Đến nội dung


Chuyên mục

 Photo

Tuần 3 tháng 4/2017: Chứng minh rằng đường thẳng $QR$ đi qua điểm cố định khi $P$ thay đổi.

16-04-2017

Như vậy lời giải cho hai bài Tuần 2 tháng 4/2017 đã được đăng tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và bạn Nguyễn Đức Bảo. Xin trích dẫn lại hai bài toán Bài 1. Cho tam giác $ABC$ có $P$ nằm trên phân giác gód $\angle BAC$. $D,E,F$ là hình chiếu của $P$ lin $BC,CA,AB$. $AP$ cắt đường tròn $(PBC)$ tại $Q$ khác $P$. $DP$ cắt đường tròn $(DEF)$ tại $K$ khác $D$. $L$ đối xứng $K$ qua $EF$. $AL$ cắt $BC$ tại $R$. Chứng minh rằng đường thẳng $QR$ đi qua điểm cố định khi $P$ thay đổi.   Bài 2. Cho tam giác $ABC$, $P$ thuộc đường thẳng cố định. Các đường thẳng qua $P$ lần lượt vuông góc với $CA,AB$ cắt các đường thẳng $AB,AC$ theo thứ tự tại $E,F$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $PEF$ thuộc một đường thẳng cố định.

  765 Lượt xem · 5 Trả lời ( Trả lời cuối cùng bởi manhtuan00 )

 Photo

Tuần 2 tháng 4/2017: Chứng minh rằng $\frac{MP}{NQ}= \frac{JM}{JN}$.

09-04-2017

Như vậy lời giải cho Tuần 1 tháng 4/2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và anh Ngô Quang Dương. Xin trích dẫn lại hai bài toán: Bài 1. Cho tứ giác $ABCD$ nội tiếp đường tròn $(O)$. $K$ nằm trên đường tròn ngoại tiếp tam giác $AOC$ và nằm trong tứ giác. Đường tròn $(K,KA)$ lần lượt cắt $AB,AD$ tại $M,N$ khác $A$. $MN$ theo thứ tự cắt $CB,CD$ tại $P,Q$. $L$ là tâm ngoại tiếp tam giác $CPQ$. $KL$ cắt $MN$ tại $J$. Chứng minh rằng $\frac{MP}{NQ}= \frac{JM}{JN}$.   Bài 2. Cho $P,Q$ là hai điểm liên hợp đẳng giác với tam giác $ABC$. $E,F$ lần lượt là hình chiếu vuông gcc của $P$ lên $AC,AB$. $AP$ cắt $(ABC)$ tại $X$ khác $A$, $D$ là hình chiếu vuông góc của $X$ lên $BC$. $EF$ cắt $(ABC)$ tại hai điểm $U,V$. $K$ là tâm đường tròn ngoại tiếp tam giác $DUV$. Chứng minh rằng đối xứng của $Q$ qua $K$ nằm trên $(ABC)$.

