Đến nội dung


Thông báo

Thời gian vừa qua do diễn đàn gặp một số vấn đề về kĩ thuật nên thỉnh thoảng không truy cập được, mong các bạn thông cảm. Hiện nay vấn đề này đã được giải quyết triệt để. Nếu các bạn gặp lỗi trong lúc sử dụng diễn đàn, xin vui lòng thông báo cho Ban Quản Trị.


Chuyên mục

 Photo

Bài kiểm tra số 1 trường Đông Toán Học miền Nam.

15-11-2017

BÀI KIỂM TRA SỐ 1 TRƯỜNG ĐÔNG TOÁN HỌC MIỀN NAM                                                                                         Ngày thi thứ nhất: 15 - 11 - 2017                                                                                         Thời gian làm bài: 180 phútĐỀ BÀI:Câu 1: Với mỗi số nguyên dương $n,$ gọi $M(n)$ là số nguyên dương $m$ lớn nhất sao cho $\binom{m}{n-1}> \binom{m-1}{n}.$ Hãy tính giới hạn: $\lim_{n\rightarrow +\infty }\frac{M(n)}{n}.$Câu 2: Cho số nguyên dương $n\geq 2.$ Cho $P(x)$ là đa thức bậc $n$ có hệ số cao nhất bằng $1$ và có $n$ nghiệm thực $x_{1}, x_{2}, ..., x_{n}$ phân biệt và khác $0.$ Chứng minh rằng:1. $\frac{1}{P^{'}(x_{1})}+\frac{1}{P^{'}(x_{2})}+...+\frac{1}{P^{'}(x_{n})}=0.$2. $\frac{1}{x_{1}P^{'}(x_{1})}+\frac{1}{x_{2}P^{'}(x_{2})}+...+\frac{1}{x_{n}P^{'}(x_{n})}=\frac{(-1)^{n+1}}{x_{1}x_{2}...x_{n}}.$Câu 3: Cho tam giác $ABC$ nội tiếp đường tròn $(O).$ Tiếp tuyến tại $B, C$ của đườ...

  727 Lượt xem · 0 Trả lời

 Photo

Tuần 3 tháng 11/2017: tâm ngoại tiếp tam giác $AEF$ nằm trên $AM$.

12-11-2017

Như vậy lời giải cho hai bài Tuần 2 tháng 11/2017 đã được đưa lên tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và thầy Nguyễn Minh Hà. Xin được trích dẫn lại hai bài toán: Bài 1. Cho tam giác $ABC$ nội tiếp trong đường tròn $(O)$ với trung tuyến $AM$. Lấy $P$ thuộc trung trực $AB$ sao cho $AP \perp AC$. Lấy $Q$ sao cho $QP \perp AO$ và $QO \perp AM$. Trung trực $CA$ cắt $AB$ tại $E$. $QE$ cắt $AC$ tại $F$. Chứng minh rằng tâm ngoại tiếp tam giác $AEF$ nằm trên $AM$.   Bài 2. Cho tứ giác $ABCD$ nội tiếp đường tròn $(O)$. Điểm $S$ thuộc đoạn $CD$ sao cho $\angle DSA= \angle CSB$. $M,N$ theo thứ tự là giao điểm thứ hai của $AS, BS$ và $(O)$. $P,Q$ theo thứ tự là điểm đối xứng xủa $M,N$ qua $CD$. $T$ là giao điểm của $AP$ và $BQ$. $U,V$ theo thứ tự là giao điểm của $CT, DT$ và $AB$. Chứng minh rằng $AU=BV$. 

  597 Lượt xem · 3 Trả lời ( Trả lời cuối cùng bởi ecchi123 )

 Photo

Tuần 2 tháng 11/2017:$KN_a,KN_b,KN_c$ lần lượt cắt $EF,FD,DE$ theo ba điểm thẳng hàng.

05-11-2017

Như vậy lời giải cho hai bài Tuần 1 tháng 1/2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và thầy Nguyễn Minh Hà. Xin được trích dẫn lại hai bài toán: Bài 1. Cho tam giác $ABC$ có $P$ và $Q$ là hai điểm đẳng giác trong tam giác. $K$ là trung điểm $PQ$. Các điểm $D,E,F$ lần lượt thuộc $BC,CA,AB$ sao cho $KD \parallel QA, KE \parallel QB, KF \parallel QC$. Gọi $N_a,N_b,N_c$ lần lượt là tâm đường tròn Euler của tam giác $PBC,PCA,PAB$. Chứng minh rằng $KN_a,KN_b,KN_c$ lần lượt cắt $EF,FD,DE$ theo ba điểm thẳng hàng.   Bài 2. Cho tam giác $ABC$, $(O),(I)$ theo thứ tự là đường tròn ngoại tiếp và đường tròn nội tiếp. $E,F$ theo thứ tự là tiếp điểm của $(I)$ và $AC,AB$. $M,N$ là các giao điểm của $EF$ và $(O)$. $P,Q$ theo thứ tự là giao điểm thứ hai của $BI,CI$ và $(O)$. $S$ là giao điểm của các tiếp tuyến với $(O)$ tại $P$ và $Q$. Chứng minh rằng $S$ là tâm đường tròn ngoại tiếp tam giác $IMN$.

  444 Lượt xem · 3 Trả lời ( Trả lời cuối cùng bởi manhtuan00 )

 Photo

Đề thi chọn đội tuyển Học sinh giỏi môn Toán tỉnh Thanh Hóa năm 2017 - 2018.

04-11-2017

Đề thi chọn đội tuyển Học sinh giỏi môn Toán tỉnh Thanh Hóa năm 2017 - 2018Bài 1. Cho dãy số: $a_{0}, a_{1}, a_{2}, ...$ thỏa mãn: $a_{m+n}+a_{m-n}=\frac{1}{2}\left ( a_{2m}+a_{2n} \right ),$ với mọi số nguyên không âm $m, n$ và $m\geq n.$ Nếu $a_{1}=1,$ hãy xác định: $a_{2017}.$ Bài 2. Tìm tất cả các hàm số $f:\mathbb{R}\rightarrow \mathbb{R}$ thỏa mãn: $f(n^{2})=f(n+m).f(n-m)+m^{2}, \forall m, n\in \mathbb{R}.$Bài 3. Tam giác $ABC$ nhọn có $H$ là trực tâm và $P$ là điểm di động bên trong tam giác sao cho $\widehat{BPC}=\widehat{BHC}.$ Đường thẳng qua $B$ và vuông góc với $AB$ cắt $PC$ tại $M,$ đường thẳng qua $C$ và vuông góc với $AC$ cắt $PB$ tại $N.$ Chứng minh rằng: trung điểm $I$ của $MN$ luôn thuộc một đường thẳng cố định.Bài 4. Tìm tất cả các đa thức $P(x)$ có các hệ số nguyên thỏa mãn $P(2017)=1,$  $3^{n}-1$ chia hết cho $P(n)$ với mọi số nguyên dương $n.$Bài 5. Chứng minh rằng: $\sum_{k=0}^{n}2^{k}C_{n}^{k}C_{n-k}^{\left [ \frac{n-k}{2} \right ]}=C_{2n+1}^{n}.$*Đề thi có tham khảo ở link sau: http://olympictoanho...-2017-2018.html 

