ pt đã cho tương đương với:

$\left\{\begin{matrix} x=\frac{8y}{4-y^{2}}\\ y=\frac{8z}{4-z^{2}}\\ z=\frac{8x}{4-x^{2}} \end{matrix}\right.$ (Vì x=y=z=2 không phải là nghiệm của hệ)

Xét hàm số $f(t)=t;g(t)=\frac{8t}{4-t^{2}}$

$\Rightarrow f'(t)=1>0;g'(t)=\frac{8y^{2}+32}{(4-t^{2})^{2}}>0\forall t$

$... \Rightarrow x=y=z$

Từ đây ta có $x=\frac{8x}{4-x^{2}}\Leftrightarrow x=0$

Vầy hệ có nghiệm duy nhất x=y=z=0




#456388 $\left\{\begin{matrix} x(4-y^2)=8y\...

Đã gửi bởi germany3979 on 09-10-2013 - 17:44 trong Phương trình - hệ phương trình - bất phương trình

$4-x^{2}\leq 4$

Tương tự thế rồi nhân các vế với nhau

Dễ thôi mà

Chưa chắc đâu bạn, giả sử $x=\sqrt{2};y=\sqrt{8};z=\sqrt{68}$ vẫn thoả mãn mà!!!




#456376 giải phương trình mũ và logarit $3.4^{x} +(3x-10).2^{x...

Đã gửi bởi germany3979 on 09-10-2013 - 16:45 trong Phương trình - hệ phương trình - bất phương trình

e/ Ghi lại đề :$log_{2}\left ( 3-log_{3}x \right )> 1$

ĐK:$log_{3}x< 3 <=>x< 27(*)$$

$<=>log_{2}\left ( 3-log_{3}x \right )> log_{2}2^{1}$

$<=>3-log_{3}x> 2$

$<=>log_{3}x< 1$

$<=>log_{3}x< log_{3}3$

$<=>x< 3$

Thêm ĐK x>0 nữa bạn ơi!!!




#456371 $\frac14(x+5)\sqrt{2x+3}=x^2+x-6.$

Đã gửi bởi germany3979 on 09-10-2013 - 16:36 trong Phương trình - hệ phương trình - bất phương trình

Cái này dùng mẹo thôi bài thi làm vậy là được.

Bạn dùng chế độ SHIFT+SOLVE bấm thử pt xem nó có nghiệm ko?

Kết quả ra vô nghiệm ,sau đó bạn bấm thử tất cả các giá trị $x\geq \frac{-3}{2}$ thì thấy đều <0

Vậy là đủ để cm nó vô nghiệm.

:botay




#456321 $\frac14(x+5)\sqrt{2x+3}=x^2+x-6.$

Đã gửi bởi germany3979 on 09-10-2013 - 11:34 trong Phương trình - hệ phương trình - bất phương trình

ĐK:$x\geq \frac{-3}{2}$

Bấm máy tính nhẩm ra nghiệm $x=3$

Ta biến đổi như sau

$<=>\frac{1}{4}x\sqrt{2x+3}+\frac{5}{4}\sqrt{2x+3}=x^{2}+x-6$

$<=>\frac{1}{4}x(\sqrt{2x+3}-3)+\frac{3}{4}x+\frac{5}{4}(\sqrt{2x+3}-3)+\frac{15}{4}=x^{2}+x-6$

$<=>\frac{1}{4}x\left ( \frac{2x-6}{\sqrt{2x+3}+3} \right )+\frac{5}{4}\left ( \frac{2x-6}{\sqrt{2x+3}+3} \right )-x^{2}-\frac{1}{4}x+\frac{39}{4}=0$

$<=>\left ( 2x-6 \right )\left ( \frac{1}{4}.\frac{x}{\sqrt{2x+3}+3}+\frac{5}{4}.\frac{1}{\sqrt{2x+3}+3} \right )-(x-3)(x+\frac{13}{4})=0$

$<=>\left ( x-3 \right )\left ( \frac{x}{2\sqrt{2x+3}+6}+\frac{5}{2\sqrt{2x+3}+6}-x-\frac{13}{4} \right )=0$

$<=>x=3 vs g(x)=0$

Với $x\geq \frac{-3}{2} thì g(x) luôn < 0$ 

Kết luận.pt có nghiệm duy nhất $x=3$

Giải thích một chút ở chỗ g(x)=$\left ( \frac{x}{2\sqrt{2x+3}+6}+\frac{5}{2\sqrt{2x+3}+6}-x-\frac{13}{4} \right )$<0 đi bạn!!!




#454477 $\left\{\begin{matrix}x^2y+2y+x=4xy &...

Đã gửi bởi germany3979 on 01-10-2013 - 17:30 trong Phương trình - hệ phương trình - bất phương trình

Từ pt(2) => x,y bình đẳng =>f(x)=f(y)

Thay vào pt (1) => x=y=3 và x=y=1

x,y bình đẳng là gì vậy bạn???

x=y=3 không thoả mãn pt 2.




#454471 Giải PT: $\sqrt{x+4}+\sqrt{x}+\sqrt...

Đã gửi bởi germany3979 on 01-10-2013 - 17:05 trong Phương trình - hệ phương trình - bất phương trình

Mình làm như này nhé!!!

ĐK: $0\leqslant x\leqslant 1$

Ta có:

$\sqrt{x+4}\geqslant \sqrt{4}=2$ (đẳng thức xảy ra khi x=0)

$\sqrt{x}+\sqrt{1-x}\geqslant 1$ (đẳng thức xảy ra khi x=0 hoặc x=1)

$\Rightarrow \sqrt{x+4}+\sqrt{x}+\sqrt{1-x}\geqslant 3$ (đẳng thức xảy ra khi x=0)

Vậy pt có nghiệm duy nhất $x=0$.




#454464 Giải PT: $\sqrt{x+4}+\sqrt{x}+\sqrt...

Đã gửi bởi germany3979 on 01-10-2013 - 16:51 trong Phương trình - hệ phương trình - bất phương trình

Điều kiện $0\leq x\leq 1$

=> $\sqrt{x+4}\geq \sqrt{4}=2$

=>$\sqrt{x}+\sqrt{1-x}\leq 1$

=>$x+(1-x)+2\sqrt{x(1-x)}\leq 1$

=>$\sqrt{x(1-x)}\leq 0$

=>$\sqrt{x(1-x)}= 0$

<=> x=0 hoặc x=1.

Thử lại, thấy chỉ có x=0.

Vậy PT có nghiệm duy nhất x=0

Bạn xem lại chỗ màu đỏ nhé!

Mình thấy $\sqrt{\frac{1}{2}}+\sqrt{1-\frac{1}{2}}=\sqrt{2}>1$ mà!!!




#454459 Giải PT: $2x+1+x\sqrt{x^2+2}+(x+1)\sqrt{x^2+2x+...

Đã gửi bởi germany3979 on 01-10-2013 - 16:30 trong Phương trình - hệ phương trình - bất phương trình

mình viết bằng điện thoại nên bạn thông cảm nhé! pt <=> x + x.căn(x^2 + 2) + (x + 1) + (x + 1).căn((x + 1)^2 +2) =0 <=> x + x.căn(x^2 + 2) = (-x - 1) + (-x - 1).căn((-x - 1)^2 +2) <=> f(x) = f(-x - 1) xét hàm số f(t)=t + t.căn(t^2 + 2) t € R dễ thấy f(t) đồng biến => x=-x-1 <=> x=-1/2 Vậy.....

Bài giải đã làm ở http://diendantoanho...2sqrt2x25x3-16/




#454456 Giải PT: $3x^2-5x-3+2\sqrt{x+3}(2-x)=0$

Đã gửi bởi germany3979 on 01-10-2013 - 16:20 trong Phương trình - hệ phương trình - bất phương trình

Giải PT: $3x^2-5x-3+2\sqrt{x+3}(2-x)=0$

Giải

ĐK: $x\geqslant -3$

PT tương đương với:

$(2x-2)^{2}=(2-x-\sqrt{x+3})^{2}$

Đến đây thì dễ rùi nhỉ  :) 




#454264 Khảo sát sự biến thiên của hàm số $y=\frac{2x+1}{3x-...

Đã gửi bởi germany3979 on 30-09-2013 - 17:45 trong Phương trình - hệ phương trình - bất phương trình

Khảo sát sự biến thiên của các hàm số sau:

        a,$y=\frac{2x+1}{3x-1}$

        b,$y=x^{3}+3x^{2}+7x+1$

        c,căn bậc hai của -5x2+2x+3

 

 

sr cả nhà nha. tớ hk tìm thấy dấu căn thức ở đâu cả

Bạn phải ghi rõ đề bài là được sử dụng đạo hàm hay không chứ!!!




#453618 $\left\{\begin{matrix} \sqrt{2x+...

Đã gửi bởi germany3979 on 28-09-2013 - 16:48 trong Phương trình - hệ phương trình - bất phương trình

$(1)\Leftrightarrow \frac{2x-2y}{\sqrt{2x+1}+\sqrt{2y+1}}=x-y\Leftrightarrow (x-y)(\frac{2}{\sqrt{2x+1}+\sqrt{2y+1}}-1)=0$

Dễ thấy $x=y=0$ không là nghiệm của hệ

$\Rightarrow \sqrt{2x+1}+\sqrt{2y+1}> 2\Rightarrow \frac{2}{\sqrt{2x+1}+\sqrt{2y+1}}< 1\Rightarrow \frac{2}{\sqrt{2x+1}+\sqrt{2y+1}}-1< 0$

$\Rightarrow x=y$

Đến đây thế vào $(2)$ là được

Tại sao $\sqrt{2x+1}+\sqrt{2y+1}>2$ vậy bạn???




#453564 $\left\{\begin{matrix} x^{2}-2xy...

Đã gửi bởi germany3979 on 28-09-2013 - 10:12 trong Phương trình - hệ phương trình - bất phương trình

mình thử làm câu 2, nhờ mọi người xét giùm

$\left\{\begin{matrix} x^{2} -2xy-6y=4& & \\ 5y^{2}-2xy=5=0& & \end{matrix}\right.$

 

 lấy (1) trừ (2) ta có:

$x^{2}=5y^{2}+6y+1$

 

thay vào (1) có:      5y^{2}-2xy=3

=> Hệ vô nghiệm

Bạn xem lại đề bài đi, hình như bị nhầm ở chỗ hệ số tự do rùi đó!




#453562 $\sqrt{2X+3}+\sqrt{X+1}=3X+2\sqrt...

Đã gửi bởi germany3979 on 28-09-2013 - 10:05 trong Phương trình - hệ phương trình - bất phương trình

Nhẩm thấy $x=\frac{-1}{2}$ là nghiệm

Nhân liên hợp: $PT\Leftrightarrow 2x+1+x(\sqrt{x^{2}+2}-\sqrt{x^{2}+2x+3})+(2x+1)\sqrt{x^{2}+2x+3}=0\Leftrightarrow 2x+1-\frac{x(2x+1)}{\sqrt{x^{2}+2}+\sqrt{x^{2}+2x+3}}+(2x+1)\sqrt{x^{2}+2x+3}=0\Leftrightarrow (2x+1)(1-\frac{x}{\sqrt{x^{2}+2}+\sqrt{x^{2}+2x+3}}+\sqrt{x^{2}+2x+3})=0$
Đến đây là ok :D

Phương trình đã cho tương đương với:

$x+x\sqrt{x^{2}+2}=-(x+1)-(x+1)\sqrt{[-(x+1)^{2}]+2}$

Xét hàm số $f(t)=t+t\sqrt{t^{2}+2}\Rightarrow f'(t)=1+\sqrt{t^{2}+2}+\frac{t^{2}}{\sqrt{t^{2}+2}}>0,\forall t\epsilon R$

$\Rightarrow x=-(x+1)\Leftrightarrow x=-\frac{1}{2}$




#453435 $\sqrt{2X+3}+\sqrt{X+1}=3X+2\sqrt...

Đã gửi bởi germany3979 on 27-09-2013 - 20:39 trong Phương trình - hệ phương trình - bất phương trình

Nhẩm thấy $x=\frac{-1}{2}$ là nghiệm

Nhân liên hợp: $PT\Leftrightarrow 2x+1+x(\sqrt{x^{2}+2}-\sqrt{x^{2}+2x+3})+(2x+1)\sqrt{x^{2}+2x+3}=0\Leftrightarrow 2x+1-\frac{x(2x+1)}{\sqrt{x^{2}+2}+\sqrt{x^{2}+2x+3}}+(2x+1)\sqrt{x^{2}+2x+3}=0\Leftrightarrow (2x+1)(1-\frac{x}{\sqrt{x^{2}+2}+\sqrt{x^{2}+2x+3}}+\sqrt{x^{2}+2x+3})=0$
Đến đây là ok :D

Còn phần sau làm sao hả bạn??? $(1-\frac{x}{\sqrt{x^{2}+2}+\sqrt{x^{2}+2x+3}}+\sqrt{x^{2}+2x+3})=0$




#453376 Giải phương trình: $(x^{2}-2x+1)^{x^2+2x+1}=(x^...

Đã gửi bởi germany3979 on 27-09-2013 - 15:57 trong Phương trình - hệ phương trình - bất phương trình

Đặt $x^2-2x+1=a,x^2+2x+1=b$ .PT $< = > a^b=b^a$$< = > a=b$ $< = > x^2-2x+1=x^2+2x+1< = > x=0$

Bạn giải thích dùm mình $a^{b}=b^{a}\Leftrightarrow a=b$

Mot vi du dien hinh $2^{4}=4^{2}\Leftrightarrow 2=4???$




#453337 Giải phương trình

Đã gửi bởi germany3979 on 27-09-2013 - 09:49 trong Phương trình - hệ phương trình - bất phương trình

