Đến nội dung

CandyPanda nội dung

Có 63 mục bởi CandyPanda (Tìm giới hạn từ 24-04-2020)



Sắp theo                Sắp xếp  

#654714 Đề thi chọn đội tuyển quốc gia THPT chuyên KHTN - ĐHQG Hà Nội vòng 1 năm 2016

Đã gửi bởi CandyPanda on 18-09-2016 - 22:21 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Mình sửa lại rồi 

Đoạn cuối dùng v2 chắc đúng. Nhưng mà chỉ muốn góp ý nhỏ là công thức v2 nó khác với vp nhé. Ở kia lỗi chút chút kìa




#654676 Đề thi chọn đội tuyển quốc gia THPT chuyên KHTN - ĐHQG Hà Nội vòng 1 năm 2016

Đã gửi bởi CandyPanda on 18-09-2016 - 19:21 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Câu 1:

Ta xét 2 trường hợp:

TH1: $5^n \mid a^2$

Khi đó đặt $a^2=k.5^n\implies k(k.5^n+1)=5^{n+1}-p^3\iff  p^3+k=5^n(5-k^2)$

Dễ thấy $VP>0\implies$ $k=1$ hoặc $k=2$

$k=1\implies p^3+1=4.5^n\iff \left ( \frac{p+1}{4} \right )(p^2-p+1)=5^n$

Chú ý rằng $\gcd (\frac{p+1}{4},p^2-p+1)=1$ nên $PT$ vô nghiệm

$k=2\implies p^3=5^n-2$ (vô nghiệm theo modulo $5$)

 

TH2: $5^n\mid a^2+1$

Tương tự$\implies p^3-k=5^n(5-k^2)$

Dễ thấy $p^3>k$ nên $k=1$ hoặc $k=2$
$k=1\implies p^3=4.5^n+1$ (vô nghiệm)

$k=2\implies p^3=5^n+2$

Theo modulo $3$ ta suy ra $n$ chẵn$\implies p^3=5^{2l}+2$

$PT$ $Mordell$ trên có bộ nghiệm duy nhất: $(p,l)=(3,1)$

 

Kết luận: $(a,p,n)=(7,3,2)$

KHTN chứ có phải viện toán cao cấp đâu mà Mordell @@




#654531 Đề thi chọn đội tuyển quốc gia THPT chuyên KHTN - ĐHQG Hà Nội vòng 1 năm 2016

Đã gửi bởi CandyPanda on 17-09-2016 - 20:05 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Câu 3. a, Do $EF\parallel BC$ nên $\angle FPC=\angle FCE$. Mặt khác dễ thấy $\triangle OCE\sim \triangle BAH$ nên $\frac{OE}{EC}=\frac{BH}{AH}$. Từ đó suy ra $\frac{MH}{HB}=\frac{EC}{EF}$ nên $\triangle FEC\sim \triangle BHM$ (cạnh - góc - cạnh). Do đó $\angle BMQ=\angle FCE=\angle FPC$ nên tứ giác $MQBP$ nội tiếp.

b, Gọi $R$ là giao điểm của $EM$ với $(K)$. Dễ thấy chỉ cần chứng minh tứ giác $RSMT$ điều hòa $\Leftrightarrow P(RMAH)=-1$. Mặt khác do $M$ là trung điểm $AH$ nên ta chỉ cần chứng minh $PR\parallel AH$. Điều này tương đương với chứng minh $\angle PQM+\angle EMQ=180^\circ$.

Do $\angle PQM=90^\circ+\angle BPQ=90^\circ+\angle BMH$ nên ta chỉ cần chứng minh $\angle BME=90^\circ$. Kết quả này quen thuộc!

 

PS. Bài số 2 không biết có nhầm lẫn gì không nhưng nếu xét bậc của đa thức thì suy ra ngay bằng $0$ hoặc $1$.

 

Nghi ngờ lắm khó mà suy trực tiếp ra bậc bằng 0 hoặc 1 được




#653979 $f\left ( 1 \right )= 5; f\left ( 2 \right )= 11; f...