  1590 Lượt xem · 4 Trả lời ( Trả lời cuối cùng bởi perfectstrong )

 Photo

Tuần 1 tháng 11/2017: $CS$ và $BT$ cắt nhau trên đường tròn $(BHC)$

29-10-2017

Như vậy lời giải cho hai bài toán Tuần 4 tháng 10/2017 đã được đưa ra tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và thầy Nguyễn Tiến Dũng. Xin được trích dẫn lại hai bài toán: Bài 1. Cho tam giác $ABC$ nội tiếp $(O)$ với trực tâm $H$. $AH$ cắt $(O)$ tại $P$ khác $A$. $PB,PC$ lần lượt cắt $OC,OB$ tại $Q,R$. $K$ đối xứng với trực tâm tam giác $PQR$ qua $BC$. $LA$ cắt $HB.HC$ tại $S,T$. Chứng minh rằng $CS$ và $BT$ cắt nhau trên đường tròn $(BHC)$. Bài 2. Cho tam giác $ABC$ có phân giác $AD$, tâm nội tiếp $I$ và trực tâm $H$. $P,Q$ là các điểm nằm trong tam giác sao cho $PA=PI, \angle PBA= \angle PCB = \angle QBC$ và $DQ \parallel CP$. $(K)$ là đường tròn có tâm thuộc $AD$ và tiếp xúc với đường tròn $(BDQ)$ tại $Q$. Chứng minh rằng đường tròn $(K)$ tiếp xúc với đường tròn $(BHC)$. 

  635 Lượt xem · 1 Trả lời ( Trả lời cuối cùng bởi chanqua1212 )

 Photo

Tuần 4 tháng 10/2017:đường thẳng qua $P$ vuông góc $QR$ luôn đi qua một điểm cố định khi $P$ di chuyển.

22-10-2017

Như vậy lời giải cho hai bài Tuần 4 tháng 10/2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và anh Trịnh Huy Vũ. Xin được trích dẫn lại hai bài toán: Bài 1. Cho tam giác $ABC$ nội tiếp trong đường tròn $(O)$. $P$ di chuyển trên phân giác trong góc $\angle BAC$. $E,F$ là hình chiếu của $P$ lên $CA,AB$. $EF$ cắt $(O)$ tại $M,N$. $MP,NP$ cắt lại $(O)$ tại $Q,R$. Chứng minh rằng đường thẳng qua $P$ vuông góc $QR$ luôn đi qua một điểm cố định khi $P$ di chuyển.   Bài 2. Cho tam giác $ABC$ có trực tâm $H$ và tâm ngoại tiếp $(O)$. $K$ là tâm của đường tròn $(BOC)$. Đối xứng của $AK$ qua $BH,CH$ cắt nhau tại $L$. Chứng minh rằng $AH=AL$.

  806 Lượt xem · 2 Trả lời ( Trả lời cuối cùng bởi manhtuan00 )

 Photo

Tuần 3 tháng 10/2017: Chứng minh rằng $IJ \perp KL$.

15-10-2017

Như vậy lời giải cho hai bài Tuần 2 tháng 10/2017 đã được tại đây kèm theo là hai bài toán mới của thầy Trần Quang Hùng và thầy Trần Minh Ngọc. Xin được trích dẫn lại hai bài toán: ​Bài 1. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và có tâm nội tiếp $I$. $P$ là một điểm nằm trong tam giác sao cho $\angle PBA= \angle PCA$. $D,E,F$ là hình chiếu của $P$ lên $BC,CA,AB$. Trên $CA,AB$ lấy $M,N$ sao cho $IM \parallel PB, IN \parallel PC$. $MN$ cắt $(O)$ tại $Q,R$. $QI,RI$ cắt lại $(O)$ tại $K,L$. Các đường thẳng qua $B,C$ lần lượt song với $DF,DE$ cắt nhau tại $J$. Chứng minh rằng $IJ \perp KL$.   Bài 2. Cho tam giác $ABC$ nội tiếp đường $(O)$ đường kính $AD$. $E,F$ thuộc $(O)$ sao cho $EF \parallel BC$. $AE$ cắt $DB,DC$ tại $M,N$. $AF$ cắt $DB,DC$ tại $P,Q$. Gọi $H,K$ lần lượt là trực tâm các tam giác $DMN$ và $DPQ$. $AH,AK$ cắt $BC$ tại $U,V$. Chứng minh rằng $BU=CV$. 

  794 Lượt xem · 5 Trả lời ( Trả lời cuối cùng bởi cleverboy )

 Photo

Tuần $2/10$ năm $2017$: Tâm $(PBC)$ nằm trên $(O)$

08-10-2017

Như vậy lời giải cho hai bài Tuần 1, tháng 10/2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và thầy Nguyễn Tiến Dũng. Xin được trích dẫn lại hai bài toán:Bài 1: Cho tam giác $ABC$ có tâm nội tiếp $I$, phân giác $AD$. $K,L$ là tâm nội tiếp $ABD,ACD$.$J$ là tâm $(AKL)$.$IJ$ cắt $(IKL)$ tại $P$ khác $I$.Chứng minh tâm $(PBC)$ nằm trên $(O)$Hình vẽ:Bài 2: Cho tam giác $ABC$ nội tiếp $(O)$. $D,E$ thuộc $CA,AB$ sao cho $O$ là trung điểm $DE$ và $DE=OA$.$K$ đối xứng $O$ qua $BC$. Lấy $M,N$ để $OM,ON$ lần lượt song song $CA,AB$, $K$ là trung điểm $MN$. $BN$ cắt $CM$ tạp $P$. Chứng minh $(PMN)$ tiếp xúc $(O)$Hình vẽ:

  1039 Lượt xem · 9 Trả lời ( Trả lời cuối cùng bởi ecchi123 )

 Photo

Vladimir Voevodsky $1966-2017$

06-10-2017

Lần trước mình viết một bài sơ qua về Fields medalist Voevodsky khi ông ấy vừa mất , hôm nay mình sẽ ghi chi tiết hơn , và không ghép vào topic cũ nữa . trong này có một số từ mình không muốn dịch , một số chưa tìm được nghĩa thích hợp , khi nào tìm được mình sẽ bổ sung lại . Vladimir Voevodsky , thực sự là một nhà toán học phi thường và một trong những nhà toán học đầu tiên có những tiến bộ vượt trội trong nghiên cứu hình học đại số . Trong thời gian gần đây ông đã cố gắng làm lại nền tảng của toàn bộ toán học để làm nó thích hợp cho máy tính có thể kiếm chứng được , đã mất ở tuổi $51$ vào ngày $30/9$ vừa qua ở Princeton , New Jersey . Voevodsky là giáo sư toán học tại viện nghiên cứu toán cao cấp , ông giữ chức từ năm $2002$ . Voevodsky có khả năng xử lý các vấn đề trừu tượng ở mức độ rất cao , từ đó công phá các giả thuyết " đá tảng " trong toán học . Ông có một hiểu biết sâu sắc trong lý thuyết đồng luân cổ điển , nơi mà các đối tượng làm việc rất linh hoạt , nghĩa là các biến dạng liên tục bị bỏ qua , và có thể chuyển đổi phương pháp của nó trong lĩnh vực rất vững chắc là hình học đại số . Điều này cho phép ông xây dựng lý thuyết đối đồng điều mới cho đa tạp đại số , từ đó ông đã chứng minh giả thuyết Milnor và Bloch-Kato liên quan đến K - lý thuyết của trường và đối đồng điều Galois . " Lần đầu tiên tôi thấy định nghĩa đơn giản của đối đồng điều motivic tôi nghĩ , ' đây là một định nghĩa rất * naive * để có thể làm việc ' " - Pierre Deligne nói ( giáo sư da...

