Đến nội dung

Hình ảnh

KHTN (Vòng 3)


  • Please log in to reply
Chủ đề này có 1 trả lời

#1
vo thanh van

vo thanh van

    Võ Thành Văn

  • Hiệp sỹ
  • 1197 Bài viết
Đề vòng 3 có lâu rồi,bây giờ mới tranh thủ post được :D
Bài 1: Với n nguyên dương lớn hơn hoặc bàng 4, $a \in R (0\leq a\leq 1)$, chứng minh rằng
${\left(\dfrac{1}{2}+\dfrac{sin\left[\left(\dfrac{1}{2}-\dfrac{1}{4n}\right)\pi\right]}{2sin(\dfrac{\pi}{4n})}\right)}^{a} \leq 1+\sum_{k=1}^{n-1}\dfrac{1}{k}{\left(kcos(\dfrac{k\pi }{2n})\right)}^{a}$
Bài 2:Với n là số nguyên dương, ta kí hiệu a là ước số lớn nhất của n nhưng không vượt quá $\sqrt{n}$, b là số nguyên lớn hơn n nhỏ nhất sao cho nb chia hết cho y, với y là số nguyên nào đó thỏa mãn $n<y<b$. Chứng minh rằng:$ab=(a+1)(a+n)$

Bài 3 Cho tam giác đều XYZ nội tiếp đường tròn (O) và điểm P bất kì nằm ở miền trong tam giác đó(không nằm trên biên). Gọi A,B,C lần lượt là giao của PX,PY,PZ với đường tròn (O).
a)Gọi a,b,c là độ dài các cạnh BC,CA,AB của tam giác ABC. Chứng minh rằng $aPA=bPB=cPC$.
b) Gọi ${I}_{a},{I}_{b},{I}_{c}$ lần lượt là tâm đường tròn nội tiếp các tam giác PBC, PCA, PAB. Chứng minh rằng $A{I}_{a},B{I}_{b},C{I}_{c}$ đồng quy.
Bài 4: Cho số nguyên dương $n>10$. Tìm $m\in {N}^{*}$ lớn nhất thỏa mãn điều kiện:
Tồn tại m tập con ${A}_{j}$ của tập $A={1,2,3,...2n}$, mỗi tập con gồm n phần tử sao cho $|{A}_{i} \cap {A}_{j} \cap {A}_{k}| \leq 1$, với mọi $1 \leq i<j<k \leq n$
_______________
Lí do chỉnh sửa: lỗi latex

Bài viết đã được chỉnh sửa nội dung bởi E. Galois: 10-07-2011 - 07:37

Quy ẩn giang hồ

#2
quanghung86

quanghung86

    Thiếu úy

  • Điều hành viên
  • 632 Bài viết

Vòng 3 năm 2009 Ngày 2

 

Câu 1. Với mỗi $n$ lớn hơn hoặc bằng $2$ , xét ước chung lớn nhất của tất cả các cặp cặp có thể của hai số khác nhau từ $1$ đến $n$. Gọi $A(n), B(n)$ lần lượt là trung bình cộng và trung bình nhân của các ước số đó.

1) chứng minh rằng $A(n)< \ln n+1$ và tính $\lim A(n)$

2) Chứng minh rằng $B(n) < e^3$.

Câu 2. Chứng minh rằng với mọi dãy $a_1,a_2,...a_n$ ($n$ nguyên dương) ta luôn chọn được số tự nhiên $ k \le n$ sao cho $(a_1+a_2+...+a_k)-(a_{k+1}+...+a_n)| \le \max\{|a_1|,|a_2|...|a_n|\}$.

Câu 3. Hai đường tròn tâm $O$ và $O'$ tiếp xúc trong với nhau tại $A$ ($(O')$ nằm trong $(O)$). Giả sử dây cung $BC$ của đường tròn $(O)$ cắt $(O')$ tại $M,N$ sao cho $MB=MC$ và $N$ trên đoạn $MB$. $AN$ cắt $(O)$ lần hai tại $E$. trên cung $BEC$ ta lấy điểm $K$ sao cho $OK$ đi qua $M$. Dây $AK$ cắt $BC$ tại $F$. Chứng minh rằng bốn điểm $E,F,M,K$ nằm trên một đường tròn.

Câu 4. Giả sử ta có thể chọn được n số phân biệt từ tập {1,2,3...2n-1}  sao cho các số được chọn không có hai số nào chia hết cho nhau. Chứng minh rằng không có số nào trong các số trên nhỏ hơn $2^k$, k là số xác định bởi điều kiện $3^k < 2n<3^{k+1}$


Bài viết đã được chỉnh sửa nội dung bởi quanghung86: 19-09-2015 - 22:37





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh