Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

CM tồn tại số nguyên dương $m$ sao cho $a_m=4$ và $a_{m+1} \in \{3;4 \}$.


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Đọc fanfiction và theo dõi DOTA chuyên nghiệp

Đã gửi 25-06-2013 - 23:18

Bài toán: Cho dãy số nguyên dương $\{a_n \}_{1}^{\infty}$ thỏa $a_{n+2}=\left\lfloor \frac{2a_n}{a_{n+1}} \right\rfloor+\left\lfloor \frac{2a_{n+1}}{a_n} \right\rfloor$.

Chứng minh tồn tại số nguyên dương $m$ sao cho $a_m=4$ và $a_{m+1} \in \{3;4 \}$.


"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#2 takarin1512

takarin1512

    Trung sĩ

  • Thành viên
  • 104 Bài viết
  • Giới tính:Nam

Đã gửi 24-02-2018 - 16:34

Theo đề bài, ta có $a_{n+2}=\left \lfloor \frac{2a_{n+1}}{a_n} \right \rfloor+\left \lfloor \frac{2a_{n}}{a_{n+1}} \right \rfloor$$> \frac{2a_{n+1}}{a_n}+\frac{2a_n}{a_{n+1}}-2\geq 4-2=2\Rightarrow$$a_n\geq 3\forall n\geq 3$. Do đó ta có thể xét dãy $\left \{ a_n \right \}$ mới bắt đầu từ $a_3$ của dãy cũ và lúc này $a_n\geq 3 \forall n$.

Giả sử $max\left \{ a_n,a_{n+1} \right \}>5\forall n$

Xét một bộ $\left ( a_n,a_{n+1} \right )$ bất kỳ và giả sử $a_{n+1}\geq a_n$. Ta xét các trường hợp sau:

+Trường hợp 1: $\frac{a_n}{a_{n+1}}<\frac{1}{2}$$\Rightarrow \frac{2a_{n}}{a_{n+1}}<1\Rightarrow \left \lfloor \frac{2a_{n}}{a_{n+1}} \right \rfloor=0$

$a_{n+2}=\left \lfloor \frac{2a_{n+1}}{a_{n}} \right \rfloor+\left \lfloor \frac{2a_{n}}{a_{n+1}} \right \rfloor=\left \lfloor \frac{2a_{n+1}}{a_{n}} \right \rfloor<\frac{2a_{n+1}}{a_{n}}\leq \frac{2a_{n+1}}{2}=a_{n+1}\Rightarrow a_{n+2}< max\left \{ a_n,a_{n+1} \right \}$.

+Trường hợp 2: $\frac{a_{n}}{a_{n+1}}=\frac{1}{2}\Rightarrow a_{n+2}=5 < max\left \{ a_n,a_{n+1} \right \}$.

+Trường hợp 3: $\frac{1}{2}<\frac{a_{n}}{a_{n+1}}<1\Rightarrow \frac{a_{n+1}}{a_n}<2\Rightarrow a_{n+2}=\left \lfloor \frac{2a_{n}}{a_{n+1}} \right \rfloor+\left \lfloor \frac{2a_{n+1}}{a_{n}} \right \rfloor\leq 1+\left \lfloor 2.2 \right \rfloor=5 < max\left \{ a_n,a_{n+1} \right \}$.

+Trường hợp 4: $\frac{a_n}{a_{n+1}}=1\Rightarrow a_{n+2}=4< max\left \{ a_n,a_{n+1} \right \}$.

Vậy với mọi trường hợp thì $a_{n+2}< max\left \{ a_n,a_{n+1} \right \}$. Tương tự ta có $a_{n+3}< max\left \{ a_{n+1},a_{n+2} \right \}\leq max\left \{ a_n,a_{n+1} \right \}\Rightarrow max\left \{ a_{n+2},a_{n+3} \right \}< max\left \{ a_{n},a_{n+1} \right \}$. Điều này mâu thuẫn với giả sử cho nên tồn tại $k$ sao cho $max\left \{ a_k,a_{k+1} \right \}\leq 5$.

Do đó $a_k,a_{k+1}\in \left \{ 3,4,5 \right \}$. Bằng tính toán trực tiếp ta suy ra được từ 9 bộ này luôn suy ra được một trong hai bộ $\left ( 4,3 \right )$ hoặc $\left ( 4,4 \right )$. Như vậy tồn tại $m$ để $a_m=4, a_{m+1}\in \left \{ 3,4 \right \}$.


Bài viết đã được chỉnh sửa nội dung bởi takarin1512: 24-02-2018 - 16:36


#3 WhjteShadow

WhjteShadow

    Thượng úy

  • Phó Quản trị
  • 1319 Bài viết
  • Giới tính:Nam

Đã gửi 06-03-2018 - 20:51

Theo đề bài, ta có $a_{n+2}=\left \lfloor \frac{2a_{n+1}}{a_n} \right \rfloor+\left \lfloor \frac{2a_{n}}{a_{n+1}} \right \rfloor$$> \frac{2a_{n+1}}{a_n}+\frac{2a_n}{a_{n+1}}-2\geq 4-2=2\Rightarrow$$a_n\geq 3\forall n\geq 3$. Do đó ta có thể xét dãy $\left \{ a_n \right \}$ mới bắt đầu từ $a_3$ của dãy cũ và lúc này $a_n\geq 3 \forall n$.

