Đến nội dung


Chú ý

Nếu bạn gặp lỗi trong quá trinh đăng ký thành viên, hoặc đã đăng ký thành công nhưng không nhận được email kích hoạt, hãy thực hiện những bước sau:

  • Đăng nhập với tên và mật khẩu bạn đã dùng kể đăng ký. Dù bị lỗi nhưng hệ thống đã lưu thông tin của bạn vào cơ sở dữ liệu, nên có thể đăng nhập được.
  • Sau khi đăng nhập, phía góc trên bên phải màn hình sẽ có nút "Gửi lại mã kích hoạt", bạn nhấn vào nút đó để yêu cầu gửi mã kích hoạt mới qua email.
Nếu bạn đã quên mật khẩu thì lúc đăng nhập hãy nhấn vào nút "Tôi đã quên mật khẩu" để hệ thống gửi mật khẩu mới cho bạn, sau đó làm theo hai bước trên để kích hoạt tài khoản. Lưu ý sau khi đăng nhập được bạn nên thay mật khẩu mới.

Nếu vẫn không đăng nhập được, hoặc gặp lỗi "Không có yêu cầu xác nhận đang chờ giải quyết cho thành viên đó", bạn hãy gửi email đến [email protected] để được hỗ trợ.
---
Do sự cố ngoài ý muốn, tất cả bài viết và thành viên đăng kí sau ngày 08/08/2019 đều không thể được khôi phục. Những thành viên nào tham gia diễn đàn sau ngày này xin vui lòng đăng kí lại tài khoản. Ban Quản Trị rất mong các bạn thông cảm. Mọi câu hỏi hay thắc mắc các bạn có thể đăng vào mục Hướng dẫn - Trợ giúp để được hỗ trợ. Ngoài ra nếu các bạn thấy diễn đàn bị lỗi thì xin hãy thông báo cho BQT trong chủ đề Báo lỗi diễn đàn. Cảm ơn các bạn.

Ban Quản Trị.


datanhlg nội dung

Có 44 mục bởi datanhlg (Tìm giới hạn từ 15-04-2017)



Sắp theo                Sắp xếp  

#537685 Tìm tham số thực để $x$ sẽ là tổ hợp tuyến tính của ba véc tơ...

Đã gửi bởi datanhlg on 13-12-2014 - 16:16 trong Đại số tuyến tính, Hình học giải tích

Trong $R^3$, với giá trị nào của tham số thực  $m$ thì $x=(1,3,2)$ sẽ là tổ hợp tuyến tính của các véctơ  $u_{1}=(1,2,1)$, $u_{2}=(1,3,m)$, $u_{3}=(-1,m,3)$

Để $x$ là tổ hợp tuyến tính thì $\alpha _{1}u_{1}+\alpha _{2}u_{2}+\alpha _{3}u_{3}=x$




#537323 Tính tích phân đường $\int_{\gamma}e^{(n+1)x...

Đã gửi bởi datanhlg on 11-12-2014 - 23:10 trong Giải tích

Tính tích phân đường $\int_{\gamma}e^{(n+1)x}cos(y^{x})dx+e^{(n-1)x}sin(y)dy$?




#537320 Tìm vectơ x vuông góc với W và x có độ dài bằng 1?

Đã gửi bởi datanhlg on 11-12-2014 - 23:08 trong Đại số tuyến tính, Hình học giải tích

Trong không gian $R^{3}$ cho: $W=Span{(1,1,-1);(1,2,3);(2,3,2)}$. Tìm vectơ x vuông góc với W và x có độ dài bằng 1?




#534970 Hàm 2 biến

Đã gửi bởi datanhlg on 27-11-2014 - 10:01 trong Giải tích

Khảo sát sự liên tục, sự tồn tại và liên tục của các đạo hàm riêng của f

$\begin{cases} & \ (x^{2}+y^{2})sin\frac{1}{x^{2}+y^{2}}\\ (x,y) <> (0,0)& \0  (x,y)=(0,0)\end{cases}$

Hàm $f:\mathbb{R}^2\to \mathbb{R}$ có thể phân biệt được tại $x\in \mathbb{R}^2$ nếu có phép biến đổi tuyến tính $T:\mathbb{R}^2\to \mathbb{R}$ sao cho $\lim\limits_{h\to 0}\frac{|f(x+h)-f(x)-T(h)|}{\Vert h\Vert }=0$