Đã gửi bởi CandyPanda on 12-09-2016 - 23:59 trong Đại số

Xét đa thức phụ g(x) = 2x^2 + 3




#653282 ĐỀ THI LUYỆN HỌC SINH GIỎI QUỐC GIA

Đã gửi bởi CandyPanda on 08-09-2016 - 01:07 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Bài hình bạn xem lại xem, hình như bị sai




#639208 Cập nhật tình hình, thảo luận, chém gió về kì thi vào lớp 10 THPT

Đã gửi bởi CandyPanda on 09-06-2016 - 20:19 trong Góc giao lưu

Bđt đề Hà Nội năm nay cũng được đấy. Không quá khó nhưng phân hóa được chắc thế




#638615 Đề thi môn Toán vòng 2 vào chuyên Khoa Học Tự Nhiên năm 2016-2017

Đã gửi bởi CandyPanda on 06-06-2016 - 22:46 trong Tài liệu - Đề thi

Chuyên 9 điểm thì mời vào trường luôn khỏi lo trượt nhé :v




#636934 Marathon số học Olympic

Đã gửi bởi CandyPanda on 30-05-2016 - 21:33 trong Số học

Bài 27: Ta sẽ chứng minh $b\vdots a$, khi đó đặt $b=ac$ thì bài toán quy về $a^{n}-1|c^{n}-1$

 

Xét dãy: $x_{n,1}=\frac{b^{n}-1}{a^{n}-1}$, $x_{n,k+1}=bx_{n,k}-a^{k}x_{n,k}$

Theo giả thiết thì $x_{n,k}$ luôn nguyên.

 

Ta sẽ chứng minh tồn tại k sao cho $lim x_{n,k}$ tiến tới $0$ khi $n$ tiến tới vô hạn (1)

 

Thật vậy:

Ta có nhận xét sau: $x_{n,k}=\frac{cb^{n}+c_{k-1}a^{(k-1)n}+c_{k-2}a^{(k-2)n}+...+c_{1}a^{n}+c_{0}}{(a^{n+k-1}-1)(a^{n+k-2}-1)...(a^{n}-1)}$

Chứng minh theo quy nạp, với $c,c_{0},c_{1},...c_{k-1}$ là các số cố định nhưng thay đổi theo bộ (n,k).

Nói cách khác là khi phân tích thì $x_{n,k}$ thì các số trên tử số chỉ có thể là $b^{n},a^{(k-1)n}, a^{(k-2)n},...,a^{n}$ và hệ số tự do.

Từ đây ta có, chọn k sao cho $a^{n+k-1}.a^{n+k-2}...a^{n} > b^{n}, a^{(k-1)n}$ thì $lim x_{n,k}=0$, dễ dàng chọn được $k $sao cho $a^{k} > b$ là được

Tóm lại (1) xong.

 

Từ (1)

Khi đó, tồn tại j nhỏ nhất sao cho $lim x_{n,j}$ (hiển nhiên $j>1$), tức là tồn tại $N$ đủ lớn sao cho từ$ N$ trở đi thì $bx_{n,j-1}=a^{j}x_{n+1,j-1}$

Tương đương với $x_{n,j-1}=(\frac{b}{a^{j}})^{n-N}x_{N,j-1}$. Nếu $b$ không là lũy thừa của a, mà $x_{n,k}$ luôn nguyên nên $x_{N,j-1}=0$, hay $x_{n,j-1}=0$ từ N trở đi, trái với cách chọn j ở trên, từ đó dẫn tới giả sử vô lý, hay $b$ chia hết cho $a$ => đpcm

Đề xuất bài 28 :  Kí hiệu $\pi(n)$ là số các số nguyên tố không vượt quá $n$ . CMR có vô số số $n$ mà $n$ là bội của $\pi(n)$




#615811 Tiếp sức bất đẳng thức

Đã gửi bởi CandyPanda on 18-02-2016 - 22:14 trong Bất đẳng thức và cực trị

 

Đây là những bài chưa có lời giải trong topic: 

 

Bài 59: Cho $a,b,c >0 $ thỏa mãn $\left\{\begin{matrix}3a+b\leq 33 & \\ a+b+2c\leq 25 & \end{matrix}\right.$.Tìm Max của  $2(6\sqrt[3]{a}+\sqrt{b})+3\sqrt{c}+2016$      (Bài đặc biệt)

 

Bài 44:cho a,b,c>0 tim min $\frac{b(a-c)}{c(a+b)}+\frac{c(3b+a)}{a(b+c)}+\frac{3c(a-b)}{b(a+c)}$

 

Bài 44 kiểm tra lại đề nhé, nếu a,b,c dương thì không có min thì phải

Bài 59 thì là cân bằng hệ số nhưng mà hệ số lầy lội quá không đẹp




#615668 Tiếp sức bất đẳng thức

Đã gửi bởi CandyPanda on 17-02-2016 - 22:26 trong Bất đẳng thức và cực trị

 

Đây là những bài chưa có lời giải trong topic:

 

Bài 40: Cho $x,y>0$ thỏa mãn $\sqrt{\frac{2x}{y}}(2xy-1)=2xy+1$.Tìm Min:$2x+\frac{1}{y}$

Bài 40: Đổi biến: $(2x,\frac{1}{y})=(a,b)$

Bài toán trở thành: Cho $a,b>0$ thỏa mãn $\sqrt{ab}(\frac{a}{b}-1)=\frac{a}{b}+1$.Tìm Min:$a+b$

Ta có: $ab(a-b)^{2}=(a+b)^{2}=(a-b)^{2}+4ab$

Suy ra: $(a-b)^{2}=\frac{4ab}{ab-1}$

Suy ra: $(a+b)^{2}=ab(a-b)^{2}=ab \frac{4ab}{a-1}=4\frac{(ab)^{2}}{ab-1}\geq 16$

Tức là: $a+b\geq 4$

Dấu bằng đạt được khi $ab=2$, tức là $a=2+\sqrt{2}$, $b=2-\sqrt{2}$, hay $x=y=1+\frac{1}{\sqrt{2}}$




#615108 Tiếp sức bất đẳng thức

Đã gửi bởi CandyPanda on 14-02-2016 - 23:16 trong Bất đẳng thức và cực trị


Bài 32:Cho   $a\geq b\geq c> 0$.  Chứng minh

$\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+2b}+\frac{1}{2b+2c}+\frac{1}{2c+2a}$

 

Ta có: $(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a})+(\frac{1}{3a+b}+\frac{1}{3b+c}+\frac{1}{3c+a})\geq 2(\frac{1}{2a+2b}+\frac{1}{2a+2b}+\frac{1}{2a+2b})$

Ta cần chứng minh $\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq\frac{1}{3a+b}+\frac{1}{3b+c}+\frac{1}{3c+a}$

Xét $f(a)=\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}-\frac{1}{3a+b}-\frac{1}{3b+c}-\frac{1}{3c+a}$

Ta có: $f'(a)=\frac{-1}{(a+3b)^{2}}+\frac{-1}{(c+3a)^{2}}+\frac{1}{(3a+b)^{2}}+\frac{1}{(3c+a)^{2}}=\frac{(b-c)(6a+9b+9c)}{(a+3b)^{2}(a+3c)^{2}}-\frac{(b-c)(6a+b+c)}{(3a+b)^{2}(3a+c)^{2}} \geq 0$

Suy ra $f(a)\geq f(b)=0$

Vậy ta có đpcm




#600088 TOPIC ôn luyện VMO 2016

Đã gửi bởi CandyPanda on 25-11-2015 - 22:53 trong Thi HSG Quốc gia và Quốc tế

Bài 8(Hình học): Cho tam giác $ABC,$ đường tròn nội tiếp $(I)$ tiếp xúc $BC$ ở $D.E$ đối xứng $D$ qua $I.$ Chứng minh $E$ là trực tam tam giác $IBC$ khi và chỉ khi $AB+AC=3BC.$

$(O)\equiv (IBC)$ Do ID vuông góc BC nên E là trực tâm IBC <=> IE = 2 OM (M trung điểm BC)
Ta có: $IE = \tan \frac{A}{2}\frac{AB+AC-BC}{2}$, $OM = \tan \frac{A}{2}\frac{BC}{2}$ nên có đpcm




#543802 B=$\frac{a^{4}+b^{4}}{a^{4...

Đã gửi bởi CandyPanda on 11-02-2015 - 20:40 trong Đại số

$M=\frac{(a+b)^{2}+(a-b)^{2}}{a^{2}-b^{2}}=\frac{2(a^{2}+b^{2})}{a^{2}-b^{2}}\Rightarrow (M-2)a^{2}=(M+2)b^{2}\Rightarrow \frac{a^{2}}{b^{2}}=\frac{M+2}{M-2}$

Thế vào kia là xong thôi




#539175 $\left ( x+\sqrt{1+x^2} \right )(y+\sqrt...

