Đến nội dung

Kamii0909 nội dung

Có 155 mục bởi Kamii0909 (Tìm giới hạn từ 30-03-2020)



Sắp theo                Sắp xếp  

#673603 VMF's Marathon Bất Đẳng Thức Olympic

Đã gửi bởi Kamii0909 on 06-03-2017 - 22:30 trong Bất đẳng thức và cực trị

cho a, b, c >0 chứng minh
$\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\geq 1+\sqrt{\frac{2abc}{(a+b)(b+c)(c+a)}}$

Do tính thuần nhất ta có thể cho $c=1$. Khi đó bất đẳng thức cần chứng minh tương đương
$$a^2b+b^2+a+ab\geq \sqrt{2ab(a+b)(a+1)(b+1)}$$
Bình phương lên và biến đổi nó tương đương với $a^4b^2+b^4+a^2 \geq 3a^2b^2$
Đúng theo AM-GM



#667078 Đề Thi VMO năm 2017

Đã gửi bởi Kamii0909 on 05-01-2017 - 13:37 trong Thi HSG Quốc gia và Quốc tế

Cách của e cho b hình. Hơi dài.
Dễ thấy $RHEF$ điều hòa và $RH \parallel EF$ nên $RS$ chia đôi $EF$. Ta cmr $BP,CQ$ chia đôi $EF$.
Gọi $K$ là giao điểm $BP,CQ$. $G$ là giao điểm $AD,EF$.
Theo định lý Pascal cho 6 điểm $A,D,B,C,P,Q$ có $\overline{K,E,F}$.
Mặt khác dễ thấy $BFEC$ nội tiếp nên $BFGD,CEGD$ nội tiếp.
Có $\angle{BGC}=\angle{BGD}+\angle{CGD}=\angle{BFD}+\angle{CED}=\angle{BKC}$ nên $B,K,G,C$ đồng viên.
Gọi $X$ là giao $BC,EF$.
Có $XB.XC=XE.XF=XG.XK$ mà $(EF,XG)=-1$ nên $K$ là trung điểm $EF$. Ta có đpcm.



#659152 ĐỀ THI HSG LỚP 12 TỈNH BÌNH ĐỊNH NĂM 2016-2017

Đã gửi bởi Kamii0909 on 24-10-2016 - 00:02 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Câu PTH.
Thay x=0 thì $f(0)=-1$
Thay x=y thì $f(2x)-2f(x)=x^2+1$ (1)
Từ 1 thay x=-x thì $f(-2x)-f(-x)=x^2+1$(2)
Từ (1) và (2) $f(x)-f(-x)=f(2x)-f(-2x)$
Đặt $g(x)=f(x)-f(-x)$ thì
$g(1)=g(2)=....$
Vậy g(x)=c=const hay $f(x)=c+f(-x)$
Từ phương trình thay y=-x thì $f(x)+f(-x)=x^2-2$(3)
Thay vào ta có $f(-x)=\frac{x^2-2-c}{2}$
Với x=0 thì c=0 vậy $f(x)=f(-x)$
Thay lên (3) ta có $f(x)=\frac{x^2}{2}-1$
Thử lại thỏa mãn



#659762 ĐỀ THI HSG LỚP 12 TỈNH BÌNH ĐỊNH NĂM 2016-2017

Đã gửi bởi Kamii0909 on 28-10-2016 - 22:52 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Bài hình đề bài sai sai. Bạn nào thi sửa lại hộ mình với