Cho $x=(0,0)$ đặt $T=0$, đó là phép biến đổi không, thì ta có $\frac{|f(x+h)-f(x)-T(h)|}{\Vert h\Vert }= \frac{\Vert h\Vert^2 \sin(\Vert h\Vert ^{-2})}{\Vert h\Vert}= \Vert h\Vert |\sin(\Vert h\Vert ^{-2})|$

Bởi vì mỗi $x\in \mathbb{R}^2\setminus {(0,0)}$ ta có $f(x)= \Vert x\Vert^2 \sin(\Vert x\Vert ^{-2})$.Thì $0\leq \lim\limits_{h\to 0}\frac{|f(x+h)-f(x)-T(h)|}{\Vert h\Vert }= \lim\limits_{h\to 0}\Vert h\Vert | \sin(\Vert h\Vert ^{-2})| \leq \lim\limits_{h\to 0}\Vert h\Vert= 0$

Do đó, $f$ có thể phân biệt tại $x=(0,0)$. Ở mỗi điểm khác, đạo hàm riêng của $f$ là liên tục rồi vì $f$ có thể phân biệt được ở mỗi điểm của miền. 




#534064 Tìm X biết $\begin{pmatrix} 3 & -1\\ 5 & -2...

Đã gửi bởi datanhlg on 21-11-2014 - 18:51 trong Đại số tuyến tính, Hình học giải tích

Giải phương trình ma trận: $\begin{pmatrix} 3 & -1\\ 5 & -2 \end{pmatrix}X\begin{pmatrix} 5 & 6\\ 7 & 8 \end{pmatrix}=\begin{pmatrix} 14 & 16\\ 9 & 10 \end{pmatrix}$




#532175 Tính $\int_{1}^{e^{3}}\frac...

Đã gửi bởi datanhlg on 06-11-2014 - 22:18 trong Giải tích

làm được câu 2 rồi chuyển arcsin thành sin rồi nguyên hàm tới 3-4 lần cũng mất công gớm :)

Mình nghĩ bạn đặt như thế này có lẽ sẽ là tốt nhất: $\int_{0}^{1} (arcsinx)^{4}dx=\int_{0}^{\frac{\pi }{2}} (u)^{4}du$ với đặt $u=arcsin(x)$




#532095 Tính $\int_{1}^{e^{3}}\frac...

Đã gửi bởi datanhlg on 06-11-2014 - 15:33 trong Giải tích

 

Giải giúp em bà bài khó này nữa nhé 

 

1. $\int \frac{dx}{x+\sqrt{x^{2}-x+1}}$

2. $\int_{0}^{1} (arcsinx)^{4}dx$

Còn cau tính độ dài cua duong elip này nữa ạ.

3.  $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

 

1.

$\displaystyle \begin{align*} \int{ \frac{1}{x + \sqrt{x^2 - x + 1}}\,\mathrm{d}x } &= \int{ \frac{x - \sqrt{x^2 - x + 1}}{x^2 - \left( x^2 - x + 1 \right)}\,\mathrm{d}x} \\ &= \int{ \frac{x - \sqrt{x^2 - x + 1}}{x - 1}\,\mathrm{d}x } \\ &= \int{ \frac{x}{x - 1}\,\mathrm{d}x} - \int{ \frac{\sqrt{x^2 - x + 1}}{x - 1}\,\mathrm{d}x} \\ &= \int{ 1 + \frac{1}{x - 1}\,\mathrm{d}x } - \int{ \frac{\sqrt{ \left( x - \frac{1}{2} \right) ^2 + \frac{3}{4}}}{x - \frac{1}{2} - \frac{1}{2}}\,\mathrm{d}x} \end{align*}$

2.Bạn có thể làm bằng hình Hyperpol hoặc bằng hàm lượng giác thay thế.




#531975 tính d^2y .y=e^(u+v).u(x) và v(x) khả vi bậc 2

Đã gửi bởi datanhlg on 05-11-2014 - 15:44 trong Giải tích

nhờ mọi người giúp với

tính d^2y. y=e^(u+v). u(x) và v(x) khả vi bậc 2

Chỗ d^2y đề cập về gì vậy bạn? Mình vẫn chưa hiểu bài toán lắm.

Theo mình nghĩ thì bài này ta dùng đạo hàm cấp 2 và ghi là $\frac{d^{2}y}{dx^{2}}$

$y=e^{u+v}$

$y' = e^{u+v}(u'+v')$
$y'' = e^{u+v}(u''+v'') + e^{u+v}(u'+v')^2 = e^{u+v}\left[(u''+v'') + (u'+v')^2\right]$




#531960 Tìm phương trình tiếp tuyết của đường cong tại $(0,-1)$: $x^2y...

Đã gửi bởi datanhlg on 05-11-2014 - 13:10 trong Đại số tuyến tính, Hình học giải tích

Tìm phương trình tiếp tuyết của đường cong tại $(0,-1)$:

$x^2y^3-2xy=6x+y+1$

Ta có: $y+1=m(x-0)$ khi $m=\frac{dy}{dx}|(0,-1)$

$\frac{d}{dx}[x^{2}y^{3}-2xy=6x+y+1]$

$x^{2}.3y^{2}.\frac{dy}{dx}+2xy^{3}-2x.\frac{dy}{dx}-2y=6+\frac{dy}{dx}(1)$

Thay $x=0$ và $y=-1$ vào $(1)$ ta thu được $\frac{dy}{dx}=-4$

Từ đó ta có thể viết được phương trình đường cong rồi. :lol:




#531910 Tính định thức cấp 4

Đã gửi bởi datanhlg on 05-11-2014 - 07:45 trong Đại số tuyến tính, Hình học giải tích

Tính định thức $\frac{1}{6}\begin{vmatrix} 3&2 &3 &6 \\ 2&3 &6 &3 \\ 3&6 &3 &2 \\ 6&3 &2 &3 \end{vmatrix}$

Nhờ mọi người giúp đỡ em câu này, em tính mà chưa ra. Cám ơn mọi người

Ta sử dụng công thức: $a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13}+a_{14}A_{14}$

Ta sẽ được như sau: $$3\begin{vmatrix} 3 &6 &3 \\ 6 &3 &2 \\ 3 &2 &3 \end{vmatrix}-2\begin{vmatrix} 2 &6 &3 \\ 3 &3 &2 \\ 6 &2 &3 \end{vmatrix}+3\begin{vmatrix} 2 &3 &3 \\ 3 &6 &2 \\ 6 &3 &3 \end{vmatrix}-6\begin{vmatrix} 2 &3 &6 \\ 3 &6 &3 \\ 6 &3 &2 \end{vmatrix}=448$$




#529063 Tính tổng $sin\varphi +sin2\varphi +...+sinn\varphi $?

Đã gửi bởi datanhlg on 16-10-2014 - 02:36 trong Công thức lượng giác, hàm số lượng giác

Tính tổng $S=sin\varphi +sin2\varphi +...+sinn\varphi $ với $\varphi \neq k2\pi $ và $k\epsilon Z$




#524256 Tính khoảng cách hai vị trí khi vật 1 dao động có vận tốc bằng không?

Đã gửi bởi datanhlg on 13-09-2014 - 18:37 trong Các môn tự nhiên (Vật lý, Hóa học, Sinh học, Công nghệ)

Bài toán 

Hai chất điểm dao động với cùng tần số trên một đường thẳng cùng chung vị trí cân bằng. Biết rằng $4x_{1}^{2}+9x_{2}^{2}=36$ khi $x\leq 0$ và $4x_{1}^{2}+9x_{2}^{2}=64$ khi x0. Tính khoảng cách hai vị trí khi vật 1 dao động có vận tốc bằng không? 

A. 5 cm
B. 2 cm
C. 4 cm
D. 7 cm

 



#501425 Tìm tập hợp các điểm trong mặt phẳng biểu diễn số phức z thỏa $|z+\...

Đã gửi bởi datanhlg on 25-05-2014 - 09:56 trong Tổ hợp - Xác suất và thống kê - Số phức

Tìm tập hợp các điểm trong mặt phẳng biểu diễn số phức z thỏa $|z+\bar{z}+3|=4?$




#501424 Tìm số phức thỏa $|z|=3+4i-z$?

Đã gửi bởi datanhlg on 25-05-2014 - 09:54 trong Tổ hợp - Xác suất và thống kê - Số phức

Tìm số phức thỏa $|z|=3+4i-z$?




#501422 Tìm m để (C) cắt Ox tại 3 điểm phân biệt có hoành độ $x_{1},x_...