Giả sử $max\left \{ a_n,a_{n+1} \right \}>5\forall n$

Xét một bộ $\left ( a_n,a_{n+1} \right )$ bất kỳ và giả sử $a_{n+1}\geq a_n$. Ta xét các trường hợp sau:

+Trường hợp 1: $\frac{a_n}{a_{n+1}}<\frac{1}{2}$$\Rightarrow \frac{2a_{n}}{a_{n+1}}<1\Rightarrow \left \lfloor \frac{2a_{n}}{a_{n+1}} \right \rfloor=0$

$a_{n+2}=\left \lfloor \frac{2a_{n+1}}{a_{n}} \right \rfloor+\left \lfloor \frac{2a_{n}}{a_{n+1}} \right \rfloor=\left \lfloor \frac{2a_{n+1}}{a_{n}} \right \rfloor<\frac{2a_{n+1}}{a_{n}}\leq \frac{2a_{n+1}}{2}=a_{n+1}\Rightarrow a_{n+2}< max\left \{ a_n,a_{n+1} \right \}$.

+Trường hợp 2: $\frac{a_{n}}{a_{n+1}}=\frac{1}{2}\Rightarrow a_{n+2}=5 < max\left \{ a_n,a_{n+1} \right \}$.

+Trường hợp 3: $\frac{1}{2}<\frac{a_{n}}{a_{n+1}}<1\Rightarrow \frac{a_{n+1}}{a_n}<2\Rightarrow a_{n+2}=\left \lfloor \frac{2a_{n}}{a_{n+1}} \right \rfloor+\left \lfloor \frac{2a_{n+1}}{a_{n}} \right \rfloor\leq 1+\left \lfloor 2.2 \right \rfloor=5 < max\left \{ a_n,a_{n+1} \right \}$.

+Trường hợp 4: $\frac{a_n}{a_{n+1}}=1\Rightarrow a_{n+2}=4< max\left \{ a_n,a_{n+1} \right \}$.

Vậy với mọi trường hợp thì $a_{n+2}< max\left \{ a_n,a_{n+1} \right \}$. Tương tự ta có $a_{n+3}< max\left \{ a_{n+1},a_{n+2} \right \}\leq max\left \{ a_n,a_{n+1} \right \}\Rightarrow max\left \{ a_{n+2},a_{n+3} \right \}< max\left \{ a_{n},a_{n+1} \right \}$. Điều này mâu thuẫn với giả sử cho nên tồn tại $k$ sao cho $max\left \{ a_k,a_{k+1} \right \}\leq 5$.

Do đó $a_k,a_{k+1}\in \left \{ 3,4,5 \right \}$. Bằng tính toán trực tiếp ta suy ra được từ 9 bộ này luôn suy ra được một trong hai bộ $\left ( 4,3 \right )$ hoặc $\left ( 4,4 \right )$. Như vậy tồn tại $m$ để $a_m=4, a_{m+1}\in \left \{ 3,4 \right \}$.

Em làm đúng rồi, +10 điểm PSW nhé.


$$n! \sim \sqrt{2\pi n} \left(\dfrac{n}{e}\right)^n$$

 

“We can only see a short distance ahead, but we can see plenty there that needs to be done.” - Alan Turing


#4 NeverDiex

NeverDiex

    Hạ sĩ

  • Thành viên
  • 61 Bài viết

Đã gửi 26-07-2019 - 10:50

 

  • Thành viên
  • trungsi.jpg
  • 104 Bài viết
  • Giới tính:Nam

Đã gửi 24-02-2018 - 16:34

Theo đề bài, ta có an+2=2an+1an+2anan+1an+2=⌊2an+1an⌋+⌊2anan+1⌋>2an+1an+2anan+1242=2>2an+1an+2anan+1−2≥4−2=2⇒an3n3an≥3∀n≥3. Do đó ta có thể xét dãy {an}{an} mới bắt đầu từ a3a3 của dãy cũ và lúc này an3nan≥3∀n.

Giả sử max{an,an+1}>5nmax{an,an+1}>5∀n

Xét một bộ (an,an+1)(an,an+1) bất kỳ và giả sử an+1anan+1≥an. Ta xét các trường hợp sau:

+Trường hợp 1: anan+1<12anan+1<122anan+1<12anan+1=0⇒2anan+1<1⇒⌊2anan+1⌋=0

an+2=2an+1an+2anan+1=2an+1an<2an+1an2an+12=an+1an+2<max{an,an+1}an+2=⌊2an+1an⌋+⌊2anan+1⌋=⌊2an+1an⌋<2an+1an≤2an+12=an+1⇒an+2<max{an,an+1}.

+Trường hợp 2: anan+1=12an+2=5<max{an,an+1}anan+1=12⇒an+2=5<max{an,an+1}.

+Trường hợp 3: 12<anan+1<1an+1an<2an+2=2anan+1+2an+1an1+2.2=5<max{an,an+1}12<anan+1<1⇒an+1an<2⇒an+2=⌊2anan+1⌋+⌊2an+1an⌋≤1+⌊2.2⌋=5<max{an,an+1}.

+Trường hợp 4: anan+1=1an+2=4<max{an,an+1}anan+1=1⇒an+2=4<max{an,an+1}.

Vậy với mọi trường hợp thì an+2<max{an,an+1}an+2<max{an,an+1}. Tương tự ta có an+3<max{an+1,an+2}max{an,an+1}max{an+2,an+3}<max{an,an+1}an+3<max{an+1,an+2}≤max{an,an+1}⇒max{an+2,an+3}<max{an,an+1}. Điều này mâu thuẫn với giả sử cho nên tồn tại kk sao cho max{ak,ak+1}5max{ak,ak+1}≤5.

Do đó ak,ak+1{3,4,5}ak,ak+1∈{3,4,5}. Bằng tính toán trực tiếp ta suy ra được từ 9 bộ này luôn suy ra được một trong hai bộ (4,3)(4,3) hoặc (4,4)(4,4). Như vậy tồn tại mm để am=4,am+1{3,4}am=4,am+1∈{3,4}.


 

 




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh