Đến nội dung

Kamii0909 nội dung

Có 155 mục bởi Kamii0909 (Tìm giới hạn từ 20-03-2020)



Sắp theo                Sắp xếp  

#719502 $VMO2019$

Đã gửi bởi Kamii0909 on 14-01-2019 - 22:55 trong Thi HSG Quốc gia và Quốc tế

Topic ảm đạm quá mình chém bài đa thức vậy.

Bổ đề 1: $\Gamma(f(x))$ là hệ số tự do của $f(x)f(\dfrac{1}{x})$

Chỉ viết $f(x)$ và nhân ra thôi.

Bổ đề 2: Cho

$f(x)=a_{0}+...+a_{n} x^n$

$g(x)=b_{0}+...+b_{n} x^n$

$h(x)=f(x)(b_{0} x^n+...+b_{n})=f(x)x^n g(\dfrac{1}{x})$ (đảo hệ số của $g(x)$)

Thì $\Gamma(f(x)g(x)) = \Gamma(h(x))$ 

Chú ý $h(x)h(\dfrac{1}{x})=f(x)g(x)f(\dfrac{1}{x})g(\dfrac{1}{x})$ 

Quay lại bài toán

Với $n=1010$

Viết $P(x)=(x+a_{1})(x+a_{2})...(x+a_{n})(x+b_{1})(x+b_{2})...(x+b_{n})$

Trong đó $A \cap B = \{1,2,...,2n\}$

Số đa thức $Q_{k} (x)$ phân biệt tạo thành theo bổ đề 2 sẽ bằng vào số bộ phân biệt $b_{1}<b_{2}<...<b_{n}$ mà $b_{i} \in \{1,2,...,2n\} = \dfrac{ (2n)!}{ (n!)^2} = \dfrac{2n(2n-1)...(n+1)}{n(n-1)...1} > 2^n > 2^{n-1}$

 

Đi thi tiếc thế không làm hoàn chỉnh được bài này, viết được có tới đoạn $P(x)=...$ thì lại lan man đi đâu =))) Không biết có được điểm không nhỉ? 




#712215 $f(x^2+yf(x))=xf(f(x))+f(x)f(y)$

Đã gửi bởi Kamii0909 on 09-07-2018 - 08:21 trong Phương trình hàm

Tìm tất cả $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn

$f(x^2+yf(x))=xf(f(x))+f(x)f(y)$ với mọi $x,y \in \mathbb{R}$




#712214 Tìm hàm f:R R

Đã gửi bởi Kamii0909 on 09-07-2018 - 08:07 trong Phương trình hàm

Tìm hàm $f:\mathbb{R}\rightarrow \mathbb{R}$ thỏa mãn

1.$f(x+f(y+f(x)))=f(x+y)+x$

Kí hiệu $P(x,y)$ thay cho phép thế $x,y$ vào phương trình. 

$P(x,-x):f(x+f(f(x)-x))=x+f(0)$ nên $f$ toàn ánh. 

Do đó tồn tại $a, f(a)=-f(0)$

$P(a,-f(a)):a=0$ nên $f(0)=0$ 

$P(0,x): f(f(x))=f(x)$

$P(x,-x): f(x+f(f(x)-x))=x$

Lấy $f$ 2 vế phương trình này thì $f(x)=x$

 

Tìm hàm $f:\mathbb{R}\rightarrow \mathbb{R}$ thỏa mãn

2.$f(x+f(y+f(x)))=f(x)+x+y$

Kí hiệu $P(x,y)$ thay cho phép thế $x,y$ vào phương trình. 

$P(x,-f(x)):f(x+f(0))=x$ nên $f(x)=x-f(0)$

Tại đây cho $x=0$ thì $f(0)=0$ nên $f(x)=x$




#694455 $f(x^2+f(xy))=xf(x+y)$

Đã gửi bởi Kamii0909 on 09-10-2017 - 17:23 trong Phương trình hàm

trước tiên ta nhận thấy pt có 1 ngh là f(x) đồng nhất bằng 0

ta thấy f(f(0))=0 thay y bởi f(0) trong pt đầu ta được f(x^2)=xf(x) suy ra f là hàm lẻ

suy ra luôn tồn tại số thực a thỏa f(a)=0

th1: a khác 0 lúc này thay x bởi a ta được f(x) là hàm hằng...... 

th2: suy ra chỉ có một giá trị là x=0 thỏa mãn f(x)=0 

thay x bởi -y ta được f(x^2)=x^2 mọi x thực 

lại có do tính lẻ của hàm f suy ra f(x)=x vs mọi x thực

Vậy.....

Làm đầy đủ chút được không bạn.
$P(x,f(0)):f(x^2+f(xf(0)))=xf(x+f(0))$
$P(a,y):f(a^2+f(ay))=af(y+a)$

Như bạn thấy cả 2 đẳng thức này chả thu được gì cả. 




#694174 $f(x^2+f(xy))=xf(x+y)$

Đã gửi bởi Kamii0909 on 04-10-2017 - 18:41 trong Phương trình hàm

Tìm tất cả $f:\mathbb{R} \rightarrow \mathbb{R}$ thoả mãn

$$f(x^2+f(xy))=xf(x+y), \forall x,y \in \mathbb{R}$$




#693855 $f:\mathbb{Z}_+\rightarrow \mathbb{Z}...

Đã gửi bởi Kamii0909 on 28-09-2017 - 15:38 trong Phương trình hàm

Tìm $f:\mathbb{Z}_+\rightarrow \mathbb{Z}_+$ thỏa mãn:

$f(\frac{f^2(n)}{n})=n$

Ta có $n|f^2(n)$ 

Từ tính chất này cho $n = \dfrac{f^2(n)}{n}$ thì $f^2(n)|n^3$

Đặt $n= p_{1}^{a_1} \cdot p_{2}^{a_2} ....p_{n}^{a_n}$

Trong đó $p_1,p_2,...,p_n$ nguyên tố còn $a_1,a_2,...,a_n \in \mathbb{N*}$

Do $f^2(n)|n^3$ nên $f(n)$ phải có dạng $p_{1}^{b_1} \cdot p_{2}^{b_2}...p_{n}^{b_n}$

Trong đó $b_1,b_2,...b_n \in \mathbb{N}$ và $2b_{i} \leq 3a_{i}$

Do đó $b_{i} \leq a_{i}$ hay $f(n)|n$

Từ đẳng thức này cho $n=\dfrac{f^2(n)}{n}$ thì $n^2|f^2(n)$

Do đó $f(n)=n,\forall n$.

Thử lại TM. 




#693813 Đề chọn đội tuyển QG Dak Lak năm 2017-2018

Đã gửi bởi Kamii0909 on 27-09-2017 - 20:40 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Bài 5. 

Chứng minh được

$$x_{n}+x_{n-1}=\dfrac{-1}{2017^{n-1}}$$

Từ đó suy ra CTTQ 

$$x_{n}=\dfrac{2017 \cdot (-1)^n}{2018}- \dfrac{1}{2018 \cdot 2017^{n-1}}$$

Do đó $$\displaystyle \lim_{n \to + \inf} x_{n} =\dfrac{2017^2}{2018^2}$$

 

Bài 6. 

Từ giả thiết dễ có

$$f(x) \geq 2xy-f(y), \forall x,y$$

Cho $x=y$ thì $f(x) \geq x^2, \forall x$

Cố định $x$, chọn $y$ sao cho $2xy-f(y)$ lớn nhất. 

Khi đó $$f(x)=2xy-f(y) \leq 2xy-y^2 \leq x^2$$

Do đó $f(x)=x^2, \forall x$

Thử lại TM, kết luận...




#693724 Đề thi chọn đội tuyển quốc gia THPT chuyên KHTN - ĐHQG Hà Nội vòng 2 năm 2016

Đã gửi bởi Kamii0909 on 26-09-2017 - 00:56 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Ngày 2.

 

Bài 1. Tìm $f:\mathbb{R}\to\mathbb{R}$ thỏa mãn :

\[2f(x)\cdot f(x+y)-f(x^2)=\frac{1}{2}x(f(2x)+4f(f(y)))\]

 

 

Nếu $f$ là hàm hằng, dễ có $f(x)=0, \forall x$ thoả mãn.

 

Xét $f$ khác hằng. 

Từ pt đầu cho $x=0$ ta được $f(0)(2f(y)-1)=0, \forall y$ 

$f$ không hằng nên $f(0)=0$

 

Lại cho $y=0$ thì $\dfrac{xf(2x)}{2}+f(x^2)=2f^2(x)$

Thế đẳng thức này lại phương trình đầu thì $f(x)f(x+y)=f(x)^2+xf(f(y)),\forall x,y$

Ta kí hiệu $P(x,y)$ là phép thế $(x,y)$ cho phương trình này. 

 

Nếu $\exists a \neq 0, f(a)=0$. 

$P(a,y):af(f(y))=0$, tức $(f(f(x))=0, \forall x$

$P(x,f(x)-x): f(x)^2=0,\forall x$ nên $f(x)=0, \forall x$

Có nghĩa $f$ là hàm hằng(loại)

 

Vậy $f(x)=0 \Leftrightarrow x=0$

Xét $x,y \neq 0$.