Đã gửi bởi datanhlg on 25-05-2014 - 09:50 trong Hàm số - Đạo hàm

Cho (C): $y=\frac{1}{3}x^{3}-mx^{2}-x+m+\frac{2}{3}$. Tìm m để (C) cắt Ox tại 3 điểm phân biệt có hoành độ $x_{1},x_{2},x_{3}$ thỏa $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\geq 15$?




#500543 Giải phương trình: $(3+\sqrt{5})^{x}+(3-\s...

Đã gửi bởi datanhlg on 21-05-2014 - 17:52 trong Phương trình - hệ phương trình - bất phương trình

$(3+\sqrt{5})^{x}+(3-\sqrt{5})^{x}-7.2^{x}=0$




#482644 Tìm \int \frac{x^{2011}}{(1+x^{2...

Đã gửi bởi datanhlg on 11-02-2014 - 23:49 trong Tích phân - Nguyên hàm

Tìm $\int \frac{x^{2011}}{(1+x^{2}^{2012})}dx$

Tìm các tích phân:

Tìm  a) $\int \dfrac{x^{2011}}{1+x^{2}^{2012}}dx$

b) $\int \frac{dx}{2-cos^{2}x}$




#480471 Tìm tọa độ điểm C biết tam giác ABC cân và AC vuông góc mặt phẳng Oxy

Đã gửi bởi datanhlg on 02-02-2014 - 19:45 trong Phương pháp tọa độ trong không gian

Trong không gian Oxyz, cho A(2,4,0),B(0,2,3).Tìm tọa độ điểm C biết tam giác ABC cân tại A và AC vuông góc mặt phẳng Oxy? 

 




#480469 Tìm tọa độ điểm C biết tam giác ABC có trọng tâm G(1,3,1)

Đã gửi bởi datanhlg on 02-02-2014 - 19:40 trong Phương pháp tọa độ trong không gian

Trong không gian Oxyz, cho tam giác ABC với A(1,3,-1),B(4,0,3). Tìm tọa độ điểm C biết tam giác ABC cân tại A có trọng tâm G(1,3,1)?

Mọi người cho em hỏi tại sao ở đây nếu dùng công thức trọng tâm là có thể ra rồi nhưng tại sao lại phải cần thêm ABC là tam giác cân?




#463761 Giải pt:$log_{x}(x+1)=log_{2008}(2007)$

Đã gửi bởi datanhlg on 12-11-2013 - 00:09 trong Phương trình - hệ phương trình - bất phương trình

Giải pt:$log_{x}(x+1)=log_{2008}(2007)$

 




#463625 Giải pt: $log_{3}(log_{2}x)=log_{2}(log_...

Đã gửi bởi datanhlg on 11-11-2013 - 18:36 trong Phương trình - hệ phương trình - bất phương trình

Giải pt: $log_{3}(log_{2}x)=log_{2}(log_{3}x)$

 




#460791 Tìm số đo góc EHM?

Đã gửi bởi datanhlg on 29-10-2013 - 23:57 trong Hình học

cảm ơn bạn hoantubatu995, nhưng có ai có thể giúp mình mà chỉ sử dụng kiến thức HKI của lớp 8 không? Mình cảm ơn nhiều.




#460777 Tìm số đo góc EHM?

Đã gửi bởi datanhlg on 29-10-2013 - 22:47 trong Hình học

Cho tam giác ABC vuông tại A, gọi M là điểm bất kì trên AC, kẻ MF//AB, EF//AC, kẻ AH vuông góc BC. Tìm số đo góc EHM? Em mong mọi người giúp em giải nhanh bài này trong tối nay ạ. Em xin cảm ơn.




#459902 Giải phương trình $9^{x-2}-(13-x).3^{x-1}+22-2x=0$

Đã gửi bởi datanhlg on 25-10-2013 - 17:49 trong Phương trình - hệ phương trình - bất phương trình

Giải phương trình: $9^{x-2}-(13-x).3^{x-1}+22-2x=0$

 




#455278 $x^{3}-3x^{2}-1=0$

Đã gửi bởi datanhlg on 05-10-2013 - 11:44 trong Phương trình - hệ phương trình - bất phương trình

Sau khi đạo hàm hai lần rồi cho đạo hàm bằng 0, ta đặt x = t+1(1 là giá trị khi y'' = 0). Từ đó ta sẽ giải theo biến t.