#660036 ĐỀ THI HSG LỚP 12 TỈNH BÌNH ĐỊNH NĂM 2016-2017

Đã gửi bởi Kamii0909 on 31-10-2016 - 00:41 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

hh2.png
Post cái hình cho bác Kamii 0909

Sorry bác. Không hiểu thế nào e đọc nhầm đề thành trên tia đối của tia BA.
Đây là kết quả quen thuộc rồi và thậm chí nó còn có trong tuyển tập ôn thi chuyên cấp 3 của e.
Cứ chém tạm câu c(ngắn nhất-chủ yếu là do e lười LaTeX)
Có tứ giác ACBD điều hòa nên CD đi qua giao điểm 2 tiếp tuyến tại A và B của đường tròn tâm O' là điểm cố định(đpcm).
Cũng có thể giải bằng đồng dạng với kiến thức THCS như sau.
Gọi giao điểm OO' và MB là H,OO' với CD là Q. O'M với CD là K.Khi đó $O'H.O'Q=O'K.O'M=O'C^2$
Như vậy O'Q không đổi. CD đi qua Q cố định



#659119 ĐỀ THI HSG LỚP 12 TỈNH BÌNH ĐỊNH NĂM 2016-2017

Đã gửi bởi Kamii0909 on 23-10-2016 - 22:06 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

 

  1. Giải hệ phương trình với $x\geq 0$

                                      $\left\{\begin{matrix} 2x-2y+\sqrt{2x+y+2xy+1}=1 & & \\ \sqrt[3]{3y+1}=8x^{3}-4x-1& & \end{matrix}\right.$

  

 

Câu hệ này từng là đề thi rồi thì phải. Tại mình làm rồi

$\sqrt{2x+1}=a, \sqrt{y+1}=b$ (Do x>0)

Viết lại phương trình 1 $(a-b)(a+2b)=0\Rightarrow 2x=y$

Thế vào phương trình 2 $6x+1+\sqrt[3]{6x+1}=8x^{3}+2x$

Xét hàm đặc trưng $f(t)=t^{3}+t$

Có $f'(t)=3t^{2}+1>0$

Như vậy $8x^{3}-6x-1=0$

Phương trình này có thể giải bằng lượng giác hóa.




#659813 ĐỀ THI HSG LỚP 12 TỈNH BÌNH ĐỊNH NĂM 2016-2017

Đã gửi bởi Kamii0909 on 29-10-2016 - 15:59 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Sai ở câu b: Đường thẳng CD đi qua trung điểm của PQ?

Hình như cũng ko đúng. Câu a và b khả năng cao là sai đề. Câu c thì đúng




#654500 CHỌN ĐỘI TUYỂN HSG QUỐC GIA TỈNH HÒA BÌNH

Đã gửi bởi Kamii0909 on 17-09-2016 - 16:59 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

biến đổi vế trái:
$ VT=a(x^{2}+z^{2})+b(x^{2}+y^{2})+c(y^{2}+z^{2}) \geq 2(azx+bxy+cyz) $
đến đây áp dụng BĐT chebychev ta có:
$ azx+bxy+cyz \geq \frac{1}{3}(a+b+c)(xy+yz+zx) $
mà theo bất đẳng thức AM-GM ta có: $ a+b+c \geq 3\sqrt[3]{abc} = 3 $
suy ra $ 2(azx+bxy+cyz) \geq 2(xy+yz+zx) $
từ đó ta có đpcm

Hình như đâu có thể Cheybershev được đâu :) Nếu a>=b>=c và y>=x>=z thì bất đẳng thức đó sai rồi mà



#693724 Đề thi chọn đội tuyển quốc gia THPT chuyên KHTN - ĐHQG Hà Nội vòng 2 năm 2016

Đã gửi bởi Kamii0909 on 26-09-2017 - 00:56 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Ngày 2.

 

Bài 1. Tìm $f:\mathbb{R}\to\mathbb{R}$ thỏa mãn :

\[2f(x)\cdot f(x+y)-f(x^2)=\frac{1}{2}x(f(2x)+4f(f(y)))\]

 

 

Nếu $f$ là hàm hằng, dễ có $f(x)=0, \forall x$ thoả mãn.

 

Xét $f$ khác hằng. 