  699 Lượt xem · 6 Trả lời ( Trả lời cuối cùng bởi quanghung86 )

  3715 Lượt xem · 14 Trả lời ( Trả lời cuối cùng bởi quanghung86 )

 Photo

Đề thi $Olympic$ $30/4$ lớp $11$ năm $2017$

08-04-2017

ĐỀ THI OLYMPIC 30/4NĂM:2017-2018LỚP:11 Bài 1. Giải hệ phương trình sau$\left\{\begin{matrix}\frac{3}{\sqrt{y}}-\frac{1}{x}=\frac{5x+\sqrt{y}}{2{{x}^{2}}+y} \\ \frac{1}{xy}+\frac{4}{\sqrt{y}}=\frac{2}{y}+\frac{8}{3} \\ \end{matrix}\right.$ Bài 2. Tính giới hạn của tổng sau khi $n \to + \infty$\ Bài 3. Tứ giác $ABCD$ có $AB=BC=CD$ và $P$ là giao điểm của $AC,BD$ thỏa mãn $AP\cdot AC=DP\cdot DB$.Gọi $O$ là tâm của $(PBC)$ sao cho tam giác $OAB,ODC$ cùng hướng dương. a) Chứng minh rằng $OA=OD.$ b) Chứng minh rằng $AB \perp CD.$ Bài 4. Tìm tất cả các hàm số $f:\mathbb{R}\to \mathbb{R}$ liên tục và thỏa mãn\  Bài 5. Tìm tất cả các số tự nhiên $n \ge 2$ để với với mọi số tự nhiên $k$ nhỏ hơn $n$ thì tồn tại $x$ nguyên dương để $S(xn)$ chia $n$ dư $k$, trong đó ký hiệu $S(x)$ là tổng các chữ số của $x$. Bài 6. Người ta tô màu một đa giác đều $A_1A_2…A_{38}$ mà trong đó có $19$ đỉnh được tô màu đen, $19$ đỉnh được tô màu xanh. Xét tập hợp $S$ gồm đường chéo $A_1A_4$ và các đường chéo có cùng độ dài với nó. Chứng minh rằng trong $S$, số đường chéo có hai đỉnh được tô đen bằng với số đường chéo có hai đỉnh được tô xanh. Nguồn: Nguyễn Trường Hải, THPT Chuyên Trần Hưng Đạo, Bình Thuận.

  2022 Lượt xem · 5 Trả lời ( Trả lời cuối cùng bởi manhtuan00 )

  4707 Lượt xem · 13 Trả lời ( Trả lời cuối cùng bởi nguyen thanh phong )

 Photo

Tuần 1 tháng 4/2017: Chứng minh rằng $MN \parallel GL$.

02-04-2017

Như vậy lời giải cho hai bài Tuần 4 tháng 3/2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và anh Nguyễn Tiến Dũng. Xin trích dẫn lại hai bài toán: Bài 1. Cho tam giác $ABC$ nhọn có đường cao $AD,BE,CF$ đồng quy tại $H$ và có tâm ngoại tiếp $O$. Đường tròm đường kính $AO$ cắt đường tròn ngoại tiếp tam giác $BOC$ tại $K$ khác $O$ và cắt đường tròn ngoại tiếp tam giác $DKH$ tại $L$ khác $K$. Đường tròn ngoại tiếp tam giác $DKH$ cắt $BC$ tại $G$ khác $D$. $GE,GF$ lần lượt cắt $DF,DE$ tại $M,N$. Chứng minh rằng $MN \parallel GL$. Bài 2. Cho tam giác $ABC$ cố định và điểm $P$ thay đổi sao cho $\frac{PB}{PC} =\frac{AB}{AC}$. Dựng hai hình chứ nhật bằng nhau cùng ngược hướng với tam giác $ABC$ là $PBDE$ và $PGCF$. Chứng minh rằng khi $P$ thay đổi thì đường tròn nối tâm hai hình chữ nhật luôn đi qua một điểm cố định. 

  749 Lượt xem · 4 Trả lời ( Trả lời cuối cùng bởi baopbc )

 Photo

Tuần 4 tháng 3/2017: $PQ$ luôn đi qua một điểm cố định khi $(K)$ thay đổi.

26-03-2017

Như vậy lời giải cho hai bài toán Tuần 3 tháng 3/2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng Hùng và thầy Nguyễn Lê Phước. Xin trích dẫn lại hai bài toán:  Bài 1. Cho tam giác $ABC$ cố định và đường tròn $(K)$ thay đổi đi qua $B,C$ cắt $CA,AB$ tại $E,F$. Gọi $J,L$ lần lượt là tâm ngoại tiếp của các tam giác $ABE,ACF$. $EJ$ cắt $FL$ tại $P$. $Q$ là tâm ngoại tiếp tam giác $KEF$. Chứng minh rằng đường thẳng $PQ$ luôn đi qua một điểm cố định khi $(K)$ thay đổi.   Bài 2. Cho tam giác $ABC$ nội tiếp trong đường tròn $(O)$ cố định với $B,C$ cố định và $A$ di chuyển trên $(O)$. $P$ là điểm cố định trên trung trực $BC$. Trên đường thẳng $CA,AB$ lấy các điểm $E,F$ sao cho $PE \parallel AB, PF \parallel AC$. Chứng minh rằng trung trực $EF$ luôn đi qua một điểm cố định khi $A$ di chuyển.