$P(x,1):f(x+1)=f(x)+\dfrac{x \cdot f(f(1))}{f(x)}$

$P(x,2):f(x+2)=f(x)+\dfrac{x \cdot f(f(2))}{f(x)}$

$P(x+1,1):f(x+2)=f(x+1)+\dfrac{(x+1)f(f(1))}{f(x+1)}=f(x)+\dfrac{x \cdot f(f(1))}{f(x)}+\dfrac{(x+1)f(f(1))f(x)}{f^2(x)+xf(f(1))}$

Từ 2 đẳng thức trên suy ra 

$$f^2(x)( xf(f(1))+2f(f(1))-f(f(2)) )=x^2 f(f(1))( f(f(2))-f(f(1)) ) (1)$$

Giả sử $\dfrac{f(f(2))}{f(f(1))}=k \neq 2$

Từ đẳng thức trên cho $x = k-2$ sẽ được $(k-2)^2 \cdot f(f(1))^2 \cdot (k-1)=0$

Cho ta $f(f(2))=f(f(1)$

Khi đó $(1)$ tương đương $f^2(x) \cdot f(f(1)) \cdot (x+1)=0, \forall x \neq 0$

Chọn $x \neq 0,-1$ ta suy ra mâu thuẫn. 

Vậy $f(f(2))=2f(f(1))$

 

Do đó $f^2(x)=f(f(1))x^2$

Cho $x=1$ thì $f(f(1))=f(1)^2$, suy ra $f^2(x)=x^2 f(1)^2,\forall x \neq 0$ 

Kết hợp với $f(0)=0$ cho ta $f^2(x)=x^2 f(1)^2=c^2 x^2,\forall x$

 

Giả sử $ \exists a,b \neq 0,f(a)=ac,f(b)=-bc$

$P(a,y-a)-P(b,y-a):f(y)+f(y+b-a)=ca-cb (2)$

Tại $(2)$ cho $y=0$ thì $f(b-a)=ca-cb$

Cho $y=b-a$ thì $f(2b-2a)=0 \Leftrightarrow a=b$

Từ đó ta có $a=b=0$(mâu thuẫn) 

 

Vậy $f(x)=cx,\forall x$ hoặc $f(x)=-cx,\forall x$. 

Cả 2 đều dẫn đến $f(x)=ax, \forall x$

Thay hàm này vào pt đầu thì $a=0,a=1$. 

Thử lại 2 hàm $f(x)=0, \forall x$ và $f(x)=x,\forall x$ đều TM. 

Kết luận...




#693714 Đề thi chọn học sinh giỏi THPT Khoa Học Tự Nhiên 2017-2018

Đã gửi bởi Kamii0909 on 25-09-2017 - 22:13 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Bài 3 có vẻ khó nhai, thôi xử bài 6 trước vậy >.< 

 

Kẻ $MX \perp AB, NY \perp AC$

Gọi $S,T$ là trung điểm $NC,MB$

 

Dễ có $PB=QC,MB=NC$. 

$\dfrac{BF}{BA}=\dfrac{BP}{BC}=\dfrac{CQ}{CB}=\dfrac{CE}{CA}$

Vậy $EF \parallel BC$

 

Do đó $EFBC$ là hình bình hành nên $EF=PC$

Cũng có $ST=\dfrac{MN+BC}{2}=PC$ nên $EFTS$ cũng là hình bình hành.

Do đó $FT=SE$

 

Ngoài ra, ta cũng có $\Delta AFL \sim \Delta AEK$ 

$\Rightarrow \dfrac{AL}{AK}=\dfrac{AF}{AE}$

 

$$ \dfrac{OA^2-OL^2}{OA^2-OK^2}= \dfrac{LA.LM}{KA.KN}=\dfrac{ LA^2. \dfrac{FX}{FA}}{KA^2. \dfrac{EY}{EA}} =\dfrac{LA^2.FX.EA}{KA^2.EY.FA}= \dfrac{FX.FA}{EY.EA}=\dfrac{FX.FB}{EY.EC}=\dfrac{FT^2-TB^2}{SE^2-SC^2}=1 $$

 

Do đó $OL=OK$

Hình gửi kèm

  • 5.png



#693450 Đề thi chọn học sinh giỏi THPT Khoa Học Tự Nhiên 2017-2018

Đã gửi bởi Kamii0909 on 21-09-2017 - 00:48 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Bài 2: Tìm tất cả các đa thức $P(x)$ hệ số nguyên không âm thoả mãn $P(\sqrt [3]{3})=2017$ và $P(1)$ nhận giá trị nhỏ nhất có thể.