Từ pt đầu cho $x=0$ ta được $f(0)(2f(y)-1)=0, \forall y$ 

$f$ không hằng nên $f(0)=0$

 

Lại cho $y=0$ thì $\dfrac{xf(2x)}{2}+f(x^2)=2f^2(x)$

Thế đẳng thức này lại phương trình đầu thì $f(x)f(x+y)=f(x)^2+xf(f(y)),\forall x,y$

Ta kí hiệu $P(x,y)$ là phép thế $(x,y)$ cho phương trình này. 

 

Nếu $\exists a \neq 0, f(a)=0$. 

$P(a,y):af(f(y))=0$, tức $(f(f(x))=0, \forall x$

$P(x,f(x)-x): f(x)^2=0,\forall x$ nên $f(x)=0, \forall x$

Có nghĩa $f$ là hàm hằng(loại)

 

Vậy $f(x)=0 \Leftrightarrow x=0$

Xét $x,y \neq 0$.

$P(x,1):f(x+1)=f(x)+\dfrac{x \cdot f(f(1))}{f(x)}$

$P(x,2):f(x+2)=f(x)+\dfrac{x \cdot f(f(2))}{f(x)}$

$P(x+1,1):f(x+2)=f(x+1)+\dfrac{(x+1)f(f(1))}{f(x+1)}=f(x)+\dfrac{x \cdot f(f(1))}{f(x)}+\dfrac{(x+1)f(f(1))f(x)}{f^2(x)+xf(f(1))}$

Từ 2 đẳng thức trên suy ra 

$$f^2(x)( xf(f(1))+2f(f(1))-f(f(2)) )=x^2 f(f(1))( f(f(2))-f(f(1)) ) (1)$$

Giả sử $\dfrac{f(f(2))}{f(f(1))}=k \neq 2$

Từ đẳng thức trên cho $x = k-2$ sẽ được $(k-2)^2 \cdot f(f(1))^2 \cdot (k-1)=0$

Cho ta $f(f(2))=f(f(1)$

Khi đó $(1)$ tương đương $f^2(x) \cdot f(f(1)) \cdot (x+1)=0, \forall x \neq 0$

Chọn $x \neq 0,-1$ ta suy ra mâu thuẫn. 

Vậy $f(f(2))=2f(f(1))$

 

Do đó $f^2(x)=f(f(1))x^2$

Cho $x=1$ thì $f(f(1))=f(1)^2$, suy ra $f^2(x)=x^2 f(1)^2,\forall x \neq 0$ 

Kết hợp với $f(0)=0$ cho ta $f^2(x)=x^2 f(1)^2=c^2 x^2,\forall x$

 

Giả sử $ \exists a,b \neq 0,f(a)=ac,f(b)=-bc$

$P(a,y-a)-P(b,y-a):f(y)+f(y+b-a)=ca-cb (2)$

Tại $(2)$ cho $y=0$ thì $f(b-a)=ca-cb$

Cho $y=b-a$ thì $f(2b-2a)=0 \Leftrightarrow a=b$

Từ đó ta có $a=b=0$(mâu thuẫn) 

 

Vậy $f(x)=cx,\forall x$ hoặc $f(x)=-cx,\forall x$. 

Cả 2 đều dẫn đến $f(x)=ax, \forall x$

Thay hàm này vào pt đầu thì $a=0,a=1$. 

Thử lại 2 hàm $f(x)=0, \forall x$ và $f(x)=x,\forall x$ đều TM. 

Kết luận...




#661744 Kỳ thi chọn đội tuyển dự thi VMO tỉnh Đồng Nai

Đã gửi bởi Kamii0909 on 13-11-2016 - 11:11 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Chứng minh đẳng giác có thể dùng TAB và TCA đồng dạng. D, E là trung điểm của AB, AC nên TAD và TCE đồng dạng.

Cũng giống cách của mình. Nhưng mình đang tìm cách chứng minh nhanh hơn. 