  827 Lượt xem · 4 Trả lời ( Trả lời cuối cùng bởi quanghung86 )

 Photo

ĐỀ VIỆT NAM TST 2017

26-03-2017

ĐỀ VIỆT NAM TST 2017Bài 1. Cho $44$ cái lỗ phân biệt trên một cái rãnh là đường thẳng và $2017$ con kiến. Mỗi con kiến sẽ chui lên từ một cái lỗ và bò đến một cái lỗ khác với vận tốc không đổi rồi chui xuống đó. Gọi $T$ là tập các thời điểm mà con kiến chui lên hoặc chui xuống các cái lỗ. Biết rằng vận tốc của các con kiến đôi một khác nhau và $|T| \le 45.$ Chứng minh rằng tồn tại ít nhất hai con kiến nào đó không gặp nhau. Bài 2. Với mỗi số nguyên dương $n$, đặt $x_n = C_{2n}^n$. a) Chứng minh rằng nếu $\dfrac{2017^k}{2} < n < 2017^k$ với $k$ là số nguyên dương nào đó thì $x_n$ là bội của $2017$. b) Tìm tất cả số nguyên dương $h > 1$ để tồn tại các số nguyên dương $N,T$ sao cho với mọi $n>N$ thì $x_n$ là dãy số tuần hoàn theo modulo $h$ với chu kỳ $T$. Bài 3. Cho tam giác $ABC$ ngoại tiếp đường tròn $(I)$ và $(I)$ tiếp xúc với các cạnh $BC, CA, AB$ lần lượt tại $D, E, F.$ Gọi $I_b, I_c$ lần lượt là các tâm đường tròn bàng tiếp góc B, C của tam giác $ABC.$ Gọi $P, Q$ lần lượt là trung điểm $I_bE, I_cF.$ Giả sử $(PAC)$ cắt $AB$ tại $R$ và $(QAB)$ cắt $AC$ tại $S.$ a) Chứng minh rằng $PR, QS, AI$ đồng quy. b) DE, DF lần lượt cắt $I_bI_c$ tại $K, J.$ $EJ$ cắt $FK$ tại $M$ và $PE, QF$ cắt $(PAC),(QAB)$ lần lượt tại $X,Y$. Chứng minh rằng $BY, CX, AM$ đồng quy. Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O).$ Điểm $A$ di động trên $(O)$ sao cho $AB > BC$ và $M$ là trung điểm $AC.$ Đường tròn đường kính $BM$ cắt $(O)$ tại $R.$ Giả s...

  4439 Lượt xem · 19 Trả lời ( Trả lời cuối cùng bởi lamNMP01 )

 Photo

Tuần 3 tháng 3/2017: Bốn điểm $U,V,S,T$ cùng thuộc một đường tròn.

20-03-2017

Như vậy lời giải cho bài Tuần 2 tháng 3/2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Hùng và anh Trần Quang Huy. Xin trích dẫn lại bài toán mới: Bài 1. Cho tam giác $ABC$ và đường tròn $(K)$ đi qua $B,C$ cắt $CA,AB$ lần lượt tại $E,F$. $BE$ cắt $CF$ tại $H$. $M,N$ lần lượt là trung điểm của $CA,AB$ $U,V$ lần lượt là điểm đối xứng của $E,F$ qua $M,N$. Đường tròn $(EHN),(FHM)$ lần lượt cắt $CA,AB$ tại $P,Q$ khác $E,F$. $S,T$ lần lượt là đối xứng của $C,B$ qua $P,Q$. Chứng minh rằng bốn điểm $U,V,S,T$ cùng thuộc một đường tròn.   Bài 2. Cho các điểm $A,P,Q,K$ sao cho không có ba điểm nào thẳng hàng. Xét họ các tam giác $\{ \triangle AB_iC_i \}_{i=1}^{\infty}$ thoả mãn:i) $B_i,C_i$ đi qua $K$ với mọi $i$.ii) $P,Q$ đẳng giác trong $\triangle AB_iC_i$ với mọi $i$.Chứng minh rằng các đường tròn $\{ (AB_iC_i) \}_{i=1}^{\infty}$ là một họ các đường tròn đồng trục. 