Đặt $t=\sqrt{1+x^{2}}$

Khi đó ta được một phương trình bậc 2 ẩn $t$, tham số $x$: $2t^{2}-(4x-1)t+2x-1$

Phương trình có: $\Delta =(4x-1)^{2}-8(2x-1)=(4x-3)^{2}$

$\Rightarrow t=1$ hoặc $t=4x-2$

Đến đây coi như xong :D

Nghiệm sai rùi bạn $t=\frac{1}{2},t=2x-1$ và phải bổ sung thêm ĐK $t\geqslant 1$




#453148 Giải phương trình

Đã gửi bởi germany3979 on 26-09-2013 - 16:53 trong Phương trình - hệ phương trình - bất phương trình

+ Phương trình tương đương với

$${5(x-1)\over \sqrt{5x-1}+2}-{x-1\over\sqrt[3]{9-x}^2+2\sqrt[3]{9-x}+4}=(x-1)(2x+5)$$

suy ra $x=1$ hoặc

$${5\over \sqrt{5x-1}+2}-{1\over\sqrt[3]{9-x}^2+2\sqrt[3]{9-x}+4}=2x+5\quad (1),$$

nhưng (1) vô nghiệm do $VT<5<VP$ với mọi $x\ge\frac15$.

Tại sao VT<5 vậy bạn???




#453079 $\sqrt[3]{x^{2}-2}= \sqrt{2-x^{3...

Đã gửi bởi germany3979 on 26-09-2013 - 10:35 trong Phương trình - hệ phương trình - bất phương trình

ĐK $-\sqrt[3]{2} \leq x \leq \sqrt[3]{2}$

TH1: Nếu $x \in \left [ -\sqrt[3]{2};0 \right ]$

Dễ thấy $\sqrt[3]{x^2-2}\leqslant \sqrt[3]{(-\sqrt[3]{2})^2-2}<0<\sqrt{2-x^3}$

Vậy phương trình đã ch0 vô nghiệm tr0ng khoảng này

TH2: Nếu $x \in \left (0;\sqrt[3]{2} \right ]$

Xét $f(x)=\sqrt[3]{x^2-2}-\sqrt{2-x^3}$

  $\Rightarrow f'(x)=\frac{2x}{3\sqrt[3]{(x^2-2)^2}}+\frac{3x^2}{2\sqrt{2-x^3}}> 0$

 $\Rightarrow f(x)$ đồng biến trên khoảng này

Dễ thấy $f(1)=0$

Vậy phương trình đã ch0 c0s nghiệm duy nhất $x=1$

Bạn bị sai ĐK rùi!!!




#452951 $\sqrt[3]{x^{2}-2}= \sqrt{2-x^{3...

Đã gửi bởi germany3979 on 25-09-2013 - 16:36 trong Phương trình - hệ phương trình - bất phương trình

 

Giải

ĐK: $- \sqrt[3]{2} \leq x \leq \sqrt[3]{2}$

Do $\left [- \sqrt[3]{2}; \sqrt[3]{2}\right ] \subset \left [- \sqrt{2}; \sqrt{2}\right ]$

Vì vậy: $x^2 - 2 < 0 \Rightarrow \sqrt[3]{x^2 - 2} < 0 < \sqrt{2 - x^3}$

Phương trình đã cho vô nghiệm.

 

Bạn bị nhầm rùi, ĐK: $2-x^{3}\geqslant 0\Leftrightarrow x^{3}\leqslant 2\Leftrightarrow x\leqslant \sqrt[3]{2}$ (ở đây x mũ lẻ chứ đâu phải mũ chẵn đâu)




#452947 Giải phương trình $8x^{3}-6x=\sqrt{2x+2}$

Đã gửi bởi germany3979 on 25-09-2013 - 16:26 trong Phương trình - hệ phương trình - bất phương trình

 

Giải

ĐK: $x \geq -1$
+ Nếu $x > 1$ thì phương trình ban đầu tương đương:
$8x^3 - 8x + 2x - \sqrt{2x + 2} = 0$
$\Leftrightarrow 8x(x^2 - 1) + \dfrac{4x^2 - 2x - 2}{2x + \sqrt{2x + 2}} = 0$
Do $4x^2 - 2x - 2= 2(x - 1)(2x + 1) > 0$ $\forall$ $x > 1$ nên $VT > 0 = VF$.

Vậy, x > 1 khiến hệ vô nghiệm.

 

+ Nếu $x \leq 1$, đặt $x = \cos{t}$, ta được:
$8\cos^3{t} - 6\cos{t} = \sqrt{2(\cos{t} + 1)}$

$\Leftrightarrow 2\cos{3t} = \sqrt{4\cos^2{\dfrac{t}{2}}} \Leftrightarrow \cos{3t} = \left |\cos{\dfrac{t}{2}}\right |$
 

Còn lại bạn tự giải nhé.

 

Trường hợp 2: nếu $x\leq 1$ thì đặt $x=cost,t\epsilon \left [ 0;\pi \right ]$, lúc này $cos\frac{t}{2}$ không còn giá trị tuyệt đối phải không bạn???