#661694 Kỳ thi chọn đội tuyển dự thi VMO tỉnh Đồng Nai

Đã gửi bởi Kamii0909 on 12-11-2016 - 23:19 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Bài hình không khó lắm nhưng khá hay.
Có $A$ là tâm vị tự biến $(ADE)$ thành $(ABC)$ nên $(ADE)$ tiếp xúc $(ABC)$ tại A.
Từ đó theo định lý về tâm đẳng phương thì
$BC,EQ,PQ$ và tiếp tuyến chung tại $A$ của 2 đường tròn $(ADE)$ và $(ABC)$ đồng quy tại S.
Ta có $(ED,EQ)=(SB,SQ)=(AB,AQ)(mod \pi )$ hay ASBQ nội tiếp.
Dễ thấy $(BD,BQ)=(SA,SQ)(mod \pi )$ và $(DB,DQ)=(EA,EQ)=(AS,AQ)(mod \pi )$
nên $\Delta BDQ \sim \Delta SAQ$
Suy ra $\frac{BD}{BQ} = \frac{SA}{SQ} = \frac{AD}{BQ}$
Mà $(AS,AD)=(QS,QB)(mod \pi )$ nên $\Delta ASD \sim \Delta QSB$
Có $(AD,DP)=(QB,BC)=(EQ,EA)=(PQ,PA)=(QA,QP)(mod \pi )$
Hệ thức trên chứng tỏ $AQ=AP$.




#657837 Đề chọn đội tuyển học sinh giỏi quốc gia tỉnh Bắc Ninh 2016-2017

Đã gửi bởi Kamii0909 on 14-10-2016 - 19:00 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

mình không hiểu chỗ màu đỏ lắm

Bạn ghép vào thôi

 $\sum \left (\frac{5ab}{a+c}+\frac{5ab}{a+c} \right )=\sum \frac{5ab+5bc}{a+c}=5\sum a$

Mình có làm hơi tắt  :D  :D Phải AM-GM nữa

 $\sum \frac{4ab}{a+3b}\leq \sum \frac{1}{4}\left ( \frac{ab}{a}+3\frac{ab}{b} \right )$

Bạn ghép 2 tổng lại là ra như mình  :icon6:  :icon6:




#657750 Đề chọn đội tuyển học sinh giỏi quốc gia tỉnh Bắc Ninh 2016-2017

Đã gửi bởi Kamii0909 on 13-10-2016 - 19:04 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Câu bất 

Đặt A=3 hạng tử đầu

$\sum \frac{ab}{3a+4b+5c}= 2\sum \frac{ab}{6a+8b+10c}\leq \frac{1}{72}\sum \left ( 5\frac{ab}{a+c}+5\frac{ab}{a+c}+4\frac{ab}{a+3b} \right )$ 

$A\leq \frac{5}{72}\left ( a+b+c \right )+\frac{1}{72}\left ( a+b+c \right )= \frac{1}{12}\left ( a+b+c \right )= \frac{3}{4}$

AD bất đẳng thức AM-GM

$4(a+b+c)=3a+(a+2c)+3b+(b+2c)\geq 4\sqrt[4]{9ab(a+2c)(b+2c)}$

$\Leftrightarrow \sqrt{ab(a+2c)(b+2c)}\leq 27\Rightarrow VT\leq \frac{77}{108}$




#661729 Kỳ thi chọn đội tuyển dự thi VMO tỉnh Đồng Nai

Đã gửi bởi Kamii0909 on 13-11-2016 - 09:29 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Câu hình còn có thể chứng minh như thế này :
Gọi tiếp tuyến kẻ từ $A$ cắt $BC$ tại $T$ ; tâm ngoại tiếp $(BAC),(ADE)$ lần lượt là $H,G$ dễ thấy $A,G,H$ thẳng hàng do đó $TA$ là tiếp tuyến chung của $(ABC),(ADE)$. Nên $T$ nằm trên trục đẳng phương của $(AED),(BCD),(BCE)$ hay $DP,QE,BC$ đồng qui tại $T$ .Ta có :
$\widehat{ACB}=\widehat{TQB}=\widehat{TAB}$ suy ra tứ giác $AQBT$ nội tiếp
Mặt khác:
$\widehat{AQP}=\widehat{ADP}=\widehat{ATD}+\widehat{TAD}$
Và $\widehat{APQ}=\widehat{AEQ}=\widehat{TAB}+\widehat{BAQ}$
Kết hợp với tia $TD$ và tia $TQ$ đẳng giác trong $\widehat{ATB}$ nên $\widehat{ATD}=\widehat{BAQ}$