 

Bài 7: Cho a,b,c là các số thực thỏa mãn $(a+b)(b+c)(c+a) ≠ 0$. Chứng minh rằng:

$\frac {(a^2-b^2)(a^2-c^2)}{(b+c)^2} + \frac {(b^2-c^2)(b^2-a^2)}{(c+a)^2} + \frac {(c^2-a^2)(c^2-b^2)}{(a+b)^2} \geq 0$

Bài 2. 

Dễ thấy $P(x)=(x^3-3)Q(x)+2017$

Đặt $Q(x)=a_{n} x^n+a_{n-1} x^{n-1}+...+a_0$ 

$P(x)=a_{n} x^{n+3}+a_{n-1} x^{n+2} +a_{n-2} x^{n+1} +( a_{n-3}-3a_{n} ) x^n+(a_{n-4}-3a_{n-1}) x^{n-1}+...+(a_{0}-3a_{3})x^3-3a_{2} x^2 -3a_{1} x +2017 - 3a_{0}$

Do $P(x)$ có hệ số không âm nên ta phải có hệ
$$\left\{\begin{matrix} a_{n},a_{n-1},a_{n-2} \geq 0\\ a_{n-3} \geq 3a_{n}\geq 0\\ ...\\ a_{0} \geq 3 a_{3} \geq 0\\ a_1 ,a_2 \leq 0\\ a_0 \leq \dfrac{2017}{3}\\ \end{matrix}\right.$$

Cho ta các nghiệm nguyên không âm $a_{n}=a_{n-1}=...=a_{1}=0$ hay $Q(x)=a_0=c \leq 672$ là hàm hằng. 

$P(1)=c+2017-3c=2017-2c \geq 673$

Dấu "=" xảy ra khi $P(x)=672 x^3 +1$

Bài 7. 

$VT=f(a,b,c) \geq f(|a|,|b|,|c|)$nên ta chỉ cần chứng minh trong TH a,b,c không âm. 

KMTTQ, $a \geq b \geq c$

$f(a,b,c)=\sum \dfrac{(a-b)(a-c)(a+b)(a+c)}{(b+c)^2}$

Dễ thấy $\dfrac{(a+b)(a+c)}{(b+c)^2} \geq \dfrac{(b+a)(b+c)}{(c+a)^2}$ 

nên theo bất đẳng thức Vornicul-Schur ta có đpcm.

 

#Ps: 2 bài hình vòng 1 năm nay có vẻ không thấm lắm :V 




#693445 Turkey TST 2017

Đã gửi bởi Kamii0909 on 20-09-2017 - 23:17 trong Thi HSG Quốc gia và Quốc tế

 

$f$ toàn ánh . Gọi $P(x_0,y_0)$ là phép thế 
Nếu $f(x_1) = f(x_2) $ xét $P(x_1,x_2)$ và $P(x_2,x_1)$ có $x_1 = x_2 \implies f$ đơn ánh $\implies f$ toàn ánh
$P(0,y) : f(f(y)) = by+a $ với $b = f(0) $ , $P(x,f(y)) : f(xf(y)+by+a) = f(x)f(y)+a = f(yf(x)+bx+a) \implies xf(y)+by = yf(x)+bx \implies f(x) = mn+x$  Thế vào thì có $m^2 = n $ và $m^3+m^2 = a$
Vậy $f(x) = mx+m^2$ với $m$ là nghiệm của phương trình $x^3+x^2 - a = 0$ 

 

Đoạn cm đơn ánh chưa hoàn chỉnh. Nếu $f(x_1)=f(x_2)=0$ thì $x_1 \neq x_2$ thoải mái. TH $a=0$ có $f(x)=0, \forall x$ chứng tỏ điều này. 
Có thể xử lí kiểu này. 
$P(0,x):f(f(x))=xf(0)+a$

Nếu $f(0)=0$ thì $P(x,0):a=0$

Hay $P(0,x):f(f(x))=0$

Nếu $f$ hằng thì $f(x)=0,\forall x$. 

Nếu $f$ không hằng thì $\exists c,f(c) \neq 0$ 
$P(c,x):f(cx+f(x))=xf(c)$ nên $f$ toàn ánh. 
Do đó $P(0,x)$ sẽ cho ta $f(x)=0,\forall x$(là hàm hằng, mâu thuẫn) 

 

Xét $f(0) \neq 0$ thì $P(0,x)$ cho $f$ song ánh và có thể tiếp tục giải như trên.