Đã gửi bởi CandyPanda on 25-12-2014 - 19:19 trong Bất đẳng thức và cực trị

Từ giả thiết, ta có:

$r(\sqrt{1+x^{2}}-x)=y+\sqrt{1+y^{2}}$

$r(\sqrt{1+y^{2}}-y)=x+\sqrt{1+x^{2}}$

 

Cộng theo vế, suy ra: $(r+1)(x+y)=(r-1)(\sqrt{1+x^{2}}+\sqrt{1+y^{2}})\geq (r-1)\sqrt{4+(x+y)^{2}}$

Bình phương rồi chuyển vế, ta được: $x+y\geq \frac{r-1}{\sqrt{r}}$

Đẳng thức khi  $x=y=\frac{r-1}{2\sqrt{r}}$




#539174 Giải phương trình $x^{3}-7=y^{2}$

Đã gửi bởi CandyPanda on 25-12-2014 - 19:08 trong Phương trình - hệ phương trình - bất phương trình

Giải phương trình nghiệm nguyên $x^{3}-7=y^{2}$

Tổng quát thay -7 bằng k bất kì được không ?




#539170 Min P=$\sum \frac{a^2}{(a+b)^2}$

Đã gửi bởi CandyPanda on 25-12-2014 - 18:31 trong Bất đẳng thức và cực trị

$\sum \frac{a^{2}}{(a+b)^{2}}$ ở đây là cái nào thế ???

- $\frac{a^{2}}{(a+b)^{2}}+\frac{b^{2}}{(b+c)^{2}}+\frac{c^{2}}{(c+a)^{2}}$

- $\frac{a^{2}}{(a+b)^{2}}+\frac{b^{2}}{(b+c)^{2}}+\frac{c^{2}}{(c+a)^{2}}+\frac{b^{2}}{(a+b)^{2}}+\frac{c^{2}}{(b+c)^{2}}+\frac{a^{2}}{(c+a)^{2}}$

- $\frac{a^{2}}{(a+b)^{2}}+\frac{b^{2}}{(b+c)^{2}}+\frac{c^{2}}{(c+a)^{2}}+\frac{b^{2}}{(a+b)^{2}}+\frac{c^{2}}{(b+c)^{2}}+\frac{a^{2}}{(c+a)^{2}}+\frac{c^{2}}{(a+b)^{2}}+\frac{a^{2}}{(b+c)^{2}}+\frac{b^{2}}{(c+a)^{2}}$




#539070 2/ $abcd=1.CMR: \sum \frac{1}{a}+\fra...

Đã gửi bởi CandyPanda on 24-12-2014 - 21:11 trong Bất đẳng thức - Cực trị

Bài 1: $\prod (a^{2}+1)=(1+a^{2}+b^{2}+a^{2}b^{2})(c^{2}+d^{2}+1+c^{2}d^{2})\geq (c+ad+b+abcd)^{2}=(1+ad+b+c)^{2}$

Ta cần chứng minh: $1+ad+b+c\geq a+b+c+d\Leftrightarrow (a-1)(d-1)\geq 0$ (Đi-rích-lê)




#538925 Tìm Min $A=x^2+y^2+z^2$

Đã gửi bởi CandyPanda on 23-12-2014 - 17:33 trong Bất đẳng thức và cực trị

$(x^{2}+y^{2}+z^{2})(m^{2}+n^{2}+p^{2})\geq (mx+ny+pz)^{2}$

 

Chọn m,n,p sao cho: $\frac{m}{1}=\frac{n}{3}=\frac{z}{-5}$

Và $\frac{x}{m}=\frac{y}{n}=\frac{z}{p},x+3y-5z=2014$




#538254 Chứng minh rằng:$\frac{b+c+5}{1+a}+\frac...

Đã gửi bởi CandyPanda on 16-12-2014 - 20:32 trong Bất đẳng thức và cực trị

Đặt m=a+1,n=b+2,p=c+3. Đẳng thức xảy ra khi m=n=p




#538233 $(a^2+b^2+c^2) \geqslant ab+bc+ca$

Đã gửi bởi CandyPanda on 16-12-2014 - 19:46 trong Bất đẳng thức và cực trị

Hai bài đầu sinh ra để cho câu 3 trông khó khó ấy mà :v




#536338 Chứng minh rằng $\frac{1}{x+y}+\frac{...