  611 Lượt xem · 3 Trả lời ( Trả lời cuối cùng bởi ecchi123 )

 Photo

Bài toán đóng gói hình cầu

18-03-2017

 Có lẽ bạn đã có lần nhìn thấy trong quá khứ qua tranh ảnh người ta xếp các quả đạn đại bác thành chồng để chuẩn bị bắn pháo . Hoặc gần như chắc chắn bạn đã thấy người ta xếp một đống các quả cam lên nhau ở cửa hàng tạp hóa trong địa phương bạn . Trong cả hai trường hợp , đống xếp có thể là một tháp tam giác , mỗi quả ở trên xếp gọn gàng vào một khe giữa các quả ở dưới , dường như đây là cách tốt nhất để làm điều này . Vậy làm thế nào bạn biết rằng nó đúng ? Đó là một ví dụ của bài toán đóng gói hình cầu ( sphere packing or Kepler conjecture ) . Một vấn đề yêu thích của các nhà toán học trong hàng thế kỉ . Trường hợp ba chiều có các ứng dụng rất rõ ràng ( chúng ta thường cần đóng gói vật thể hình cầu trong không gian ) , nhưng vấn đề này có thể phát biểu ở bất kì chiều nào . Trong một không gian $d$ chiều kí hiệu là $R^{d}$ . Hình cầu $d-1$ chiều là tập hợp các điểm cách gốc tọa độ một khoảng cách là $1$ . Với $d=2$ đó là hình tròn , với $d=3$ đó là hình cầu mà ta thường thấy ( có thể ví như bề mặt quả cam ) . Phát biểu đúng của bài toán là tìm sự dày đặc lớn nhất  ( tỉ trọng ) của một gói cầu . Có thể hiểu là cho một không gian $d$ chiều hữu hạn chúng ta muốn tìm một cách sắp xếp các hình cầu vào không gian này sao cho nó chiếm một khôn...

  3969 Lượt xem · 1 Trả lời ( Trả lời cuối cùng bởi Ngoc Tran YB )


Những bài toán trong tuần

Bài toán: Xét khai triển hàm số sau: $$f_{k}(x)=1-\frac{x^2}{k}+\frac{x^4}{2!k(k+1)}-\frac{x^6}{3!k(k+1)(k+2)}+....$$ Chứng minh với mỗi số thực $x$,ta có $\lim_{k \to +\infty}f_{k}(x)=1$. .

>>Tham gia giải bài toán này<<

Những bài toán đã qua


Mỗi tuần 1 bài toán hình học

Bài 1. Cho tam giác $ABC$ nhọn nội tiếp trong đường tròn $(O)$ cố định với $B,C$ cố định và $A$ di chuyển trên $(O)$. Các đường cao qua $B,C$ của tam giác $ABC$ cắt $(O)$ tại $M,N$ khác $B,C$. Gọi $K,L$ lần lượt là tâm ngoại tiếp tam giác $OCM, OBN$. $BK$ cắt $CL$ tại $P$. Chứng minh rằng đường thẳng $AP$ luôn đi qua điểm cố định khi $A$ di chuyển.
Bài 2. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ với hai điểm Brocard là $\Omega_1$ và $\Omega_2$. $\Omega_1A, \Omega_1B, \Omega_1C$ cắt $(O)$ tại $X,Y,Z$ khác $A,B,C$. $\Omega_1\Omega_2$ cắt các đường tròn $(\Omega_1BC)$ và $(\Omega_1YZ)$ tại $M$ và $N$ khác $\Omega_1$. $AN$ và $XM$ cắt đường tròn $(O)$ tại $P$ và $Q$ khác $D,X$. Chứng minh rằng $PQ$ đi qua $\Omega_2$.


Tham gia giải bài toán này

Ấn phẩm của Diễn đàn Toán học

 

 

 

Bài viết mới


  • 579276 Bài viết
  • 93830 Thành viên
  • vothan Thành viên mới nhất
  • 17600 Online đông nhất

Portal v1.4.0 by DevFuse | Based on IP.Board Portal by IPS