#693028 ĐỀ THI LẬP ĐỘI TUYỂN TOÁN LỚP 12 DAKLAK

Đã gửi bởi Kamii0909 on 14-09-2017 - 14:00 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Bài hàm phức tạp ra phết. 
Đặt $P(x,y):f(xf(x+y))=f(yf(x))+x^2$
$P(0,x):f(0)=f(xf(0))$

Nếu $f(0) \neq 0$ thì $xf(0)$ toàn ánh trên $\mathbb{R}$, do đó $f(x)=f(0),\forall x$

Mà dễ thấy $f$ không là hàm hằng nên $f(0)=0$

Giả sử $f(a)=0$,  từ $P(a,0):f(0)=a^2=0$ ta có $a=0$, hay $f(a)=0 \Leftrightarrow a=0$ 

Nếu $\exists a,b$ sao cho $f(a)=f(b) \neq 0$, ta sẽ cmr $a=b$. 

$P(a,0)-P(a,b-a): f((b-a)f(a))=0$ 

Hay $a=b$. Do đó $f$ đơn ánh. 

$P(x,0)-P(-x,0): f(xf(x))=f(-xf(-x))$

Sử dụng tính đơn ánh và kết hợp $f(0)=-f(-0)=0$ thì $f(x)=-f(-x),\forall x$

$P(x+y,-x)-P(y,-x-y)-P(x,y): 2f(yf(x))=2xy \Leftrightarrow f(yf(x))=xy$

Đến đây thì quá dễ rồi, ta sẽ tìm được 2 nghiệm hàm thoả mãn là $f(x)= \pm x,  \forall x$




#691650 $(x^{2}+y+f(y))=f(x)^{2}+a, \forall x,y \i...

Đã gửi bởi Kamii0909 on 27-08-2017 - 02:22 trong Phương trình hàm

Chuẩn phải là $ P(x,y): f(x^2+y+f(y))=f^2(x)+ay, \forall x,y \in \mathBB{R}$
Nếu $a=0$ dễ chỉ ra 2 hàm $f(x) =0,f(x)=1$ thoả mãn. 
Xét $a \neq 0$ thì ta có $f$ toàn ánh. 

Nếu $f(a)=0$ ta chỉ ra $a=0$
Thật vậy, ta có
$P(b,y)-P(-b,y): f(b)=f(-b)=0$
$P(0,b)+P(0,-b): f(b)+f(-b)=2f^2(0)=0$
Tức là $f(0)=0$, từ đó $P(0,b): ab=0 \Leftrightarrow b=0$

 

Chứng minh $f(x^2)=bx^2, b \geq 0, b^2+b=a$
$P(x,0):f(x^2)=f^2(x)$
Từ đây $f$ đơn ánh trên từng khoảng $(0,+ \infty)$ và $(- \infty,0)$ và $f(x) \geq 0, \forall x \geq 0$
Từ đó $f(x^2)+x^2 \geq 0,\forall x$
$P(0,x):f(x+f(x))=ax$
$P( \sqrt{x^2+f(x^2)},y^2): f(x^2+y^2+f(x^2)+f(y^2))=a(x^2+y^2)$
Và $P(0,x^2+y^2): f(x^2+y^2+f(x^2+y^2))=a(x^2+y^2)$
Do $f$ đơn ánh trên $(0, +\infty)$ nên $f(x+y)=f(x)+f(y),\forall x,y \geq 0$
Kết hợp với $f(x) \geq 0,\forall x \geq 0$ 
Và xét $f$ trên $(0, +\infty)$ dễ thu được $f(x)=bx,\forall x \geq 0(b > 0)$
Trong đó $b^2+b=a$

Bây giờ ta chứng minh $f(-x^2) \leq 0, \forall x$ 
Giả sử $\exists x,f(-x^2) \geq 0$ 
$P(x,-x^2):f(f(-x^2))=f(x^2)-ax^2=-b^2x^2 <0$
Mà $f(-x^2)>0$ nên $f(f(-x^2)) >0$
Mâu thuẫn, tức là $f(-x^2) \leq 0$

 

$f(x)=-f(-x)$

Ta có $f(x^2)=f(-x)^2=f(x)^2$

Dễ thấy 2 số $x$ và $-x$ khác dấu $ \forall x \neq 0$ nên $f(x)$ và $f(-x)$ cũng khác dấu.

Nói cách khác $f(x) \neq f(-x), \forall x \neq 0$ dẫn tới $f(x)=-f(-x), \forall x$

$f(x^2)=bx^2$ nên $f(x)=bx,\forall x$

Trong đó $b^2+b=a \geq 0$

Với $a>0$ ta tìm được nghiệm dương duy nhất của $b$ là $\dfrac{2a}{1+ \sqrt{1+4a}}$

Kết luận $a>0$




#691649 $(x_n):\left\{\begin{matrix} ...\...

Đã gửi bởi Kamii0909 on 27-08-2017 - 00:36 trong Dãy số - Giới hạn

Chứng minh theo quy nạp rằng $x_n \leq \dfrac{25}{4}- \dfrac{5}{n}, n \geq 1$
Kiểm tra với $n=1,2$ đúng. 
Sử dụng công thức truy hồi, ta cần chỉ ra 
$$x_{n+1}<x_{n}+\dfrac{5}{n^3} \leq \dfrac{25}{4} - \dfrac{5}{n} + \dfrac{5}{n^3} \leq \dfrac{25}{4}- \dfrac{5}{n+1}, \forall n \geq 2$$

$$\Leftrightarrow n^2 \geq n+1,\forall n \geq 2$$

Từ đó ta có đpcm.




#690909 $f(x^2-f(y)^2)=xf(x)-y^2$

Đã gửi bởi Kamii0909 on 18-08-2017 - 18:25 trong Phương trình hàm

Đặt $f(0)=a$
$P(x,y): f(x^2-f(y)^2)=xf(x)-y^2$
$P(-x,y)-P(x,y) \Rightarrow f(x)=-f(-x),\forall x \neq 0$

$P(0,0): f(-a^2)=0 \Rightarrow f(a^2)=0$

$P(x,-a^2): f(x^2)=xf(x)-a^4$

$P(1,-a^2):-a^4=0 \Leftrightarrow a=0$

Kết hợp lại ta có $f(x^2)=xf(x)$ và $f(x)=-f(-x),\forall x$

$P(0,y): f(-f(y)^2)=-y^2$

$P(f(x),x): f(x)f(f(x))=x^2$

$P(f(x),y): f(f(x)^2-f(y)^2)=x^2-y^2$ 

Do đó $f$ toàn ánh. 

$P(x,y): f(x^2-f(y)^2)=f(x^2)+f(-f(y)^2)$

Mà $x^2$ và $f(y)^2$ toàn ánh trên $/mathBB{R^+}$ nên 

$f(x-y)=f(x)+f(-y)=f(x)-f(y),\forall x,y \geq 0 (1)$

Từ $(1)$ thay $x \rightarrow x+y$ kết hợp $f$ lẻ ta có

$f(x+y)=f(x)+f(y),\forall x,y$

Từ đây ta tính $f((x+1)^2 )$ theo 2 cách.

$f((x+1)^2)=(x+1)f(x+1)=(x+1)f(x)+(x+1)f(1)$

$f((x+1)^2)=f(x^2)+f(2x)+f(1)=xf(x)+2f(x)+f(1)$

Do đó $f(x)=f(1)x$. Thay ngược lại có $f(1)=\pm 1$. 

Thử lại cả 2 hàm thoả mãn. Kết luận...




#690907 $f(x+y) = f(x)+f(y)+2xy$

Đã gửi bởi Kamii0909 on 18-08-2017 - 17:45 trong Phương trình hàm

Tìm hàm số $f(x)$ biết: $f(x+y) = f(x)+f(y)+2xy.$

@halloffame: bạn thêm giúp mình dữ kiện về tập gốc và tập đích của hàm $f$ nhé. 

Mình đã từng thấy lời giải bài này trong điều kiện $f$ khả vi.
Khi đó cho $x=y=0$ thì $f(0)=0$.
Với $y \rightarrow 0$ lại có $\dfrac{f(x+y)-f(x)}{y} = \dfrac{f(y)-f(0)}{y-0}+2x$
Hay $ f'(x)=2x+f'(0)$
Vậy $f(x)=x^2+ax +b$. Thử lại ta thấy $b=0$.




#689907 $f(xy)=max\left \{ f(x+y), f(x).f(y) \right \}$

Đã gửi bởi Kamii0909 on 08-08-2017 - 15:25 trong Phương trình hàm

Bổ đề: Xét $a \geq 0$ và $g: \mathbb{R} \rightarrow \mathbb{R}$ thoả mãn $g(x)=x - \dfrac{a}{x}$ thì $g$ toàn ánh.(Không chứng minh) 

 

$P(x,y) : f(xy) = max \left \{ f(x+y),f(x)f(y) \right \}$

$P \left(x, \dfrac{-a}{x} \right) : f(-a)= max \left \{ f \left( x- \dfrac{a}{x} \right), f(x)f \left( \dfrac{-a}{x} \right) \right \}$