Đã gửi bởi CandyPanda on 05-12-2014 - 21:05 trong Bất đẳng thức và cực trị

Cách khác:

$\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x})^{2}=(\frac{1}{(x+y)^{2}}+\frac{1}{(y+z)^{2}}+\frac{1}{(z+x)^{2}})+2(\frac{1}{(x+y)(y+z)}+\frac{1}{(y+z)(z+x)}+\frac{1}{(z+x)(x+y)}$

Ta có: $\frac{1}{(x+y)^{2}}+\frac{1}{(y+z)^{2}}+\frac{1}{(z+x)^{2}}\geq \frac{9}{4(xy+yz+zx)}= \frac{9}{16}$ (Bất đẳng thức Iran 96)

Và: $2(\frac{1}{(x+y)(y+z)}+\frac{1}{(y+z)(z+x)}+\frac{1}{(z+x)(x+y)})=4\frac{x+y+z}{(x+y)(y+z)(z+x)}=\frac{(xy+yz+zx)(x+y+z)}{(x+y)(y+z)(z+x)}=1+\frac{xyz}{(x+y)(y+z)(z+x)}\geq 1$




#536333 $(3a+b)(2c+a+b)\leq (2a+b+c)^{2}$

Đã gửi bởi CandyPanda on 05-12-2014 - 20:52 trong Bất đẳng thức và cực trị

2) Hình như phân số thứ 2 bị viết nhầm. Cứ coi như sửa thành đối xứng nhé

Ta có:$\frac{a^{3}b}{3a+b}+\frac{a^{3}b}{3a+b}+\frac{a^{3}b}{3a+b}+\frac{a^{3}b}{3a+b}+\frac{b^{3}c}{3b+c}+\frac{c^{3}a}{3c+a}+\frac{c^{3}a}{3c+a}$

$\geq 7\sqrt[7]{\frac{a^{14}b^{7}c^{7}}{(3a+b)^{4}(3b+c)(3c+a)^{2}}}\geq 7\frac{a^{2}bc}{2a+b+c}$

 

(Do $(3a+b)^{4}(3b+c)(3c+a)^{2}\leq (\frac{4(3a+b)+(3b+c)+2(3c+a)}{7})^{7}= (2a+b+c)^{7}$

 

Viết 2 bất đẳng thức tương tự rồi cộng vào ta được đpcm




#536331 Tìm min:$A=(a^5-a^2+3)(b^5-b^2+3)(c^5-c^2+3)$

Đã gửi bởi CandyPanda on 05-12-2014 - 20:41 trong Bất đẳng thức và cực trị

Đề bài phải là $a+b+c=\sqrt[3]{7}$ nhé! :icon6:

 

Ta dễ dàng chứng minh các BĐT sau bằng biến đổi tương đương:

                                    $a^5-a^2+3\geq a^3+2$

                                    $b^5-b^2+3\geq b^3+2$

                                    $c^5-c^2+3\geq c^3+2$

Nên ta có:

$A\geq (a^3+2)(b^3+2)(c^3+2)$

   $=(a^3+1+1)(1+b^3+1)(1+1+c^3)$

   $\geq (a+b+c)^3$   (theo BĐT $Holder$)

   $=7$

Đẳng thức xảy ra khi $a=b=c=\frac{\sqrt[3]{7}}{3}$

Dấu bằng thế kia thì thay vào A ra tận khoảng 19.65 cơ chứ min không phải 7 đâu




#536326 $\frac{a^3+b^3+c^3}{2abc}+...\frac{9...

Đã gửi bởi CandyPanda on 05-12-2014 - 20:13 trong Bất đẳng thức và cực trị

À viết thiếu số 3 đó mà  :luoi:




#536322 $\frac{a^3+b^3+c^3}{2abc}+...\frac{9...

Đã gửi bởi CandyPanda on 05-12-2014 - 19:51 trong Bất đẳng thức và cực trị

$\frac{a^{2}+b^{2}}{c^{2}+ab}+\frac{b^{2}+c^{2}}{a^{2}+ab}+\frac{c^{2}+a^{2}}{b^{2}+ca} \geq 3 \sqrt[3]{\frac{(a^{2}+b^{2})(b^{2}+c^{2})(c^{2}+a^{2})}{(c^{2}+ab)(a^{2}+bc)(b^{2}+ca)}}$

Ta có: $(a^{2}+b^{2})(c^{2}+b^{2})\geq (ac+b^{2})^{2}$

Viết 2 bất đẳng thức tương tự rồi nhân vào, căn bậc 2 là xong (Phân số đầu sử dụng bất đẳng thức Cô-si 3 số)