  11637 Lượt xem · 4 Trả lời ( Trả lời cuối cùng bởi thenguyen1199 )

 Photo

Vladimir Voevodsky đã qua đời

01-10-2017

Vladimir Voevodsky sinh ngày $4-6-1966$ là một nhà toán học người nga , các nghiên cứu của ông bao gồm phát triển một lý thuyết đồng luân cho đa tạp đại số và thiết lập đối đồng điều motivic , giúp ông giành huy chương Fields năm $2002$ . Voevodsky học ở đại học quốc gia Moskva và nhận bằng tiến sĩ ở Harvard năm $1992$ dưới sự hướng dẫn của David Kazhdan . Ông là giáo sư tại viện nghiên cứu cao cấp Princeton  Các nghiên cứu của ông nằm trong sự giao thoa giữa hình học đại số và topo đại số . Cùng với Fabien Morel , Voevodsky đưa ra một lý thuyết đồng luân cho các lược đồ . Ông cũng thiết lập dạng đúng của đối đồng điều motivic và sử dụng công cụ mới này chứng minh phỏng đoán Milnor liên hệ giữa K-lý thuyết Milnor của trường với đối đồng điều etale của nó, vì công trình này ông nhận được huy chương Fields năm $2002$ , cùng với Lauren Lafforgue tại Hội nghị Toán học Thế giới lần thứ $24$ tổ chức tại Bắc Kinh , Trung Quốc .  Tháng $1$ năm $2009$ , tại hội nghị kỉ niệm nhà toán học Alexander Grothendieck , Voevodsky thông báo rằng ông đã chứng minh hoàn toàn phỏng đoán Bloch-Kato .  Gần đây , ông quan tâm về type-theoritic formalizations của toán học ( ai dịch được thì tốt quá ) . Ông làm việc trên cơ sở mới của toán học dựa trên lý thuyết đồng luân của Martin-Lof . Univalence Axiom mới của ông đã có những ảnh hưởng đáng kể trong toán học và máy tính .  Nhưng tiếc thay vào ngày $30/9$ qua , ông một con người phi thường đã có rất nhiều đóng góp cho toán học...

  10273 Lượt xem · 1 Trả lời ( Trả lời cuối cùng bởi huykietbs )


Bài toán trong tuần - PSW

Cho dãy số nguyên dương $\{a_n \}_{1}^{\infty}$ thỏa $a_{n+2}=\left\lfloor \frac{2a_n}{a_{n+1}} \right\rfloor+\left\lfloor \frac{2a_{n+1}}{a_n} \right\rfloor$.
Chứng minh tồn tại số nguyên dương $m$ sao cho $a_m=4$ và $a_{m+1} \in \{3;4 \}$.

>>Tham gia giải bài toán này <<

Những bài toán đã qua


Mỗi tuần 1 bài toán hình học

Bài 1: Cho tam giác $ABC$ và $M,N$ nằm trên cạnh $BC$ sao cho $M$ nằm giữa $N,B$.Lấy $P,Q$ trên $AM,AN$ để $BP,CQ$ cùng vuông góc với $BC$. $K,J$ là tâm ngoại tiếp $(APQ),(AMN)$. $L$ là hình chiếu của $K$ lên $AJ$. Chứng minh $\frac{AJ}{AL}=\frac{MN}{BC}$
Bài 2: Cho tam giác $ABC$ và $l$ là 1 đường thẳng bất kì. $D,E,F$ lần lượt là hình chiếu của $A,B,C$ lên $l$.$X,Y,Z$ lần lượt chia $AD,BE,CF$ theo cùng $1$ tỉ số $k$. Các đường lần lượt qua $X,Y,Z$ và vuông góc $BC,CA,AB$ đồng quy tại $K$. Chứng minh $(KAX),(KBY),(KCZ)$ đồng trục và trục đẳng phương của chúng đi qua điểm cố định khi $k$ thay đổi. Hình vẽ


Tham gia giải bài toán này

Ấn phẩm của Diễn đàn Toán học

 

 

 

Bài viết mới


  • 594062 Bài viết
  • 97288 Thành viên
  • tieumimi2403 Thành viên mới nhất
  • 17600 Online đông nhất

Portal v1.4.0 by DevFuse | Based on IP.Board Portal by IPS