Cái khó của bài toán chính là $TD$ và $TQ$ đẳng giác. Bạn có hướng nào ngắn gọn chứng minh cái này không?



#657582 Đề chọn đội tuyển học sinh giỏi quốc gia tỉnh Quảng Ninh ngày 1 2016-2017

Đã gửi bởi Kamii0909 on 12-10-2016 - 01:19 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

 

 

Bài 1: Cho $a,b,c>0$ thỏa mãn $(a+b)(b+c)(c+a)=1$. Tìm giá trị nhỏ nhất của biểu thức:

                    $P=\sum\frac{\sqrt{a^2-ab+b^2}}{\sqrt{ab}+1}$

 

Ta có $a^{2}-ab+b^{2}= \left [ \frac{1}{2}\left (a-b \right )^{2}+\frac{1}{2}\left ( a^{2}+b^{2} \right ) \right ]\geq \frac{1}{4}\left ( a+b \right )^{2}$

$\Rightarrow P\geq \sum \frac{a+b}{2\sqrt{ab}+2}\geq \sum \frac{a+b}{a+b+2}$

Đổi biến $\left ( a+b,b+c,c+a \right )\rightarrow \left ( x,y,z \right )$ thì $P\geq \sum \frac{x}{x+2}$ và $xyz=1$

Đây là bài toán đơn giản. Đổi ẩn $\left ( x,y,z \right )\rightarrow \left ( \frac{m}{n},\frac{n}{p},\frac{p}{m} \right )$

Khi đó $P\geq \sum \frac{m}{m+2n}=\sum \frac{m^{2}}{m+2mn}\geq \frac{\left ( m+n+p \right )^{2}}{\left (m+n+p \right )^{2}}=1$

Vậy min P=1 $\Leftrightarrow$ $a=b=c=\frac{1}{2}$




#666905 $\frac{a^{2}}{c}+\frac{b^...

Đã gửi bởi Kamii0909 on 04-01-2017 - 12:34 trong Bất đẳng thức và cực trị

Ta có $$\sum \frac{a^2}{c}= \sum \frac{a^4}{a^2c} \geq \frac{(\sum a^2)^2}{\sum a^2c}$$
Ta phải chứng minh
$$\sum a^2 \geq 3(\sum a^2c) \Leftrightarrow (\sum a^2)(\sum a) \geq 3(\sum a^2c) \Leftrightarrow \sum a(a-b)^2 \geq 0$$



#666998 $\frac{a^{2}}{c}+\frac{b^...

Đã gửi bởi Kamii0909 on 04-01-2017 - 23:15 trong Bất đẳng thức và cực trị

làm gì có a + b + c = 1 hả bạn !!

Có đấy bạn. Nếu không có chọn $a=b=c$ có ngay điều vô lý.



#660246 Đề thi chọn đội tuyển chính thức học sinh giỏi dự thi quốc gia năm 2016-2017...

Đã gửi bởi Kamii0909 on 01-11-2016 - 23:47 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

đây cũng phải PTH đa thức
Cũng đặt $g(x)$ như bạn
Tức là ta có $g(g(x)) + g(x)=2x+9 $
Xét dãy số $x_0=x , x_1=g(x)$
$x_n= g(g(...(x)...)) $ ($n$ lần $g$ )
Khi đó, ta dễ có $x_{n+2} + x_{n+1} = 2x_n +9 $
Đặt $u_n=x_n-3n $
Khi đó thay vào lại, ta được
$u_{n+2} + u_{n+1} = 2u_n $
Sai phân, ta tính được
$u_n = c_1.1 + c_2(-2)^n $
Cho $n$ lẻ và đủ lớn thì $u_n <0 $ vô lí
Do đó $c_2=0 $
Tới đây dễ rồi

À mình nhầm sang đa thức. Tks bạn



#657830 ĐỀ THI CHỌN ĐT QG TỈNH HÀ NAM NĂM 2016-2017

Đã gửi bởi Kamii0909 on 14-10-2016 - 18:31 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Câu bất quen quá rồi

Theo AM-GM

$a+(b+c)\geq 2\sqrt{a(b+c)}\Rightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}$

Cộng lại có $P\geq 2$




#660035 Đề thi chọn đội tuyển chính thức học sinh giỏi dự thi quốc gia năm 2016-2017...

Đã gửi bởi Kamii0909 on 31-10-2016 - 00:25 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Câu PTH.
Đặt $g(x)=xf(x)$
PT trở thành
$g(g(x))+g(x)=2x+9$
Đến đây thì dễ rồi.
Dế thấy $g$ không thể là hàm hằng.
Gọi bậc của $g(x)$ là $n(n \geq 1)$
Bậc của VP là 1 còn VT là $max(n^2,n)$. Mà $deg VT= deg VP$ nên $n=1$
$g(x)=ax+b$ thì $a=1,b=3$
Thay ngược lên + thử lại thì thỏa mãn
Kết luận $f(x)=1+ \frac {3}{x}$



#658521 BT BĐT trong tài liệu chuyên toán đại số 10

Đã gửi bởi Kamii0909 on 20-10-2016 - 12:28 trong Bất đẳng thức và cực trị

22.Bổ đề $x^{5}+y^{5}\geq x^{2}y^{2}(x+y)$

$\sum \frac{xy}{x^{5}+y^{5}+xy}\leq \sum \frac{1}{xy(x+y)+1}=\sum \frac{z}{x+y+z}=1$

12. Dễ có $\sum x^{2}y\geq \sum x^{2}y^{2}$

$\prod (1-x^{2})\geq 0 \Leftrightarrow 1+\sum x^{2}y^{2}\geq \sum x^{2}+\prod x^{2}\geq \sum x^{2}$




#658523 BT BĐT trong tài liệu chuyên toán đại số 10

Đã gửi bởi Kamii0909 on 20-10-2016 - 13:31 trong Bất đẳng thức và cực trị

19.Theo C-S

$VP^{2}\leq 2(2x^{2}+2y^{2}+2z^{2}+2t^{2})\leq 8$

18.$\Leftrightarrow \sum (x-y)^{2}\geq 0$

17.AM-GM

$\sum \frac{1}{x}\geq \frac{9}{\sum x}$

$\sum x +\frac{1}{\sum x}+\frac{8}{\sum x}\geq 2+8=10$

13.$\sum \sqrt{x^{2}+xy+y^{2}}\geq \sqrt{3}(\sum x)$

Ta sẽ chứng minh 

$\sqrt{3}\left ( \sum x \right )^{2}\geq 3\sqrt{3}\left ( \sum xy\right )\Leftrightarrow (\sum x)^{2}\geq 3\left ( \sum xy \right )$




#658528 $\boldsymbol{Topic}$ Các bài toán số học HSG Toán 8 + 9

Đã gửi bởi Kamii0909 on 20-10-2016 - 15:18 trong Số học

Bài 1 :  Nhận xét nếu $a \ge 3$ lúc đó $a+b+c>a+b>3$ 
Khi đó $VT<1$ (vô lí) . Nếu $a=1$ cũng dẫn đến vô lí vì $\frac{1}{a+b}+\frac{1}{a+b+c}=0$ 
Do đó $a=2$ . Biến đổi phương trình về thành $b^2+4b+4+(b+2)c=2c+4b+8 \Leftrightarrow bc+b^2+8b+12=0$ vô lí vì $a,b,c nguyên dương$ 
Bài 2 : Xét số dư của $a,b,c$ cho $3$ ta có đpcm |
 

Câu 1 bạn biến đổi nhầm khúc cuối kìa  :icon6:  :icon6:

Mình làm như sau 
Dễ có $\frac{1}{a}> \frac{1}{a+b}> \frac{1}{a+b+c}\Rightarrow \frac{1}{a}> \frac{1}{3}\Rightarrow a< 3$

Mà $a=1$ cũng vô lý vậy $a=2$

Nhân lên ta có $b(b+c)=4$ mà $b< b+c\Rightarrow b=1,c=3$

Câu 2 $\Leftrightarrow (a+bc)(b+ac)=101^{n}$




#658024 Đề chọn đội tuyển học sinh giỏi quốc gia Khánh Hòa 2016-2017 (2 ngày)

Đã gửi bởi Kamii0909 on 16-10-2016 - 09:06 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Câu 2 ngày 1 
$x^{2}+xy+y^{2}\leq 2\Leftrightarrow y^{2}+yx+x^{2}-2\leq 0$

$\Delta = 8-3x^{2}\geq 0\Leftrightarrow 3x^{2}\leq 8$

$5x^{2}+2xy+2y^{2}=3x^{2}+2\left ( x^{2}+xy+y^{2} \right )\leq 12$

Mình không nhìn rõ đề lắm  :(  :(  :( Bạn nào gõ lại được không  :icon6: Mấy cái chỉ số dưới nó cứ mờ mờ ảo ảo :wacko:  :wacko:




#664361 $\boldsymbol{Topic}$ Các bài toán số học HSG Toán 8 + 9

Đã gửi bởi Kamii0909 on 11-12-2016 - 13:14 trong Số học


ĐỀ BÀI

$\boxed{1}$: (Hellenic Mathematical Competitions 2013)
Xác định tất cả các bộ ba số nguyên dương (x, y, z) thỏa mãn phương trình sau đây:


$\frac{1}{x}+\frac{2}{y}-\frac{4}{z}=1$

$\boxed{2}$: (Hellenic Mathematical Competitions 2013) Xác định tất cả các số nguyên x và y thỏa mãn phương trình sau đây:


$y=2x^2+5xy+3y^2$

$\boxed{3}$ Tìm nghiệm nguyên của phương trình


$x^3+y^3=(x+y)^2$

Bài 1.
Biến đổi tương đương ta có
$x=\frac{yz}{yz+4y-2z}$
Nên $yz+4y-2z|yz$.
Từ đó có $z \geq 2y$
Nếu $z=2y$ ta có bộ $(1,t,2t)$ thỏa mãn.
Xét $z>2y$
Lại có $yz+4y-2z|2z-4y$ nên $(y-4)(z+8) \leq 32$(*)
Nếu $y \geq 6$ thì $z \geq 12$.
Khi đó dễ thấy (*) vô lý.
Vậy $y \leq 5$
Đến đây dễ rồi.

Bài 2.
Xét $\Delta$ theo $x$ ta có
$\Delta = y^2+8y=(y+4)^2-16=a^2$ với $a$ là số tự nhiên
$\Leftrightarrow (y+4-a)(y+4+a)=16$

Bài 3.
Dễ thấy có nghiệm $(x,y)=(t,-t)$
Xét TH $x+y$ khác $0$.
Biến đổi pt về dạng $x^2-xy+y^2=x+y$
$\Leftrightarrow x^2-x(y+1)+y^2-y=0$
Coi đây là phương trình bậc 2 ẩn $x$ có $\Delta = -3y^2+6y+1 \geq 0$
$\Leftrightarrow 3y^2-6y-1 \leq 0$
Bất phương trình có nghiệm nguyên $y=0,1,2$.
Thế vào ta có $x$.