Tức là $f(-a) \geq f \left( x- \dfrac{a}{x} \right) (1)$
Từ đây do tính toàn ánh của $ x- \dfrac{a}{x}$ nên $f(-a) \geq f(x), \forall a \geq 0, x \in \mathbb{R}$

Hay $f(-y) \geq f(x), \forall y \geq 0, \forall x \in \mathbb{R} $

Từ đây $f(-y) \geq f(-x), \forall x,y \geq 0$ suy ra $f(x)=f(0)=C, \forall x \leq 0$ 

Ngoài ra, $f(x) \leq C, \forall x \in \mathbb{R}$

Xét $x \geq 0$

$P(-x,-1) : f(x)= max  \left \{ f(-x-1), f(-x)f(-1) \right \} = max \left \{ C, C^2  \right \}$

$\Rightarrow C \geq C^2 \Leftrightarrow 0 \ leq C \leq 1$

Mặt khác, với mọi $C \in [0,1]$ thì $C \geq C^2$ nên $f(x)=C, \forall x$




#689905 giải đáp phương trình hàm

Đã gửi bởi Kamii0909 on 08-08-2017 - 14:42 trong Phương trình hàm

Sai nhé. 
Không hiểu bạn tìm kiểu gì từ $g(x+1)=(2-a)g(x)+a$ mà ra được $g(x) =$ cái hàm kì dị ấy.
Mà tuyệt đối thử lại cũng không TM luôn.
Hơn nữa $g(0)=0,g(1)=1$ và $g(x+1)=g(x)+1$ chỉ kết luận được $g(x)=x, \forall x \in \mathbb{Z}$

Lời giải bài này như sau: 
$P(x,y) : f(x+y)+f(x)f(y)=f(xy)+f(x)+f(y)$
$P(x,0) : f(x)+f(x)f(0)=f(0)+f(x)+f(0) \Leftrightarrow f(x)f(0) = 2f(0)$
Nếu $f(0) \neq 0$ thì $\boxed{f(x)=2,\forall{x \in \mathbb{R}}}$
Xét $f(0)=0$
$P(x,1) : f(x+1)+f(x)f(1)=f(x)+f(x)+f(1) \Leftrightarrow f(x+1)=f(x) \left[ 2-f(1) \right] +f(1)$
$P(x+1,1) : f(x+2)=f(x) \left[ 2-f(1) \right]^2 +3f(1)-f(1)^2$

$P(1,1) : f(2)=3f(1)-f(1)^2$
$P(x,2) : f(x+2)+f(x)f(2)=f(2x)+f(x)+f(2) \Leftrightarrow f(x) \left[ 2-f(1) \right]^2 +3f(1)-f(1)^2+f(x)f(2)=f(2x)+f(x)+f(2) \Leftrightarrow f(2x)= \left[ 3-f(1) \right]f(x)=af(x)$
$P(2x,2) : f(4x)=a^2f(x)$

$P(2x,2y) -a P(x,y) : (a^2-a)f(x)f(y)=(a^2-a)f(xy)$

Nếu $a=1 \Leftrightarrow P(x,1) : f(x+1)=0 \Leftrightarrow \boxed{f(x)=0,\forall{x \in \mathbb{R}}}$

Nếu $a=0 \Leftrightarrow P(x,2) : f(2x)=0 \Leftrightarrow \boxed{f(x)=0, \forall{x \in \mathbb{R}}}$

Nếu $a^2-a \neq 0$ thì ta có hệ 

$\left\{\begin{matrix} f(x)f(y)=f(xy)\\ f(x)+f(y)=f(x+y) \end{matrix}\right.$
Hệ PTH này quen thuộc và có nghiệm là $ \boxed{ f(x)=0,\forall{x \in \mathbb{R}}}$ hoặc $ \boxed{ f(x)=x,\forall{x \in \mathbb{R}}}$




#689899 Đề Thi Trại Hè Hùng Vương 2017

Đã gửi bởi Kamii0909 on 08-08-2017 - 13:14 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

cách này mình đã post thì bạn/anh/chị post lại làm gì nữa

$p$ chỉ có max là $(b+1,b^2-b+1)$ và k có điều kiện gì để suy ra được nó là ước cả , cho nên xét thiếu $p=2$ r kìa 

chọn $b=3$ và $a=1$ thì $b=3 \geq \frac{a+b^2}{3}-1=\frac{7}{3}$

$2 \nmid b(b-1)+1$
$a>b$




#689342 Đề Thi Trại Hè Hùng Vương 2017

Đã gửi bởi Kamii0909 on 03-08-2017 - 00:23 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Bài 4.
$a+b^2 \mid a^2+b$ nên $a \geq b$ 

$a=b$ thì $2 \mid a(a+1)$, do đó $2^x=a(a+1)$
Nếu $a\geq 2$ thì $a(a+1)$ sẽ có ước khác 2(vô lý)
Vậy $a=b=1$
Xét $a > b \geq 1$
$a+b^2 \mid a^2+b$
$\Leftrightarrow a+b^2 \mid a(a+b^2)-b(ab-1)$
Mà $(a,ab-1)=1$ nên $a+b^2 \mid b(a+b^2)-b^3-1$
Hay $p^x=a+b^2 \mid (b+1)(b^2-b+1)$
Dễ thấy $a+b^2 >b+1$ và $a+b^2>b^2-b+1$ nên $p|(b+1,b^2-b+1)$
Từ đó có $p=3$
Mà $9 \nmid b^2-b+1$ nên $3^{x-1} \mid b+1$
$\Rightarrow b \geq 3^{x-1}-1 = \dfrac{a+b^2}{3} -1$
Hiển nhiên điều này sai với $b \geq 3$, mà $3^{x-1} \mid b+1$ nên $b=2, a=5$




#688927 Tìm hàm $f:\mathbb{R}\rightarrow \mathbb{R...

Đã gửi bởi Kamii0909 on 28-07-2017 - 16:17 trong Phương trình hàm

Cho $x=0$ thì $f( f(y)-y)=f(0)^2$ nên $f(x)=x+c$ hoặc $f(x)=c$




#676727 $\prod (a^{2}+b^{2})\leq \frac{1...

Đã gửi bởi Kamii0909 on 09-04-2017 - 13:15 trong Bất đẳng thức - Cực trị

Em định nghĩa $f(a,b,c) = (a^2+b^2)(b^2+c^2)(c^2+a^2)$ thì $f(a+b,c,0)$ tức là thay $a = a + b,\, b = c$ và $c = 0.$ Tức $c$ là nhỏ nhất.

Thực ra nó chỉ là mặt quy ước, ta có thể thấy $f(a+c,b,0)$ và $f(a+b,c,0)$ hay $f(0,b,a+c)$ là tương đương hết sau phép đặt ẩn $(a+c,b) \rightarrow (x,y)$ hay $(a+b,c) \rightarrow (x,y)$
Ta chọn vị trí các số sao cho chứng minh dễ nhất có thể mà thôi. Nó không ảnh hưởng dù $c$ max hay min. Bài toán này có thể chọn thứ tự thoải mái do tính đối xứng.



#676639 $\prod (a^{2}+b^{2})\leq \frac{1...

Đã gửi bởi Kamii0909 on 08-04-2017 - 18:51 trong Bất đẳng thức - Cực trị

Nhưng như vầy thì em dồn $c$ về $0$ !

Em chưa hiểu ý anh lắm. Em đang dồn $b \rightarrow 0$. Nếu dồn $c \rightarrow 0$ thì có lẽ là $f(a+c,b,0)$ chính xác hơn.



#676603 $\prod (a^{2}+b^{2})\leq \frac{1...

Đã gửi bởi Kamii0909 on 08-04-2017 - 00:01 trong Bất đẳng thức - Cực trị

Biểu thức $f(a,b,c)$ của em là gì ? Nếu dồn biến theo kiểu này thì sẽ chọn $c$ là số nhỏ nhất, anh thử nhẩm với $f(a,b,c) = (a^2+b^2)(b^2+c^2)(c^2+a^2)$ khi xét $f(a,b,c) \leqslant f(a+b,c,0)$ thì hai đại lượng trội nhất là $a^3b,ab^3$ nằm bên trái dấu $\leqslant $ nên có thể bất đẳng thức này sai.

Em chọn $c$ là số lớn nhất.
Ta nhân 2 đánh giá sau
$c^2[(a+b)^2+c^2]=c^4+c^2a^2+c^2b^2+2c^2ab \geq (c^2+a^2)(c^2+b^2)$
Và $(a+b)^2 \geq (a^2+b^2)$



#675570 $$\prod \left( \dfrac{a}{b}+2...

Đã gửi bởi Kamii0909 on 28-03-2017 - 22:52 trong Bất đẳng thức - Cực trị

Cho các số thực dương $a,b,c$. Cmr
$$ ( \dfrac{a}{b}+2)( \dfrac{b}{c} +2)( \dfrac{c}{a}+2 ) + \dfrac{117(ab+bc+ca)}{4(a^2+b^2+c^2)} \geq \frac{107}{2}$$